
Motif 2.1—Programmer’s Reference

Desktop Product Documentation

The Open Group

Copyright © The Open Group, 1997.

All Rights Reserved

The information contained within this document is subject to change without notice.

This documentation and the software to which it relates are derived in part from copyrighted materials supplied by Digital Equipment
Corporation, Hewlett-Packard Company, International Business Machines, Massachusetts Institute of Technology, Microsoft Corporation, Sun
Microsystems Inc., and The Santa Cruz Operation Inc.

THE OPEN GROUP MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The Open Group shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

Desktop Product Documentation:

Motif 2.1—Programmer’s Reference, Volume 1
ISBN 1-85912-119-5
Document Number M214A

Motif 2.1—Programmer’s Reference, Volume 2
ISBN 1-85912-124-1
Document Number M214B

Motif 2.1—Programmer’s Reference, Volume 3
ISBN 1-85912-164-0
Document Number M214C

Published in the U.K. by The Open Group, 1997

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:
OGPubs@opengroup.org

OTHER NOTICES

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH THE OPEN GROUP
OR ITS LICENSORS.

Certain portions of CDE known as "PBMPlus" are copyrighted © 1989, 1991 by Jef Poskanzer. Permission to use, copy, modify, and distribute
this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both the copyright notice and this permission notice appears in supporting documentation. This software is provided "as is"
without express or implied warranty.

The code and documentation for the DtComboBox and DtSpinBox widgets were contributed by Interleaf, Inc. Copyright © 1993, Interleaf,
Inc.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE:Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the rights of
the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer Software-Restricted
Rights clause.

RESTRICTED RIGHTS NOTICE:Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND:Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B)
of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with "restricted rights."
Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer
Software-Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the "Alternate
III" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface . xvii

The Open Group xvii

The Development of Product Standards. xviii

Open Group Publications xix

Versions and Issues of Specifications. xxi

Corrigenda. xxi

Ordering Information xxi

This Book xxii

Audience xxii

Applicability xxii

Purpose. xxii

Organization xxii
Reference Page Format xxiii

Related Documents. xxiv

Typographic and Keying Conventions. xxv
DocBook SGML Conventions. xxvi
Terminology Conventions. xxvi
Keyboard Conventions. xxvi
Mouse Conventions xxvii

Problem Reporting. xxvii

Trademarks. xxvii

Chapter 1. Programs. 1
mwm 2
uil 37
xmbind 39

i

Motif 2.1—Programmer’s Reference

Chapter 2. Xt Widget Classes. 41
ApplicationShell 42
Composite. 47
Constraint. 51
Core 54
Object. 59
OverrideShell 61
RectObj 64
Shell 67
TopLevelShell. 71
TransientShell. 76
VendorShell 81
WMShell 94

Chapter 3. Xm Widget Classes. 103
XmArrowButton 104
XmArrowButtonGadget 111
XmBulletinBoard 117
XmCascadeButton. 128
XmCascadeButtonGadget. 139
XmComboBox. 147
XmCommand. 161
XmContainer 171
XmDialogShell 213
XmDisplay 219
XmDragContext 230
XmDragIcon 252
XmDrawingArea 257
XmDrawnButton 268
XmDropTransfer 277
XmFileSelectionBox 281
XmForm 303
XmFrame. 319
XmGadget. 325
XmIconGadget. 333
XmLabel 340
XmLabelGadget 356
XmList 371
XmMainWindow 406
XmManager 413
XmMenuShell. 428
XmMessageBox 434
XmNotebook 444

ii

Contents

XmPanedWindow. 460
XmPrimitive 470
XmPushButton. 486
XmPushButtonGadget. 498
XmRendition 508
XmRowColumn 512
XmScale 540
XmScreen. 558
XmScrollBar 567
XmScrolledWindow 583
XmSelectionBox 595
XmSeparator 608
XmSeparatorGadget 613
XmText 618
XmTextField 673
XmToggleButton 709
XmToggleButtonGadget 725

Chapter 4. Translations. 739
VirtualBindings 740

Chapter 5. Xm Data Types. 747
XmDirection 748
XmFontList 751
XmParseMapping. 754
XmParseTable. 759
XmRenderTable 760
XmString 763
XmStringDirection. 766
XmStringTable. 767
XmTab 768
XmTabList. 769
XmTextPosition 771

Chapter 6. Xm Functions. 773
XmActivateProtocol 774
XmActivateWMProtocol 776
XmAddProtocolCallback 777
XmAddProtocols 779
XmAddTabGroup. 780
XmAddToPostFromList 781
XmAddWMProtocolCallback 783
XmAddWMProtocols 784

iii

Motif 2.1—Programmer’s Reference

XmCascadeButtonGadgetHighlight. 785
XmCascadeButtonHighlight 786
XmChangeColor 787
XmClipboardCancelCopy. 788
XmClipboardCopy. 790
XmClipboardCopyByName 793
XmClipboardEndCopy. 795
XmClipboardEndRetrieve. 797
XmClipboardInquireCount. 799
XmClipboardInquireFormat 801
XmClipboardInquireLength 803
XmClipboardInquirePendingItems. 805
XmClipboardLock. 807
XmClipboardRegisterFormat 809
XmClipboardRetrieve. 811
XmClipboardStartCopy 814
XmClipboardStartRetrieve. 817
XmClipboardUndoCopy 819
XmClipboardUnlock 821
XmClipboardWithdrawFormat. 823
XmComboBoxAddItem 825
XmComboBoxDeletePos. 827
XmComboBoxSelectItem. 828
XmComboBoxSetItem. 829
XmComboBoxUpdate. 830
XmCommandAppendValue. 831
XmCommandError. 832
XmCommandGetChild. 833
XmCommandSetValue. 835
XmContainerCopy. 836
XmContainerCopyLink. 837
XmContainerCut 839
XmContainerGetItemChildren. 841
XmContainerPaste. 843
XmContainerPasteLink. 844
XmContainerRelayout. 845
XmContainerReorder. 846
XmConvertStringToUnits 847
XmConvertUnits 850
XmCreateArrowButton. 853
XmCreateArrowButtonGadget. 854
XmCreateBulletinBoard 855
XmCreateBulletinBoardDialog. 856
XmCreateCascadeButton. 858

iv

Contents

XmCreateCascadeButtonGadget. 860
XmCreateComboBox. 862
XmCreateCommand 863
XmCreateContainer 864
XmCreateDialogShell. 865
XmCreateDragIcon 866
XmCreateDrawingArea 868
XmCreateDrawnButton 869
XmCreateDropDownComboBox 870
XmCreateDropDownList 872
XmCreateErrorDialog. 873
XmCreateFileSelectionBox. 875
XmCreateFileSelectionDialog. 877
XmCreateForm 879
XmCreateFormDialog. 880
XmCreateFrame 882
XmCreateIconGadget. 883
XmCreateInformationDialog 884
XmCreateLabel 886
XmCreateLabelGadget. 887
XmCreateList 888
XmCreateMainWindow 889
XmCreateMenuBar 890
XmCreateMenuShell 892
XmCreateMessageBox. 893
XmCreateMessageDialog. 895
XmCreateNotebook 897
XmCreateOptionMenu. 898
XmCreatePanedWindow 901
XmCreatePopupMenu. 902
XmCreatePromptDialog 904
XmCreatePulldownMenu. 906
XmCreatePushButton. 909
XmCreatePushButtonGadget. 910
XmCreateQuestionDialog. 911
XmCreateRadioBox 913
XmCreateRowColumn. 915
XmCreateScale 917
XmCreateScrollBar 918
XmCreateScrolledList. 919
XmCreateScrolledText. 921
XmCreateScrolledWindow. 923
XmCreateSelectionBox. 924
XmCreateSelectionDialog. 926

v

Motif 2.1—Programmer’s Reference

XmCreateSeparator 928
XmCreateSeparatorGadget. 929
XmCreateSimpleCheckBox 930
XmCreateSimpleMenuBar. 932
XmCreateSimpleOptionMenu. 934
XmCreateSimplePopupMenu. 936
XmCreateSimplePulldownMenu 938
XmCreateSimpleRadioBox. 940
XmCreateSimpleSpinBox. 942
XmCreateSpinBox. 943
XmCreateTemplateDialog. 945
XmCreateText. 947
XmCreateTextField 948
XmCreateToggleButton 949
XmCreateToggleButtonGadget. 950
XmCreateWarningDialog 951
XmCreateWorkArea 953
XmCreateWorkingDialog 955
XmCvtByteStreamToXmString. 957
XmCvtCTToXmString. 958
XmCvtStringToUnitType 959
XmCvtTextPropertyToXmStringTable. 960
XmCvtXmStringTableToTextProperty. 962
XmCvtXmStringToByteStream. 964
XmCvtXmStringToCT. 966
XmDeactivateProtocol. 968
XmDeactivateWMProtocol. 970
XmDestroyPixmap. 971
XmDirectionMatch. 972
XmDirectionMatchPartial 974
XmDirectionToStringDirection. 975
XmDragCancel 977
XmDragStart 978
XmDropSite 980
XmDropSiteConfigureStackingOrder. 990
XmDropSiteEndUpdate 992
XmDropSiteQueryStackingOrder. 993
XmDropSiteRegister 995
XmDropSiteRegistered. 997
XmDropSiteRetrieve 998
XmDropSiteStartUpdate 999
XmDropSiteUnregister. 1000
XmDropSiteUpdate 1001
XmDropTransferAdd 1002

vi

Contents

XmDropTransferStart. 1003
XmFileSelectionBoxGetChild. 1005
XmFileSelectionDoSearch. 1007
XmFontListAdd 1008
XmFontListAppendEntry 1010
XmFontListCopy 1011
XmFontListCreate. 1012
XmFontListEntryCreate 1014
XmFontListEntryFree. 1016
XmFontListEntryGetFont 1017
XmFontListEntryGetTag 1018
XmFontListEntryLoad. 1019
XmFontListFree 1021
XmFontListFreeFontContext 1022
XmFontListGetNextFont 1023
XmFontListInitFontContext 1025
XmFontListNextEntry. 1026
XmFontListRemoveEntry. 1027
XmGetAtomName. 1029
XmGetColorCalculation 1030
XmGetColors 1031
XmGetDestination. 1033
XmGetDragContext 1034
XmGetFocusWidget 1036
XmGetMenuCursor 1037
XmGetPixmap. 1038
XmGetPixmapByDepth 1042
XmGetPostedFromWidget. 1048
XmGetSecondaryResourceData. 1049
XmGetTabGroup 1051
XmGetTearOffControl. 1052
XmGetVisibility 1054
XmGetXmDisplay. 1056
XmGetXmScreen. 1057
XmImCloseXIM 1058
XmImFreeXIC. 1059
XmImGetXIC 1060
XmImGetXIM 1062
XmImMbLookupString 1063
XmImMbResetIC 1066
XmImRegister. 1067
XmImSetFocusValues. 1068
XmImSetValues 1070
XmImSetXIC 1073

vii

Motif 2.1—Programmer’s Reference

XmImUnregister 1074
XmImUnsetFocus. 1075
XmImVaSetFocusValues 1076
XmImVaSetValues. 1078
XmInstallImage 1079
XmInternAtom. 1081
XmIsMotifWMRunning 1082
XmIsTraversable 1083
XmListAddItem 1085
XmListAddItemUnselected. 1086
XmListAddItems 1087
XmListAddItemsUnselected 1088
XmListDeleteAllItems. 1089
XmListDeleteItem. 1090
XmListDeleteItems 1091
XmListDeleteItemsPos. 1092
XmListDeletePos 1093
XmListDeletePositions. 1094
XmListDeselectAllItems 1095
XmListDeselectItem 1096
XmListDeselectPos 1097
XmListGetKbdItemPos. 1098
XmListGetMatchPos 1099
XmListGetSelectedPos. 1101
XmListItemExists 1103
XmListItemPos 1104
XmListPosSelected 1105
XmListPosToBounds 1106
XmListReplaceItems 1108
XmListReplaceItemsPos 1110
XmListReplaceItemsPosUnselected. 1112
XmListReplaceItemsUnselected 1114
XmListReplacePositions 1116
XmListSelectItem. 1118
XmListSelectPos 1119
XmListSetAddMode 1120
XmListSetBottomItem. 1121
XmListSetBottomPos. 1122
XmListSetHorizPos 1123
XmListSetItem. 1124
XmListSetKbdItemPos. 1125
XmListSetPos. 1126
XmListUpdateSelectedList. 1127
XmListYToPos 1128

viii

Contents

XmMainWindowSep1. 1129
XmMainWindowSep2. 1130
XmMainWindowSep3. 1131
XmMainWindowSetAreas. 1132
XmMapSegmentEncoding. 1134
XmMenuPosition 1135
XmMessageBoxGetChild. 1136
XmNotebookGetPageInfo. 1138
XmObjectAtPoint 1141
XmOptionButtonGadget 1143
XmOptionLabelGadget. 1145
XmParseMappingCreate 1147
XmParseMappingFree. 1148
XmParseMappingGetValues 1149
XmParseMappingSetValues 1150
XmParseTableFree. 1151
XmGetScaledPixmap. 1152
XmPrintPopupPDM 1154
XmPrintSetup. 1157
XmPrintShell 1160
XmPrintToFile. 1166
XmProcessTraversal 1169
XmRedisplayWidget 1175
XmRegisterSegmentEncoding. 1179
XmRemoveFromPostFromList. 1181
XmRemoveProtocolCallback. 1183
XmRemoveProtocols 1185
XmRemoveTabGroup. 1187
XmRemoveWMProtocolCallback. 1188
XmRemoveWMProtocols. 1189
XmRenderTableAddRenditions. 1190
XmRenderTableCopy. 1192
XmRenderTableCvtFromProp. 1193
XmRenderTableCvtToProp. 1194
XmRenderTableFree 1195
XmRenderTableGetRendition. 1196
XmRenderTableGetRenditions. 1197
XmRenderTableGetTags 1199
XmRenderTableRemoveRenditions. 1200
XmRenditionCreate 1202
XmRenditionFree. 1204
XmRenditionRetrieve. 1205
XmRenditionUpdate 1206
XmRepTypeAddReverse 1207

ix

Motif 2.1—Programmer’s Reference

XmRepTypeGetId. 1208
XmRepTypeGetNameList. 1209
XmRepTypeGetRecord. 1210
XmRepTypeGetRegistered. 1212
XmRepTypeInstallTearOffModelConverter. . . . 1214
XmRepTypeRegister 1215
XmRepTypeValidValue. 1217
XmResolveAllPartOffsets. 1218
XmResolvePartOffsets. 1222
XmScaleGetValue. 1225
XmScaleSetTicks. 1226
XmScaleSetValue. 1228
XmScrollBarGetValues. 1229
XmScrollBarSetValues. 1231
XmScrollVisible 1233
XmScrolledWindowSetAreas. 1235
XmSelectionBoxGetChild. 1237
XmSetColorCalculation 1239
XmSetFontUnit 1241
XmSetFontUnits 1242
XmSetMenuCursor. 1244
XmSetProtocolHooks. 1245
XmSetWMProtocolHooks. 1247
XmSpinBox 1249
XmSimpleSpinBoxAddItem 1269
XmSimpleSpinBoxDeletePos. 1270
XmSimpleSpinBoxSetItem. 1271
XmSpinBoxValidatePosition 1272
XmSimpleSpinBox. 1276
XmStringBaseline. 1285
XmStringByteCompare. 1286
XmStringByteStreamLength 1288
XmStringCompare. 1289
XmStringComponentCreate 1290
XmStringComponentType. 1292
XmStringConcat 1295
XmStringConcatAndFree. 1296
XmStringCopy. 1298
XmStringCreate 1299
XmStringCreateLocalized. 1301
XmStringCreateLtoR 1302
XmStringCreateSimple. 1304
XmStringDirectionCreate. 1306
XmStringDirectionToDirection. 1307

x

Contents

XmStringDraw. 1308
XmStringDrawImage 1310
XmStringDrawUnderline 1312
XmStringEmpty 1314
XmStringExtent 1315
XmStringFree. 1316
XmStringFreeContext. 1317
XmStringGenerate. 1318
XmStringGetLtoR. 1320
XmStringGetNextComponent. 1322
XmStringGetNextSegment. 1325
XmStringGetNextTriple 1327
XmStringHasSubstring. 1329
XmStringHeight 1330
XmStringInitContext 1331
XmStringIsVoid 1332
XmStringLength 1333
XmStringLineCount 1334
XmStringNConcat. 1335
XmStringNCopy 1337
XmStringParseText. 1338
XmStringPeekNextComponent. 1341
XmStringPeekNextTriple 1342
XmStringPutRendition. 1343
XmStringSegmentCreate. 1345
XmStringSeparatorCreate. 1347
XmStringTableParseStringArray 1348
XmStringTableProposeTablist. 1350
XmStringTableToXmString. 1352
XmStringTableUnparse. 1354
XmStringToXmStringTable. 1356
XmStringUnparse. 1358
XmStringWidth 1361
XmTabCreate. 1362
XmTabFree 1364
XmTabGetValues 1365
XmTabListCopy 1367
XmTabListFree 1369
XmTabListGetTab. 1370
XmTabListInsertTabs. 1371
XmTabListRemoveTabs 1373
XmTabListReplacePositions 1375
XmTabListTabCount 1377
XmTabSetValue 1378

xi

Motif 2.1—Programmer’s Reference

XmTargetsAreCompatible. 1379
XmTextClearSelection. 1381
XmTextCopy 1382
XmTextCopyLink 1384
XmTextCut 1386
XmTextDisableRedisplay. 1388
XmTextEnableRedisplay 1389
XmTextFieldClearSelection 1390
XmTextFieldCopy. 1391
XmTextFieldCopyLink. 1392
XmTextFieldCut 1394
XmTextFieldGetBaseline 1396
XmTextFieldGetEditable 1397
XmTextFieldGetInsertionPosition. 1398
XmTextFieldGetLastPosition 1399
XmTextFieldGetMaxLength 1400
XmTextFieldGetSelection. 1401
XmTextFieldGetSelectionPosition. 1402
XmTextFieldGetSelectionWcs. 1404
XmTextFieldGetString. 1405
XmTextFieldGetStringWcs. 1406
XmTextFieldGetSubstring. 1407
XmTextFieldGetSubstringWcs. 1409
XmTextFieldInsert. 1411
XmTextFieldInsertWcs. 1413
XmTextFieldPaste. 1415
XmTextFieldPasteLink. 1417
XmTextFieldPosToXY. 1418
XmTextFieldRemove 1420
XmTextFieldReplace 1421
XmTextFieldReplaceWcs. 1423
XmTextFieldSetAddMode. 1425
XmTextFieldSetEditable 1426
XmTextFieldSetHighlight 1427
XmTextFieldSetInsertionPosition. 1429
XmTextFieldSetMaxLength 1430
XmTextFieldSetSelection. 1431
XmTextFieldSetString. 1432
XmTextFieldSetStringWcs. 1433
XmTextFieldShowPosition. 1434
XmTextFieldXYToPos. 1435
XmTextFindString. 1436
XmTextFindStringWcs. 1438
XmTextGetBaseline 1440

xii

Contents

XmTextGetCenterline. 1441
XmTextGetEditable 1442
XmTextGetInsertionPosition 1443
XmTextGetLastPosition 1444
XmTextGetMaxLength. 1445
XmTextGetSelection 1446
XmTextGetSelectionPosition 1447
XmTextGetSelectionWcs. 1449
XmTextGetSource. 1450
XmTextGetString 1451
XmTextGetStringWcs. 1452
XmTextGetSubstring 1453
XmTextGetSubstringWcs. 1455
XmTextGetTopCharacter 1457
XmTextInsert 1458
XmTextInsertWcs. 1460
XmTextPaste 1462
XmTextPasteLink. 1464
XmTextPosToXY 1465
XmTextRemove 1467
XmTextReplace 1468
XmTextReplaceWcs 1470
XmTextScroll 1472
XmTextSetAddMode 1473
XmTextSetEditable 1474
XmTextSetHighlight 1475
XmTextSetInsertionPosition 1477
XmTextSetMaxLength. 1478
XmTextSetSelection 1479
XmTextSetSource. 1480
XmTextSetString 1482
XmTextSetStringWcs. 1483
XmTextSetTopCharacter 1484
XmTextShowPosition. 1485
XmTextXYToPos 1486
XmToggleButtonGadgetGetState. 1488
XmToggleButtonGadgetSetState. 1489
XmToggleButtonGetState. 1491
XmToggleButtonSetState. 1492
XmToggleButtonSetValue. 1493
XmTrackingEvent. 1494
XmTrackingLocate. 1496
XmTransferDone 1498
XmTransferSendRequest. 1501

xiii

Motif 2.1—Programmer’s Reference

XmTransferSetParameters. 1502
XmTransferStartRequest. 1504
XmTransferValue 1505
XmTranslateKey 1508
XmUninstallImage. 1510
XmUpdateDisplay. 1511
XmVaCreateSimpleCheckBox. 1512
XmVaCreateSimpleMenuBar. 1515
XmVaCreateSimpleOptionMenu 1517
XmVaCreateSimplePopupMenu 1521
XmVaCreateSimplePulldownMenu. 1525
XmVaCreateSimpleRadioBox. 1529
XmWidgetGetBaselines 1532
XmWidgetGetDisplayRect. 1534

Chapter 7. Mrm Functions. 1537
MrmCloseHierarchy 1538
MrmFetchBitmapLiteral 1539
MrmFetchColorLiteral. 1541
MrmFetchIconLiteral 1543
MrmFetchLiteral 1545
MrmFetchSetValues 1547
MrmFetchWidget 1549
MrmFetchWidgetOverride. 1551
MrmInitialize 1553
MrmOpenHierarchy 1554
MrmOpenHierarchyFromBuffer 1558
MrmOpenHierarchyPerDisplay. 1560
MrmRegisterClass. 1565
MrmRegisterNames 1567
MrmRegisterNamesInHierarchy 1569

Chapter 8. Uil Functions 1571
Uil 1572
UilDumpSymbolTable. 1578

Chapter 9. File Formats 1581
mwmrc 1582
Traits 1597
UIL 1606
WML 1642

Appendix A. Constraint Arguments and Automatically Created Children. . . . 1653

xiv

Contents

Appendix B. UIL Built-In Tables. 1659

Appendix C. UIL Arguments. 1755

Appendix D. UIL Diagnostic Messages. 1773

xv

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers
and suppliers of technology. Its mission is to cause the development of a viable global
information infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the
telephone. The essential functionality embedded in this infrastructure is what we term
the IT DialTone. The Open Group creates an environment where all elements involved
in technology development can cooperate to deliver less costly and more flexible IT
solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the
Open Software Foundation (founded in 1988), The Open Group is supported by most
of the world’s largest user organizations, information systems vendors, and software
suppliers. By combining the strengths of open systems specifications and a proven
branding scheme with collaborative technology development and advanced research,
The Open Group is well positioned to meet its new mission, as well as to assist
user organizations, vendors, and suppliers in the development and implementation
of products supporting the adoption and proliferation of systems which conform to
standard specifications.

xvii

Preface

With more than 200 member companies, The Open Group helps the IT industry to
advance technologically while managing the change caused by innovation. It does this
by:

• consolidating, prioritizing, and communicating customer requirements to vendors

• conducting research and development with industry, academia, and government
agencies to deliver innovation and economy through projects associated with its
Research Institute

• managing cost-effective development efforts that accelerate consistent multi-
vendor deployment of technology in response to customer requirements

• adopting, integrating, and publishing industry standard specifications that provide
an essential set of blueprints for building open information systems and integrating
new technology as it becomes available

• licensing and promoting the Open Brand, represented by the ‘‘X’’ mark, that
designates vendor products which conform to Open Group Product Standards

• promoting the benefits of open systems to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle
including innovation, market adoption, product development, and proliferation.
Presently, it focuses on seven strategic areas: open systems application platform
development, architecture, distributed systems management, interoperability,
distributed computing environment, security, and the information superhighway. The
Open Group is also responsible for the management of the UNIX trademark on
behalf of the industry.

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the
IT DialTone, development of CAE and Preliminary Specifications through an industry
consensus review and adoption procedure (in parallel with formal standards work),
and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to
which a vendor may register a product. There are currently two forms of Product

xviii

Preface

Standard, namely the Profile Definition and the Component Definition, although these
will eventually be merged into one.

The ‘‘X’’ mark is used by vendors to demonstrate that their products conform to
the relevant Product Standard. By use of the Open Brand they guarantee, through
the X/Open Trade Mark Licence Agreement (TMLA), to maintain their products in
conformance with the Product Standard so that the product works, will continue to
work, and that any problems will be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part
of which is focused on specification development and product documentation, but
which also includes Guides, Snapshots, Technical Studies, Branding and Testing
documentation, industry surveys, and business titles.

There are several types of specification:

CAE Specifications
CAE (Common Applications Environment) Specifications are the stable
specifications that form the basis for our Product Standards, which
are used to develop X/Open branded systems. These specifications are
intended to be used widely within the industry for product development
and procurement purposes.

Anyone developing products that implement a CAE Specification can
enjoy the benefits of a single, widely supported industry standard.
Where appropriate, they can demonstrate product compliance through
the Open Brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of
conformant products without delay.

Preliminary Specifications
Preliminary Specifications usually address an emerging area of
technology and consequently are not yet supported by multiple
sources of stable conformant implementations. They are published
for the purpose of validation through implementation of products. A
Preliminary Specification is not a draft specification; rather, it is as

xix

Preface

stable as can be achieved, through applying The Open Group’s rigorous
development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued
by formal standards organizations, and developers are encouraged to
develop products on the basis of them. However, experience through
implementation work may result in significant (possibly upwardly
incompatible) changes before its progression to becoming a CAE
Specification. While the intent is to progress Preliminary Specifications
to corresponding CAE Specifications, the ability to do so depends on
consensus among Open Group members.

Consortium and Technology Specifications
The Open Group publishes specifications on behalf of industry consortia.
For example, it publishes the NMF SPIRIT procurement specifications
on behalf of the Network Management Forum. It also publishes
Technology Specifications relating to OSF/1, DCE, OSF/Motif, and
CDE.

Technology Specifications (formerly AES Specifications) are often
candidates for consensus review, and may be adopted as CAE
Specifications, in which case the relevant Technology Specification is
superseded by a CAE Specification.

In addition, The Open Group publishes:

Product Documentation
This includes product documentation—programmer’s guides, user
manuals, and so on—relating to the Prestructured Technology Projects
(PSTs), such as DCE and CDE. It also includes the Single UNIX
Documentation, designed for use as common product documentation
for the whole industry.

Guides These provide information that is useful in the evaluation, procurement,
development, or management of open systems, particularly those that
relate to the CAE Specifications. The Open Group Guides are advisory,
not normative, and should not be referenced for purposes of specifying
or claiming conformance to a Product Standard.

Technical Studies
Technical Studies present results of analyses performed on subjects of
interest in areas relevant to The Open Group’s Technical Program. They
are intended to communicate the findings to the outside world so as

xx

Preface

to stimulate discussion and activity in other bodies and the industry in
general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new
developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained
in the previous publication of that title, but additions/extensions are included. As
such, it replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information
contained in the previous publication of that title, and there may also be additions/
extensions. As such, both previous and new documents are maintained as current
publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda
information is published on the World-Wide Web athttp://www.opengroup.org/public/
pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available
on the World-Wide Web athttp://www.opengroup.org/public/pubs.

xxi

Preface

This Book

The Motif 2.1—Programmer’s Referencecontains the reference pages for all Motif
programs, Xt widget classes, Xm widget classes, translations, Xm data types and
functions, Mrm functions, Uil functions, and file formats.

Audience

This document is written for programmers who want to write applications by using
Motif interfaces.

This document assumes that the reader is familiar with the American National
Standards Institute (ANSI) C programming language. It also assumes that the reader
has a general understanding of the X Window System, the Xlib library, and the X
Toolkit Intrinsics (Xt).

Applicability

This is revision 2.1 of this document. It applies to Version 2.1 of the Motif software
system.

Purpose

The purpose of this guide is to provide detailed information about all Motif 2.1
programs, widget classes, translations, data types, functions, and file formats for the
application developer.

Organization

This document is organized into nine chapter and four appendixes:

xxii

Preface

• Chapter 1 contains the reference pages for Motif programs.

• Chapter 2 contains the reference pages for Xt widget classes.

• Chapter 3 contains the reference pages for Xm widget classes.

• Chapter 4 contains the reference pages for Motif translations.

• Chapter 5 contains the reference pages for Xm data types.

• Chapter 6 contains the reference pages for Xm functions.

• Chapter 7 contains the reference pages for Mrm functions.

• Chapter 8 contains the reference pages for Uil functions.

• Chapter 9 contains the reference pages for Motif file formats.

• Appendix A contains a list of the constraint arguments and automatically created
children for widgets available within UIL (User Interface Language).

• Appendix B contains a list of the reasons and controls, or children, that UIL
supports for each Motif Toolkit object.

• Appendix C contains a list of the UIL arguments and their data types.

• Appendix D contains a list of the UIL compiler diagnostics messages.

Reference Page Format

The reference pages in this volume use the following format:

Purpose This section gives a short description of the interface.

Synopsis This section describes the appropriate syntax for using the interface.

Description This section describes the behavior of the interface. On widget reference
pages there are tables of resource values in the descriptions. These tables
have the following headings:

Name Contains the name of the resource. Each new resource is
described following the new resources table.

Class Contains the class of the resource.

Type Contains the type of the resource.

Default Contains the default value of the resource.

xxiii

Preface

Access Contains the access permissions for the resource. AC
in this column means the resource can be set at widget
creation time. AnSmeans the resource can be set anytime.
A G means the resource’s value can be retrieved.

Examples This section gives practical examples for using the interface.

Return Values
This section lists the values returned by function interfaces.

Errors/Warnings
This section describes the error conditions associated with using this
interface.

Related Information
This section provides cross-references to related interfaces and header
files described within this document.

Related Documents

For information on Motif and CDE style, refer to the following documents:

CDE 2.1/Motif 2.1—Style Guide and Glossary
Document Number M027 ISBN 1-85912-104-7

CDE 2.1/Motif 2.1—Style Guide Certification Checklist
Document Number M028 ISBN 1-85912-109-8

CDE 2.1/Motif 2.1—Style Guide Reference
Document Number M029 ISBN 1-85912-114-4

For additional information about Motif and CDE, refer to the following Desktop
Documentation:

CDE 2.1/Motif 2.1—User’s Guide
Document Number M021 ISBN 1-85912-173-X

CDE 2.1—System Manager’s Guide
Document Number M022 ISBN 1-85912-178-0

xxiv

Preface

CDE 2.1—Programmer’s Overview and Guide
Document Number M023 ISBN 1-85912-183-7

CDE 2.1—Programmer’s Reference, Volume 1
Document Number M024A ISBN 1-85912-188-8

CDE 2.1—Programmer’s Reference, Volume 2
Document Number M024B ISBN 1-85912-193-4

CDE 2.1—Programmer’s Reference, Volume 3
Document Number M024C ISBN 1-85912-174-8

CDE 2.1—Application Developer’s Guide
Document Number M026 ISBN 1-85912-198-5

Motif 2.1—Programmer’s Guide
Document Number M213 ISBN 1-85912-134-9

Motif 2.1—Widget Writer’s Guide
Document Number M216 ISBN 1-85912-129-2

For additional information about Xlib and Xt, refer to the following X Window System
documents:

Xlib—C Language X Interface

X Toolkit Intrinsics—C Language Interface

Typographic and Keying Conventions

This book uses the following conventions.

xxv

Preface

DocBook SGML Conventions

This book is written in the Structured Generalized Markup Language (SGML) using
the DocBook Document Type Definition (DTD). The following table describes the
DocBook markup used for various semantic elements.

Markup
Appearance Semantic Element(s) Example

AaBbCc123 The names of commands. Use thels command to list files.

AaBbCc123 The names of command options.Use ls −a to list all files.

AaBbCc123 Command-line placeholder:
replace with a real name or
value.

To delete a file, typerm filename.

AaBbCc123 The names of files and
directories.

Edit your .login file.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized.

Read Chapter 6 inUser’s Guide.
These are calledclass options.
You mustbe root to do this.

Terminology Conventions

Components of the user interface are represented by uppercase letters for each major
word in the name of the component, such as PushButton. In addition, this book uses
the termprimitive to mean any subclass ofXmPrimitive and the termmanagerto
mean any subclass ofXmManager. Note that both of these terms are in lowercase.

Keyboard Conventions

Because not all keyboards are the same, it is difficult to specify keys that are correct
for every manufacturer’s keyboard. To solve this problem, this guide describes keys
that use avirtual keymechanism. The termvirtual implies that the keys as described
do not necessarily correspond to a fixed set of actual keys. Instead, virtual keys are

xxvi

Preface

linked to actual keys by means ofvirtual bindings. A given virtual key may be bound
to different physical keys for different keyboards.

See Chapter 13 of theMotif 2.1—Programmer’s Guidefor information on
the mechanism for binding virtual keys to actual keys. For details, see the
VirtualBindings (3) reference page in this manual.

Mouse Conventions

Mouse buttons are described in this reference by using avirtual button mechanism to
better describe behavior independent from the number of buttons on the mouse. This
guide assumes a 3-button mouse. On a 3-button mouse, the leftmost mouse button is
usually defined asBSelect, the middle mouse button is usually defined asBTransfer,
and the rightmost mouse button is usually defined asBMenu. For details about how
virtual mouse buttons are usually defined, see theVirtualBindings (3) reference page
in this document.

Problem Reporting

If you have any problems with the software or vendor-supplied documentation, contact
your software vendor’s customer service department. Comments relating to this Open
Group document, however, should be sent to the addresses provided on the copyright
page.

Trademarks

Motif ® OSF/1®, and UNIX® are registered trademarks and the IT DialTone
TM

, The
Open Group

TM

, and the ‘‘X Device’’
TM

are trademarks of The Open Group.

AIX is a trademark of International Business Machines Corp.

HP/UX is a trademark of Hewlett Packard Company.

Solaris is a trademark of Sun Microsystems, Inc.

xxvii

Preface

UnixWare is a trademark of Novell, Inc.

Microsoft Windows is a trademark of Microsoft.

OS/2 is a trademark of International Business Machines Corp.

X Window System is a trademark of X Consortium, Inc.

xxviii

Chapter 4
Translations

739

Motif 2.1—Programmer’s Reference

VirtualBindings(library call)

VirtualBindings

Purpose Bindings for virtual mouse and key events

Description

The Motif reference pages describe key translations in terms ofvirtual bindings, based
on those described in theCDE 2.1/Motif 2.1—Style Guide and Glossary.

Bindings for osf Keysyms

Keysym strings that begin with osf are not part of the X server’s keyboard mapping.
Instead, these keysyms are produced on the client side at run time. They are interpreted
by the routineXmTranslateKey, and are used by the translation manager when the
server delivers an actual key event. For each application, a mapping is maintained
between osf keysyms and keysyms that correspond to actual keys. This mapping is
based on information obtained at application startup from one of the following sources,
listed in order of precedence:

• The XmNdefaultVirtualBindings resource from Display.

• A property on the root window, which can be set bymwm on startup, or by the
xmbind client, or on prior startup of a Motif application.

• The file .motifbind in the user’s home directory.

• A set of bindings based on the vendor string and optionally the vendor release of
the X server. Motif searches for these bindings in the following steps:

1. If the file xmbind.alias exists in the user’s home directory, Motif searches
this file for a pathname associated with the vendor string or with the vendor
string and vendor release. If it finds such a pathname and if that file exists,
Motif loads the bindings contained in that file.

2. If it has found no bindings, Motif next looks for the filexmbind.alias
in the directory specified by the environment variableXMBINDDIR ,
if XMBINDDIR is set, or in the directory/usr/lib/Xm/bindings if
XMBINDDIR is not set. If this file exists Motif searches it for a pathname
associated with the vendor string or with the vendor string and vendor

740

Translations

VirtualBindings(library call)

release. If it finds such a pathname and if that file exists, Motif loads the
bindings contained in that file.

3. If it still has found no bindings, Motif loads a set of hard-coded fallback
bindings.

The xmbind.alias file contains zero or more lines of the following form:

" vendor_string [vendor_release]" bindings_file

where vendor_string is the X server vendor name as returned by the X client
xdpyinfo or the Xlib function XServerVendor, and must appear in double quotes.
If vendor_releaseis included, it is the X server vendor release number as returned
by the X client xdpyinfo or the Xlib function XVendorRelease, and must also be
contained within the double quotes separated by one space fromvendor_string. The
vendor_releaseargument is provided to allow support of changes in keyboard hardware
from a vendor, assuming that the vendor increments the release number to flag such
changes. Alternatively, the vendor may simply use a unique vendor string for each
different keyboard.

The bindings_file argument is the pathname of the file containing the bindings
themselves. It can be a relative or absolute pathname. If it it is a relative pathname, it
is relative to the location of thexmbind.alias file.

Comment lines in thexmbind.alias file begin with ! (exclamation point).

The bindings found in either the.motifbind file or the vendor mapping are placed in
a property on the root window. This property is used to determine the bindings for
subsequent Motif applications.

On startupmwm attempts to load the file.motifbind in the user’s home directory.
If this is unsuccessful, it loads the vendor bindings as described previously. It places
the bindings it loads in a property on the root window for use by subsequent Motif
applications.

Thexmbind function loads bindings from a file if that file is specified on the command
line. If no file is specified on the command line, it attempts to load the file.motifbind
in the user’s home directory. If this fails, it loads the vendor bindings as described
previously. It places the bindings it loads in a property on the root window for use by
subsequent Motif applications.

The format of the specification for mapping osf keysyms to actual keysyms is similar
to that of a specification for an event translation. (See below) The syntax is specified
(and below) here in EBNF notation using the following conventions:

741

Motif 2.1—Programmer’s Reference

VirtualBindings(library call)

[a] Means either nothing or a

{ a} Means zero or more occurrences of a

(a| b) Means either a or b.

Terminals are enclosed in double quotation marks.

The syntax of an osf keysym binding specification is as follows:

binding_spec = {line "\n"} [line]

line = virtual_keysym ":" list_of_key_event

list_of_key_event = key_event { "," key_event}

key_event = {modifier_name} "<Key>" actual_keysym

virtual_keysym = keysym

actual_keysym = keysym

keysym = A valid X11 keysym name that is

mapped by XStringToKeysym

As with event translations, more specific event descriptions must precede less specific
descriptions. For example, an event description for a key with a modifier must precede
a description for the same key without the same modifier.

Following is an example of a specification for thedefaultVirtualBindings resource
in a resource file:

*defaultVirtualBindings: \

osfBackSpace : <Key>BackSpace \n\

osfInsert : <Key>InsertChar \n\

osfDelete : <Key>DeleteChar \n\

...

osfLeft : <Key>left, Ctrl<Key>H

The format of a.motifbind file or of a file containing vendor bindings is the same,
except that the binding specification for each keysym is placed on a separate line. The
previous example specification appears as follows in a.motifbind or vendor bindings
file:

osfBackSpace : <Key>BackSpace

osfInsert : <Key>InsertChar

osfDelete : <Key>DeleteChar

...

osfLeft : <Key>left, Ctrl<Key>H

742

Translations

VirtualBindings(library call)

The following table lists the fixed fallback default bindings forosf keysyms.

Fallback Default Bindings for osf Keysyms

osf Keysym Fallback Default Binding

osfActivate: <Key>KP_Enter <Key>Execute

osfAddMode: Shift<Key>F8

osfBackSpace: <Key>BackSpace

osfBeginLine: <Key>Home <Key>Begin

osfCancel: <Key>Escape <Key>Cancel

osfClear: <Key>Clear

osfCopy: unbound

osfCut: unbound

osfDelete: <Key>Delete

osfDeselectAll: unbound

osfDown: <Key>Down

osfEndLine: <Key>End

osfHelp: <Key>F1 <Key>Help

osfInsert: <Key>Insert

osfLeft: <Key>Left

osfLeftLine: unbound

osfMenu: Shift<Key>F10 <Key>Menu

osfMenuBar: <Key>F10 Shift<Key>Menu

osfNextMinor: unbound

osfPageDown: <Key>Next

osfPageLeft: unbound

osfPageRight: unbound

osfPageUp: <Key>Prior

osfPaste: unbound

743

Motif 2.1—Programmer’s Reference

VirtualBindings(library call)

osfPrimaryPaste: unbound

osfPriorMinor: unbound

osfReselect: unbound

osfRestore: unbound

osfRight: <Key>Right

osfRightLine: unbound

osfSelect: <Key>Select

osfSelectAll: unbound

osfSwitchDirection: Alt<Key>Return Alt<Key>KP_Enter

osfUndo: <Key>Undo

osfUp: <Key>Up

Changes in the Handling of Shifted Keys

In conjunction with MIT X11R5 Patch 24, this version of Motif introduces a change
in the way that keys involving the <Shift> modifier are processed. This change allows
the numeric keypad to be used to generate numbers using the standard X mechanisms.
Since the default behavior is now to honor the xmodmap keymap bindings, translations
and virtual key bindings that use <Shift> may behave differently. A common symptom
is that unshifted keypad and function keys (with or without other modifiers) produce
the expected results, but shifted ones do not.

To obtain the old behavior you can remove the shifted interpretation from problematic
keys using thexmodmap utility. Each entry in axmodmap keymap table contains
up to four keysym bindings. The second and fourth keysyms are for shifted keys. If
an expression contains only two keysyms, simply remove the second keysym. If an
entry contains three or more keysyms, replace the second keysym withNoSymbol
and remove the fourth keysym.

Action Translations

The translation table syntax used by Motif is completely specified in the X11R5
Toolkit Intrinsics Documentation. For the complete syntax description, and for general
instructions about writing or modifying a translation table, please refer to this
document. A brief summary of the translation table format, however, is included
below.

744

Translations

VirtualBindings(library call)

The syntax is defined as in the binding syntax specification above. Informal
descriptions are contained in angle brackets (<>).

TranslationTable = [directive] { production }
directive = ("#replace" | "#override" | "#augment") "\n"
production = lhs ":" rhs "\n"
lhs = (event | keyseq) {"," (event | keyseq) }
keyseq = """ keychar { keychar } """
keychar = ("^" | "$" | "\\") <ISO Latin 1 character>
event = [modifier_list] "<" event_type ">" [count] {detail}
modifier_list = (["!"][":"] { modifier } | "None")
modifier = ["~"] ("@" <keysym> | <name from table below>)
count = "(" <positive integer> ["+"] ")"
rhs = { action_name "(" [params] ")" }
params = string { "," string }

The string field need not be quoted unless it includes a space or tab character, or any
comma, newline, or parenthesis. The entire list of string values making up theparams
field will ba passed to the named action routine.

The details field may be used to specify a keysym that will identify a particular key
event. For example, Key is the name of a type of event, but it must be modified by
the detailsfield to name a specific event, such as KeyA.

Modifier Names The modifier list, which may be empty, consists of a list of modifier
keys that must be pressed with the key sequence. The modifier keys may abbreviated
with single letters, as in the following list of the familiar modifiers:

s Shift

c or ^ Ctrl (Control)

m or $ Meta

a Alt

Other modifiers are available, such as "Mod5" and "Button2." These have no
abbreviation (although the "Button" modifiers may be abbreviated in combination with
events, as outlined below). If a modifier list has no entries, and is not "None", it means
the position of the modifier keys is irrelevant. If modifiers are listed, the designated
keys must be in the specified position, but the unlisted modifier keys are irrelevant. If
the list begins with an exclamation point (!), however, the unlisted modifiers may not
be asserted. In addition, if a modifier name is preceded by a tilde (~), the corresponding
key mustnot be pressed.

745

Motif 2.1—Programmer’s Reference

VirtualBindings(library call)

If a modifier list begins with a colon (:), X tries to use the standard modifiers (Shift
and Lock), if present, to map the key event code into a recognized keysym.

Event Types These are a few of the recognized event types.

Key or KeyDown
A keyboard key was pressed.

KeyUp A keyboard key was released.

BtnDown A mouse button was pressed.

BtnUp A mouse button was released.

Motion The mouse pointer moved.

Enter The pointer entered the widget’s window.

Leave The pointer left the widget’s window.

FocusIn The widget has received focus.

FocusOut The widget has lost focus.

There are some event abbreviations available. For example, Btn1Motion is actually a
"Motion" event, modified with the "Button1" modifier (Button1<Motion>). Similarly,
Btn3Up is actually a "BtnUp" event with the "Button3" modifier. These abbreviations
are used extensively in the Motif translation tables.

Related Information

xmbind(1)

746

Chapter 5
Xm Data Types

747

Motif 2.1—Programmer’s Reference

XmDirection(library call)

XmDirection

Purpose Data type for the direction of widget components

Synopsis #include <Xm/Xm.h>

Description

XmDirection is the data type specifying the direction in which the system displays
subwidgets, children of widgets, or other visual components that are to be laid out.
This data type also affects traversal order within tab groups.

XmDirection is implemented as an unsigned char bit mask. The horizontal and
vertical directions can be specified independent of each other.XmDirection also
specifies the precedence of the horizontal and vertical directions relative to each other.
For example, a value ofXmRIGHT_TO_LEFT_TOP_TO_BOTTOM lays out a
component horizontally from right to left first, then vertically top to bottom.

XmDirection provides the following masks, each of which corresponds to a particular
bit in XmDirection :

• XmRIGHT_TO_LEFT_MASK

• XmLEFT_TO_RIGHT_MASK

• XmTOP_TO_BOTTOM_MASK

• XmBOTTOM_TO_TOP_MASK

• XmPRECEDENCE_HORIZ_MASK

• XmPRECEDENCE_VERT_MASK

In addition to the preceding single bit masks,XmDirection also provides the following
multiple bit masks. These multiple bit masks are particularly useful as arguments to
XmDirectionMatchPartial :

• XmHORIZONTAL_MASK

• XmPRECEDENCE_MASK

748

Xm Data Types

XmDirection(library call)

• XmVERTICAL_MASK

Motif also provides the following enumerated constants for specifying various
combinations of directions:

XmRIGHT_TO_LEFT_TOP_TO_BOTTOM
Specifies that the components are laid out from right to left first, then
top to bottom.

XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
Specifies that the components are laid out from left to right first, then
top to bottom.

XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
Specifies that the components are laid out from right to left first, then
bottom to top.

XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
Specifies that the components are laid out from left to right first, then
bottom to top.

XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
Specifies that the components are laid out from top to bottom first, then
right to left.

XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
Specifies that the components are laid out from top to bottom first, then
left to right.

XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
Specifies that the components are laid out from bottom to top first, then
right to left.

XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
Specifies that the components are laid out from bottom to top first, then
left to right.

XmTOP_TO_BOTTOM
Specifies that the components are laid out from top to bottom. If
horizontal direction is important, do not use this constant.

XmBOTTOM_TO_TOP
Specifies that the components are laid out from bottom to top. If
horizontal direction is important, do not use this constant.

749

Motif 2.1—Programmer’s Reference

XmDirection(library call)

XmDEFAULT_DIRECTION
Specifies that the components are laid out according to the default
direction. (This constant is primarily for widget writers.)

XmLEFT_TO_RIGHT
Specifies that the components are laid out from left to right. If vertical
direction is important, do not use this constant.

XmRIGHT_TO_LEFT
Specifies that the components are laid out from right to left. If vertical
direction is important, do not use this constant.

Related Information

XmDirectionMatch (3), XmDirectionMatchPartial (3),
XmDirectionToStringDirection (3), XmString (3), XmStringDirection (3), and
XmStringDirectionToDirection (3).

750

Xm Data Types

XmFontList(library call)

XmFontList

Purpose Data type for a font list

Synopsis #include <Xm/Xm.h>

Description

XmFontList is the data type for a font list. A font list consists of font list entries. Each
entry contains a font or a font set (a group of fonts) and is identified with a tag, which
is optional. If this tag is NULL, the tag is set toXmFONTLIST_DEFAULT_TAG .

The value of XmFONTLIST_DEFAULT_TAG is
XmFONTLIST_DEFAULT_TAG_STRING .

When a compound string is displayed, the font list element tag of the compound string
segment is matched with a font list entry tag in the font list and the matching font list
entry is used to display the compound string. A font list entry is chosen as follows:

• The first font list entry whose tag matches the tag of the compound string segment
is used.

• If no match has been found and if the tag of the compound string
segment is XmFONTLIST_DEFAULT_TAG , the first font list entry
whose tag matches the tag that would result from creating an entry with
XmSTRING_DEFAULT_CHARSET is used. For example, if creating an entry
with XmSTRING_DEFAULT_CHARSET would result in the tagISO8859-1,
the compound string segment tagXmFONTLIST_DEFAULT_TAG matches the
font list entry tagISO8859-1.

• If no match has been found and if the tag of the compound string
segment matches the tag that would result from creating a segment with
XmSTRING_DEFAULT_CHARSET , the first font list entry whose tag is
XmFONTLIST_DEFAULT_TAG is used.

• If no match has been found, the first entry in the font list is used.

The font list interface consists of the routines listed inRelated Information.

751

Motif 2.1—Programmer’s Reference

XmFontList(library call)

Font lists are specified in resource files with the following syntax:

resource_spec: font_entry[, font_entry]+

The resource value string consists of one or more font list entries separated by commas.
Eachfont_entryidentifies a font or font set and an optional font list entry tag. A tag
specified for a single font follows the font name and is separated by = (equals sign);
otherwise, in a font set the tag is separated by a colon. The colon is required whether
a tag is specified or not. A font entry uses the following syntax to specify a single
font:

font_name[’=’ tag]

For example, the following entry specifies a 10 point Times Italic font without a font
list entry tag;

fontList: -Adobe-Times-Medium-I-Normal--10

A font entry containing a font set is similar, except a semicolon separates multiple
font names and the specification ends with a colon followed by an optional tag:

font_name[’;’ font_name]+ ’:’ [tag]

A font_nameis an X Logical Font Description (XLFD) string andtag is any set of
characters from ISO646IRV except space, comma, colon, equal sign and semicolon.
Following is an example of a font set entry. It consists of three fonts (except for
charsets), and an explicit font list entry tag.

*fontList: -Adobe-Courier-Bold-R-Normal--25-180-100-100-M-150;\

-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240;\

-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120:MY_TAG

Note that theXmRenderTable is another data type that can be used for font lists.
Refer to theXmRenderTable(3) for details.

Related Information

XmFontListAdd (3), XmFontListAppendEntry (3), XmFontListCopy (3),
XmFontListCreate(3), XmFontListEntryCreate (3), XmFontListEntryFree (3),
XmFontListEntryGetFont (3), XmFontListEntryGetTag (3),
XmFontListEntryLoad (3), XmFontListFree(3), XmFontListFreeFontContext(3),

752

Xm Data Types

XmFontList(library call)

XmFontListGetNextFont(3), XmFontListInitFontContext (3),
XmFontListNextEntry (3), XmFontListRemoveEntry(3), XmRenderTable(3), and
XmString (3).

753

Motif 2.1—Programmer’s Reference

XmParseMapping(library call)

XmParseMapping

Purpose Data type for a compound string parse mapping

Synopsis #include <Xm/Xm.h>

Description

XmParseMapping is an opaque data type for a parse mapping used by
XmStringParseText to create a compound string. A parse mapping contains a pattern
to be matched in text being parsed to create a compound string. It also contains a
compound string, or a function to be invoked to provide a compound string, to be
included in the compound string being created whenever the pattern is matched.

An application uses a resource-style interface to specify components for
an XmParseMapping. XmParseMappingCreate creates a parse mapping,
using a resource-style argument list.XmParseMappingGetValues and
XmParseMappingSetValues retrieve and set the components of a parse
mapping. XmParseMappingFree recovers memory used by a parse mapping.
XmParseTable is an array ofXmParseMapping objects.

The XmNinvokeParseProc resource is a function of typeXmParseProc, which is
defined as follows:

XmIncludeStatus (*XmParseProc) (text_in_out, text_end, type, tag, entry, pattern_length,
str_include, call_data)

XtPointer *text_in_out;
XtPointer text_end;
XmTextTypetype;
XmStringTagtag;
XmParseMappingentry;
int pattern_length;
XmString *str_include;
XtPointercall_data;

754

Xm Data Types

XmParseMapping(library call)

A parse procedure provides an escape mechanism for arbitrarily complex parsing. This
procedure is invoked when a pattern in the input text is matched with a pattern in a
parse mapping whoseXmNincludeStatus is XmINVOKE .

The input text is a pointer to the first byte of the pattern that was matched to trigger
the call to the parse procedure. The parse procedure consumes as many bytes of the
input string as it needs and sets the input text pointer to the following byte. It returns a
compound string to be included in the compound string being constructed, and it also
returns anXmIncludeStatus indicating how the returned compound string should be
handled. If the parse procedure does not set the input text pointer ahead by at least
one byte, the parsing routine continues trying to match the input text with the patterns
in the remaining parse mappings in the parse table. Otherwise, the parsing routine
begins with the new input text pointer and tries to match the input text with patterns
in the parse mappings starting at the beginning of the parse table.

text_in_out Specifies the text being parsed. The value is a pointer to the first byte of
text matching the pattern that triggered the call to the parse procedure.
When the parse procedure returns, this argument is set to the position
in the text where parsing should resume—that is, to the byte following
the last character parsed by the parse procedure.

text_end Specifies a pointer to the end of thetext_in_outstring. If text_endis
NULL, the string is scanned until a NULL character is found. Otherwise,
the string is scanned up to but not including the character whose address
is text_end.

type Specifies the type of text and the tag type. If a locale tag should
be created,type has a value of eitherXmMULTIBYTE_TEXT or
XmWIDECHAR_TEXT . If a charset should be created,type has a
value ofXmCHARSET_TEXT .

tag Specifies the tag to be used in creating the result. The type of string
tag created (charset or locale) depends on the text type and the passed
in tag value. If the tag value is NULL and if type indicates that
a charset string tag should be created, the string tag has the value
that is the result of mappingXmSTRING_DEFAULT_CHARSET .
If type indicates a locale string tag, the string tag has the value
_MOTIF_DEFAULT_LOCALE .

entry Specifies the parse mapping that triggered the call to the parse procedure.

755

Motif 2.1—Programmer’s Reference

XmParseMapping(library call)

pattern_length
Specifies the number of bytes in the input text, followingtext_in_out,
that constitute the matched pattern.

str_include Specifies a pointer to a compound string. The parse procedure creates
a compound string to be included in the compound string being
constructed. The parse procedure then returns the compound string in
this argument.

call_data Specifies data passed by the application to the parsing routine.

The parse procedure returns anXmIncludeStatus indicating howstr_includeis to be
included in the compound string being constructed. Following are the possible values:

XmINSERT Concatenate the result to the compound string being constructed and
continue parsing.

XmTERMINATE
Concatenate the result to the compound string being constructed and
terminate parsing.

New Resources

The following table defines a set of resources used by the programmer to specify
data. The codes in the access column indicate if the given resource can be set at
creation time (C), set by usingXmParseMappingSetValues(S), retrieved by using
XmParseMappingGetValues(G), or is not applicable (N/A).

XmParseMapping Resource Set

Name Class Type Default Access

XmNclientData XtPointer NULL CSG

XmNincludeStatus XmIncludeStatus XmINSERT CSG

XmNinvokeParseProc XmParseProc NULL CSG

XmNpattern XtPointer NULL CSG

XmNpatternType XmTextType XmCHARSET_TEXT CSG

XmNsubstitute XmString NULL CSG

XmNclientData
Specifies data to be used by the parse procedure.

756

Xm Data Types

XmParseMapping(library call)

XmNincludeStatus
Specifies how the result of the mapping is to be included in the
compound string being constructed. Unless the value isXmINVOKE ,
the result of the mapping is the value ofXmNsubstitute. Following are
the possible values forXmNincludeStatus:

XmINSERT Concatenate the result to the compound string being
constructed and continue parsing.

XmINVOKE
Invoke the XmNinvokeParseProc on the text being
parsed and use the returned compound string instead
of XmNsubstitute as the result to be inserted into
the compound string being constructed. The include
status returned by the parse procedure (XmINSERT
or XmTERMINATE) determines how the returned
compound string is included.

XmTERMINATE
Concatenate the result to the compound string being
constructed and terminate parsing.

XmNinvokeParseProc
Specifies the parse procedure to be invoked whenXmNincludeStatus
is XmINVOKE .

XmNpattern
Specifies a pattern to be matched in the text being parsed. This is a
maximum of one character.

XmNpatternType
Specifies the type of the pattern that is the value ofXmNpattern .
Following are the possible values:

• XmCHARSET_TEXT

• XmMULTIBYTE_TEXT

• XmWIDECHAR_TEXT

XmNsubstitute
Specifies the compound string to be included in the compound
string being constructed whenXmNincludeStatus is XmINSERT or
XmTERMINATE .

757

Motif 2.1—Programmer’s Reference

XmParseMapping(library call)

Related Information

XmParseMappingCreate(3), XmParseMappingFree(3),
XmParseMappingGetValues(3), XmParseMappingSetValues(3),
XmParseTable(3), andXmString (3).

758

Xm Data Types

XmParseTable(library call)

XmParseTable

Purpose Data type for a compound string parse table

Synopsis #include <Xm/Xm.h>

Description

XmParseTable is the data type for an array of parse mappings (objects of type
XmParseMapping).

A parse table is used by some routines that parse and unparse compound strings. The
table is an ordered list of parse mappings. A parsing routine that uses a parse table
scans the input text and searches the parse mappings, in order, for one containing a
pattern that matches the input text. The matching parse mapping supplies a compound
string to be included in the compound string under construction.

An unparsing routine that uses a parse table searches the parse mappings, in order,
for one containing a compound string that matches the input compound string. The
unparsing routine can then include the parse mapping’s text pattern in the output text
under construction.

Related Information

XmParseMapping(3), XmParseTableFree(3), andXmString (3).

759

Motif 2.1—Programmer’s Reference

XmRenderTable(library call)

XmRenderTable

Purpose Data type for a render table

Synopsis #include <Xm/Xm.h>
XmRenderTable

Description

XmRenderTable is the data type for a render table, which contains a table of
renditions (XmRenditions). Each rendition consists of a set of attributes for rendering
text, including a font or fontset, colors, tabs, and lines. Each rendition is identified
with a tag.

When a compound string is displayed, for each segment in the string, the rendition used
to render that string is formed as follows. If the segment has at least one rendition begin
tag or if the list of tags formed by accumulating from previous segments the rendition
begin tags and removing the rendition end tags is not empty, these tags are matched
with renditions in the render table. The effective rendition used to render the segment
is formed by successively merging each rendition found into the current rendition with
non-XmAS_IS (XmUNSPECIFIED_PIXEL for color resources) values for resources
in the rendition to be merged, thus replacing the corresponding values of the resources
in the current rendition. Finally, if the resulting rendition still has resources with
unspecified values and the segment has a locale or charset tag (these are optional and
mutually exclusive) this tag is matched with a rendition in the render table, and the
missing rendition values are filled in from that entry.

If no matching rendition is found for a particular tag, then the
XmNnoRenditionCallback of the XmDisplay object is called and the render table
is searched again for that tag.

If the resulting rendition does not specify a font or fontset, then for segments whose
text type isXmCHARSET_TEXT , the render table will be searched for a rendition
tagged withXmFONTLIST_DEFAULT_TAG , and if a matching rendition is found,
it will be merged into the current rendition. If the resulting rendition contains no font
or fontset, theXmNnoFontCallback will be called with the default rendition and ""

760

Xm Data Types

XmRenderTable(library call)

as the font name. If no rendition matches or no font was found after the callback, then
the first rendition in the render table will be merged into the current rendition. If this
rendition still has no font, then the segment will not be rendered and a warning will
be emitted.

For segments whose text type is XmMULTIBYTE_TEXT or
XmWIDECHAR_TEXT , the render table will be searched for a rendition
tagged with_MOTIF_DEFAULT_LOCALE , and, if a matching rendition is found,
it will be merged into the current rendition. If the resulting rendition contains no
font, theXmNnoFontCallback will be called with the default rendition and "" as the
font name. An application can have this callback attempt to remedy this problem by
calling XmRenditionUpdate on the input rendition to provide a font for the widget
to use. This may be done by either providing an alternative font name to be loaded
using theXmNfontName and XmNfontType resources or with an already loaded
font using theXmNfont resource. If no rendition matches or no font was found after
the callback, then the segment will not be rendered and a warning will be issued.

Render tables are specified in resource files with the following syntax:

resource_spec: [tag [, tag]*]

wheretag is some string suitable for theXmNtag resource of a rendition.

If no tags are specified, then a render table will be created that is either empty or
contains only a rendition with a tag of_MOTIF_DEFAULT_LOCALE .

Specific values for specific rendition resources are specified using the following syntax:

resource_spec[*|.] rendition[*|.] resource_name: value

where:

resource_spec
Specifies the render table.

rendition Is either the class Rendition or a tag.

resource_name
Is either the class or name of a particular resource.

value Is the specification of the value to be set.

Any resource line that consists of just a resource name or class component with
no rendition component or loose binding will be assumed to specify resource
values for a rendition with a tag of_MOTIF_DEFAULT_LOCALE . In effect, this

761

Motif 2.1—Programmer’s Reference

XmRenderTable(library call)

creates a default rendition in much the same way that specifying no fontlist tag
for a fontlist resource causes the fontlist created to contain an entry tagged with
XmFONTLIST_DEFAULT_TAG :

resource_spec.resource_name: value

For example, the following would set theXmNrenderTable resource
of label1 to a render table consisting of three renditions tagged with
_MOTIF_DEFAULT_LOCALE , bold, andoblique, with values for resources set as
described in the resource specifications.

*label1.renderTable: bold, oblique

*label1.renderTable.bold.renditionForeground: Green

*label1.renderTable.bold.fontName: *-*-*-bold-*-iso8859-1

*label1.renderTable.bold.fontType: FONT_IS_FONT

*label1.renderTable.oblique.renditionBackground: Red

*label1.renderTable.oblique.fontName: *-*-*-italic-*-iso8859-1

*label1.renderTable.oblique.fontType: FONT_IS_FONT

*label1.renderTable.oblique.underlineType: AS_IS

*label1.renderTable.fontName: fixed

*label1.renderTable.fontType: FONT_IS_FONT

*label1.renderTable.renditionForegound: black

*label1.renderTable*tabList: 1in, +1.5in, +3in

Related Information

XmRenderTableAddRenditions(3), XmRenderTableCopy(3),
XmRenderTableCvtFromProp(3), XmRenderTableCvtToProp(3),
XmRenderTableFree(3), XmRenderTableGetRendition(3),
XmRenderTableGetRenditions(3), XmRenderTableGetTags(3),
XmRenderTableRemoveRenditions(3), XmRendition(3), andXmString (3).

762

Xm Data Types

XmString(library call)

XmString

Purpose Data type for a compound string

Synopsis #include <Xm/Xm.h>

Description

XmString is the data type for a compound string. Compound strings consist of a
sequence of components, including, but not limited to, the following:

• XmSTRING_COMPONENT_SEPARATOR

• XmSTRING_COMPONENT_TAB

• XmSTRING_COMPONENT_LAYOUT_POP

• XmSTRING_COMPONENT_DIRECTION

• XmSTRING_COMPONENT_LAYOUT_PUSH

• XmSTRING_COMPONENT_CHARSET

• XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG

• XmSTRING_COMPONENT_LOCALE

• XmSTRING_COMPONENT_LOCALE_TEXT

• XmSTRING_COMPONENT_TAG

• XmSTRING_COMPONENT_TEXT

• XmSTRING_COMPONENT_END

• XmSTRING_COMPONENT_RENDITION_BEGIN

• XmSTRING_COMPONENT_RENDITION_END

• XmSTRING_COMPONENT_UNKNOWN

• XmSTRING_COMPONENT_WIDECHAR_TEXT

763

Motif 2.1—Programmer’s Reference

XmString(library call)

and also a rendition tags table, text, and text component. When a compound string is
displayed, the rendition tags and the direction are used to determine how to display
the text.

Calling XtGetValues for a resource whose type isXmString yields a copy of
the compound string resource value. The application is responsible for using
XmStringFree to free the memory allocated for the copy.

Please see theXmStringComponentType reference page for more detail about
compound string components, and for a description of the order in which the
components should appear in a compound string. Refer to theXmRenderTable
reference page for a description of the algorithm that associates the rendition tags
used for displaying a compound string text component with a rendition in a render
table.

Related Information

XmParseMapping(3), XmParseMappingCreate(3), XmParseMappingFree(3),
XmParseMappingGetValues(3), XmParseMappingSetValues(3),
XmParseTable(3), XmParseTableFree(3), XmStringBaseline(3),
XmStringByteCompare(3), XmStringByteStreamLength(3),
XmStringCompare(3), XmStringComponentCreate(3),
XmStringComponentType(3), XmStringConcat(3), XmStringConcatAndFree(3),
XmStringCopy(3), XmStringCreate(3), XmStringCreateLocalized(3),
XmStringCreateLtoR (3), XmStringCreateSimple(3), XmStringDirection (3),
XmStringDirectionCreate(3), XmStringDirectionToDirection (3),
XmStringDraw (3), XmStringDrawImage(3), XmStringDrawUnderline (3),
XmStringEmpty (3), XmStringExtent (3), XmStringFree(3),
XmStringFreeContext(3), XmStringGenerate(3), XmStringGetLtoR (3),
XmStringGetNextComponent(3), XmStringGetNextSegment(3),
XmStringGetNextTriple (3), XmStringHasSubstring(3), XmStringHeight (3),
XmStringInitContext (3), XmStringIsVoid (3), XmStringLength (3),
XmStringLineCount (3), XmStringNConcat(3), XmStringNCopy(3),
XmStringParseText(3), XmStringPeekNextComponent(3),
XmStringPeekNextTriple(3), XmStringPutRendition (3),
XmStringSegmentCreate(3), XmStringSeparatorCreate(3), XmStringTable(3),
XmStringTableParseStringArray (3), XmStringTableProposeTablist(3),
XmStringTableToXmString (3), XmStringTableUnparse(3),
XmStringToXmStringTable (3), XmStringUnparse(3), XmStringWidth (3),

764

Xm Data Types

XmString(library call)

XmCvtXmStringToByteStream(3), XmCvtXmStringToCT (3),
XmCvtCTToXmString (3), andXmCvtByteStreamToXmString(3).

765

Motif 2.1—Programmer’s Reference

XmStringDirection(library call)

XmStringDirection

Purpose Data type for the direction of display in a string

Synopsis #include <Xm/Xm.h>

Description

XmStringDirection is the data type for specifying the direction in which the system
displays characters of a string, or characters of a segment of a compound string. This
is an enumeration with three possible values:

XmSTRING_DIRECTION_L_TO_R
Specifies left to right display

XmSTRING_DIRECTION_R_TO_L
Specifies right to left display

XmSTRING_DIRECTION_DEFAULT
Specifies that the display direction will be set by the widget in which
the compound string is to be displayed.

Related Information

XmString (3).

766

Xm Data Types

XmStringTable(library call)

XmStringTable

Purpose Data type for an array of compound strings

Synopsis #include <Xm/Xm.h>

Description

XmStringTable is the data type for an array of compound strings (objects of type
XmString).

Related Information

XmString (3).

767

Motif 2.1—Programmer’s Reference

XmTab(library call)

XmTab

Purpose Data type for a tab stop

Synopsis #include <Xm/Xm.h>
XmTab

Description

XmTab is a data structure that specifies a tab stop to be used in rendering an
XmString containing tab components. AnXmTab value contains a value, a unit type,
an offset model (eitherXmABSOLUTE or XmRELATIVE), an alignment model
(XmALIGNMENT_BEGINNING), and a decimal point character. The resource file
syntax forXmTab is specified in theXmTabList reference page.

Related Information

XmTabCreate(3), XmTabFree(3), XmTabGetValues(3), XmTabList (3), and
XmTabSetValue(3).

768

Xm Data Types

XmTabList(library call)

XmTabList

Purpose Data type for a tab list

Synopsis #include <Xm/Xm.h>
XmTabList

Description

XmTabList is the data type for a tab list. A tab list consists of tab stop list entries
(XmTabs). Whenever a tab component is encountered while anXmString is being
rendered, the origin of the next X draw depends on the nextXmTab. If a tab stop would
cause text to overlap, the x position for the segment is reset to follow immediately
after the end of the previous segment.

Tab lists are specified in resource files with the following syntax:

resource_spec: tab WHITESPACE [, WHITESPACEtab]*

The resource value string consists of one or more tabs separated by commas. Each
tab identifies the value of the tab, the unit type, and whether the offset is relative or
absolute. For example:

tab := float [WHITESPACEunits]
float := [sign] [[DIGIT]*.]DIGIT+
sign := +

where the presence or absence ofsign indicates, respectively, a relative offset or an
absolute offset. Note that negative tab values are not allowed.units indicates the
unitType to use as described in theXmConvertUnits reference page.

For example, the following specifies a tab list consisting of a one inch absolute tab
followed by a one inch relative tab:

*tabList: 1in, +1in

769

Motif 2.1—Programmer’s Reference

XmTabList(library call)

For resources of type, dimension, or position, you can specify units as described in the
XmNunitType resource of theXmGadget, XmManager, or XmPrimitive reference
page.

Related Information

Refer to theMotif 2.1—Programmer’s Guidefor more information about tabs and
tab lists.XmTabListCopy (3), XmTabListFree(3), XmTabListGetTab (3),
XmTabListInsertTabs (3), XmTabListRemoveTabs(3),
XmTabListReplacePositions(3), andXmTabListTabCount (3).

770

Xm Data Types

XmTextPosition(library call)

XmTextPosition

Purpose Data type for a character position within a text string

Synopsis #include <Xm/Xm.h>

Description

XmTextPosition is an integer data type that holds a character’s position within a text
string for Text and TextField.

An XmTextPosition value conceptually points to the gap between two characters.
For example, consider a text string consisting ofN characters. A value of 0 refers
to the position immediately prior to the first character. A value of 1 refers to the
position in between the first and second characters. A value ofN refers to the position
immediately following the last character. Therefore, the text string ofN characters
actually containsN + 1 positions.

Related Information

XmText(3).

771

Chapter 6
Xm Functions

773

Motif 2.1—Programmer’s Reference

XmActivateProtocol(library call)

XmActivateProtocol

Purpose A VendorShell function that activates a protocol

Synopsis #include <Xm/Protocols.h>

void XmActivateProtocol(
Widget shell,
Atom property,
Atom protocol);

Description

XmActivateProtocol activates a protocol. It updates the handlers and theproperty if
the shell is realized. It is sometimes useful to allow a protocol’s state information
(callback lists, and so on) to persist, even though the client may choose to temporarily
resign from the interaction. This is supported by allowing aprotocol to be in one
of two states: active or inactive. If theprotocol is active and theshell is realized,
the propertycontains theprotocol Atom. If the protocol is inactive, theAtom is not
present in theproperty.

XmActivateWMProtocol is a convenience interface. It callsXmActivateProtocol
with the property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

property Specifies the protocol property

protocol Specifies the protocolAtom

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

774

Xm Functions

XmActivateProtocol(library call)

Related Information

VendorShell(3), XmActivateWMProtocol (3), XmRemoveProtocols(3) and
XmInternAtom (3).

775

Motif 2.1—Programmer’s Reference

XmActivateWMProtocol(library call)

XmActivateWMProtocol

Purpose A VendorShell convenience interface that activates a protocol

Synopsis #include <Xm/Protocols.h>

void XmActivateWMProtocol(
Widget shell,
Atom protocol);

Description

XmActivateWMProtocol is a convenience interface. It callsXmActivateProtocol
with the property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

protocol Specifies the protocolAtom

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmActivateProtocol(3), XmInternAtom (3), and
XmRemoveWMProtocols(3).

776

Xm Functions

XmAddProtocolCallback(library call)

XmAddProtocolCallback

Purpose A VendorShell function that adds client callbacks for a protocol

Synopsis #include <Xm/Protocols.h>

void XmAddProtocolCallback(
Widget shell,
Atom property,
Atom protocol,
XtCallbackProc callback,
XtPointer closure);

Description

XmAddProtocolCallback adds client callbacks for a protocol. It checks if the protocol
is registered, and if it is not, callsXmAddProtocols. It then adds the callback to the
internal list. These callbacks are called when the corresponding client message is
received.

XmAddWMProtocolCallback is a convenience interface. It calls
XmAddProtocolCallback with the property value set to the atom returned
by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

property Specifies the protocol property

protocol Specifies the protocolAtom

callback Specifies the procedure to call when a protocol message is received

closure Specifies the client data to be passed to the callback when it is invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

777

Motif 2.1—Programmer’s Reference

XmAddProtocolCallback(library call)

Related Information

VendorShell(3), XmAddWMProtocolCallback (3), XmInternAtom (3), and
XmRemoveProtocolCallback(3).

778

Xm Functions

XmAddProtocols(library call)

XmAddProtocols

Purpose A VendorShell function that adds the protocols to the protocol manager and allocates
the internal tables

Synopsis #include <Xm/Protocols.h>

void XmAddProtocols(
Widget shell,
Atom property,
Atom * protocols,
Cardinal num_protocols);

Description

XmAddProtocols adds the protocols to the protocol manager and allocates the internal
tables.

XmAddWMProtocols is a convenience interface. It callsXmAddProtocols with the
property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

property Specifies the protocol property

protocols Specifies the protocolAtoms

num_protocols
Specifies the number of elements inprotocols

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmAddWMProtocols (3), XmInternAtom (3), and
XmRemoveProtocols(3).

779

Motif 2.1—Programmer’s Reference

XmAddTabGroup(library call)

XmAddTabGroup

Purpose A function that adds a manager or a primitive widget to the list of tab groups

Synopsis #include <Xm/Xm.h>

void XmAddTabGroup(
Widget tab_group);

Description

This function is obsolete and its behavior is replaced by settingXmNnavigationType
to XmEXCLUSIVE_TAB_GROUP . When the keyboard is used to traverse through
a widget hierarchy, primitive or manager widgets are grouped together into what are
known astab groups. Any manager or primitive widget can be a tab group. Within
a tab group, move the focus to the next widget in the tab group by using the arrow
keys. To move to another tab group, useKNextField or KPrevField.

Tab groups are ordinarily specified by theXmNnavigationType resource.
XmAddTabGroup is called to control the order of traversal of tab groups. The
widget specified bytab_groupis appended to the list of tab groups to be traversed,
and the widget’sXmNnavigationType is set toXmEXCLUSIVE_TAB_GROUP .

tab_group Specifies the manager or primitive widget ID

Related Information

XmManager(3), XmGetTabGroup(3), XmPrimitive (3), and
XmRemoveTabGroup(3).

780

Xm Functions

XmAddToPostFromList(library call)

XmAddToPostFromList

Purpose a RowColumn function that makes a menu accessible from more than one widget

Synopsis #include <Xm/RowColumn.h>

void XmAddToPostFromList(
Widget menu,
Widget post_from_widget);

Description

XmAddToPostFromList makes a menu accessible from more than one widget. After
a menu is once created, this function may be used to make that menu accessible from
a second widget. The process may be repeated indefinitely. In other words, where an
application would useXmCreatePopupMenu or XmCreatePulldownMenu or their
equivalent to create a new menu identical to one that already exists, it can use this
function to reuse that earlier menu.

If menurefers to a Popup menu, then thepost_from_widgetwidget can now pop up the
specified menu. The actual posting of the menu occurs as it always does, either through
an event handler, or the automatic popup menu support (see theXmRowColumn(3)
reference page).

If menurefers to a Pulldown menu, its ID is placed in theXmNsubMenuId resource
of the specifiedpost_from_widget. In this case, thepost_from_widgetwidget must be
either a CascadeButton or a CascadeButtonGadget.

Note that this function manipulates the internal structures themselves, not a copy of
them.

menu Specifies the ID of the RowColumn widget containing the menu (Popup
or Pulldown) to be made accessible from the widget.

781

Motif 2.1—Programmer’s Reference

XmAddToPostFromList(library call)

post_from_widget
Specifies the widget ID of the widget which will now be able to post
the menu specified bymenu.

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Related Information

XmGetPostedFromWidget(3), XmRemoveFromPostFromList(3), and
XmRowColumn(3).

782

Xm Functions

XmAddWMProtocolCallback(library call)

XmAddWMProtocolCallback

Purpose A VendorShell convenience interface that adds client callbacks for a protocol

Synopsis #include <Xm/Protocols.h>

void XmAddWMProtocolCallback(
Widget shell,
Atom protocol,
XtCallbackProc callback,
XtPointer closure);

Description

XmAddWMProtocolCallback is a convenience interface. It calls
XmAddProtocolCallback with the property value set to the atom returned
by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

protocol Specifies the protocolAtom

callback Specifies the procedure to call when a protocol message is received

closure Specifies the client data to be passed to the callback when it is invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmAddProtocolCallback(3), XmInternAtom (3), and
XmRemoveWMProtocolCallback(3).

783

Motif 2.1—Programmer’s Reference

XmAddWMProtocols(library call)

XmAddWMProtocols

Purpose A VendorShell convenience interface that adds the protocols to the protocol manager
and allocates the internal tables

Synopsis #include <Xm/Protocols.h>

void XmAddWMProtocols(
Widget shell,
Atom * protocols,
Cardinal num_protocols);

Description

XmAddWMProtocols is a convenience interface. It callsXmAddProtocols with the
property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

protocols Specifies the protocolAtoms

num_protocols
Specifies the number of elements inprotocols

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmAddProtocols(3), XmInternAtom (3), and
XmRemoveWMProtocols.

784

Xm Functions

XmCascadeButtonGadgetHighlight(library call)

XmCascadeButtonGadgetHighlight

Purpose A CascadeButtonGadget function that sets the highlight state

Synopsis #include <Xm/CascadeBG.h>

void XmCascadeButtonGadgetHighlight(
Widget cascadeButtonGadget,
Booleanhighlight);

Description

XmCascadeButtonGadgetHighlight either draws or erases the shadow highlight
around the CascadeButtonGadget.

cascadeButtonGadget
Specifies the CascadeButtonGadget to be highlighted or unhighlighted

highlight Specifies whether to highlight (True) or to unhighlight (False)

For a complete definition of CascadeButtonGadget and its associated resources, see
XmCascadeButtonGadget(3).

Related Information

XmCascadeButton(3), XmCascadeButtonGadget(3), and
XmCascadeButtonHighlight(3).

785

Motif 2.1—Programmer’s Reference

XmCascadeButtonHighlight(library call)

XmCascadeButtonHighlight

Purpose A CascadeButton and CascadeButtonGadget function that sets the highlight state

Synopsis #include <Xm/CascadeB.h>
#include <Xm/CascadeBG.h>

void XmCascadeButtonHighlight(
Widget cascadeButton,
Booleanhighlight);

Description

XmCascadeButtonHighlight either draws or erases the shadow highlight around the
CascadeButton or the CascadeButtonGadget.

cascadeButton
Specifies the CascadeButton or CascadeButtonGadget to be highlighted
or unhighlighted

highlight Specifies whether to highlight (True) or to unhighlight (False)

For a complete definition of CascadeButton or CascadeButtonGadget and their
associated resources, seeXmCascadeButton(3) or XmCascadeButtonGadget(3).

Related Information

XmCascadeButton(3), XmCascadeButtonGadget(3) and
XmCascadeButtonGadgetHighlight(3).

786

Xm Functions

XmChangeColor(library call)

XmChangeColor

Purpose Recalculates all associated colors of a widget

Synopsis #include <Xm/Xm.h>

void XmChangeColor(
Widget widget,
Pixel background);

Description

XmChangeColor handles all color modifications for the specified widget when a new
background pixel value is specified. This function recalculates the foreground, select,
and shadow colors based on the new background color and sets the corresponding
resources for the widget. If a color calculation procedure has been set by a call to
XmSetColorCalculation, XmChangeColor uses that procedure to calculate the new
colors. Otherwise, the routine uses a default procedure.

widget Specifies the widget ID whose colors will be updated

background Specifies the background color pixel value

Related Information

XmGetColorCalculation(3), XmGetColors(3), andXmSetColorCalculation(3).

787

Motif 2.1—Programmer’s Reference

XmClipboardCancelCopy(library call)

XmClipboardCancelCopy

Purpose A clipboard function that cancels a copy to the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardCancelCopy (display, window, item_id)

Display * display;
Window window;
long item_id;

Description

XmClipboardCancelCopy cancels the copy to clipboard that is in progress and frees
up temporary storage. When a copy is to be performed,XmClipboardStartCopy
allocates temporary storage for the clipboard data.XmClipboardCopy copies the
appropriate data into the the temporary storage.XmClipboardEndCopy copies the
data to the clipboard structure and frees up the temporary storage structures. If
XmClipboardCancelCopy is called, theXmClipboardEndCopy function does not
have to be called. A call toXmClipboardCancelCopy is valid only after a call to
XmClipboardStartCopy .

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies a widget’s window ID that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

item_id Specifies the number assigned to this data item. This number was
returned by a previous call toXmClipboardStartCopy .

788

Xm Functions

XmClipboardCancelCopy(library call)

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardFail
The function failed becauseXmClipboardStartCopy was not called or
because the data item contains too many formats.

Related Information

XmClipboardCopy (3), XmClipboardEndCopy (3), and
XmClipboardStartCopy (3).

789

Motif 2.1—Programmer’s Reference

XmClipboardCopy(library call)

XmClipboardCopy

Purpose A clipboard function that copies a data item to temporary storage for later copying to
clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardCopy (display, window, item_id, format_name,

buffer, length, private_id, data_id)
Display * display;
Window window;
long item_id;
char * format_name;
XtPointer buffer;
unsigned long length;
long private_id;
long * data_id;

Description

XmClipboardCopy copies a data item to temporary storage. The data item is
moved from temporary storage to the clipboard data structure when a call to
XmClipboardEndCopy is made. Additional calls toXmClipboardCopy before a
call to XmClipboardEndCopy add additional data item formats to the same data
item or append data to an existing format. Formats are described in theInter-Client
Communication Conventions Manual(ICCCM) as targets.

NOTE: Do not call XmClipboardCopy before a call toXmClipboardStartCopy
has been made. The latter function allocates temporary storage required by
XmClipboardCopy .

If the buffer argument is NULL, the data is considered to be passed by name. When
data that has been passed by name is later requested by another application, the
application that owns the data receives a callback with a request for the data. The
application that owns the data must then transfer the data to the clipboard with the
XmClipboardCopyByName function. When a data item that was passed by name

790

Xm Functions

XmClipboardCopy(library call)

is deleted from the clipboard, the application that owns the data receives a callback
stating that the data is no longer needed.

For information on the callback function, see the callback argument description for
XmClipboardStartCopy .

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

item_id Specifies the number assigned to this data item. This number was
returned by a previous call toXmClipboardStartCopy .

format_name
Specifies the name of the format in which the data item is stored on the
clipboard. The format was known as target in the ICCCM.

buffer Specifies the buffer from which the clipboard copies the data.

length Specifies the length, in bytes, of the data being copied to the clipboard.

private_id Specifies the private data that the application wants to store with the
data item.

data_id Specifies an identifying number assigned to the data item that uniquely
identifies the data item and the format. This argument is required only
for data that is passed by name.

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

791

Motif 2.1—Programmer’s Reference

XmClipboardCopy(library call)

XmClipboardFail
The function failed becauseXmClipboardStartCopy was not called or
because the data item contains too many formats.

Related Information

XmClipboardCopyByName(3), XmClipboardEndCopy (3), and
XmClipboardStartCopy (3).

792

Xm Functions

XmClipboardCopyByName(library call)

XmClipboardCopyByName

Purpose A clipboard function that copies a data item passed by name

Synopsis #include <Xm/CutPaste.h>
int XmClipboardCopyByName (display, window, data_id,

buffer, length, private_id)
Display * display;
Window window;
long data_id;
XtPointer buffer;
unsigned long length;
long private_id;

Description

XmClipboardCopyByName copies the actual data for a data item that was previously
passed by name to the clipboard. Data is considered to be passed by name when a
call to XmClipboardCopy is made with a NULL buffer parameter. Additional calls
to this function append new data to the existing data.

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each clipboard function it calls.

data_id Specifies an identifying number assigned to the data item that uniquely
identifies the data item and the format. This number was assigned by
XmClipboardCopy to the data item.

buffer Specifies the buffer from which the clipboard copies the data.

length Specifies the number of bytes in the data item.

793

Motif 2.1—Programmer’s Reference

XmClipboardCopyByName(library call)

private_id Specifies the private data that the application wants to store with the
data item.

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information

XmClipboardCopy (3), XmClipboardLock (3), XmClipboardStartCopy (3), and
XmClipboardUnlock (3).

794

Xm Functions

XmClipboardEndCopy(library call)

XmClipboardEndCopy

Purpose A clipboard function that completes the copying of data to the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardEndCopy (display, window, item_id)

Display * display;
Window window;
long item_id;

Description

XmClipboardEndCopy locks the clipboard from access by other applications, places
data in the clipboard data structure, and unlocks the clipboard. Data items copied to
the clipboard byXmClipboardCopy are not actually entered in the clipboard data
structure until the call toXmClipboardEndCopy .

This function also frees up temporary storage that was allocated by
XmClipboardStartCopy , which must be called beforeXmClipboardEndCopy . The
latter function should not be called ifXmClipboardCancelCopy has been called.

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each clipboard function it calls.

item_id Specifies the number assigned to this data item, which was returned by
a previous call toXmClipboardStartCopy .

Return Values

XmClipboardSuccess
The function was successful.

795

Motif 2.1—Programmer’s Reference

XmClipboardEndCopy(library call)

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardFail
The function failed becauseXmClipboardStartCopy was not called.

Related Information

XmClipboardCancelCopy(3), XmClipboardCopy (3) and
XmClipboardStartCopy (3).

796

Xm Functions

XmClipboardEndRetrieve(library call)

XmClipboardEndRetrieve

Purpose A clipboard function that completes retrieval of data from the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardEndRetrieve (display, window)

Display * display;
Window window;

Description

XmClipboardEndRetrieve suspends copying data incrementally from the clipboard.
It tells the clipboard routines that the application is through copying an item from the
clipboard. Until this function is called, data items can be retrieved incrementally from
the clipboard withXmClipboardRetrieve. The act of copying data is started with the
XmClipboardStartRetrieve function.

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application
window to the clipboard. The widget’s window ID can be obtained
with XtWindow . The same application instance should pass the same
window ID to each of the clipboard functions that it calls.

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application

797

Motif 2.1—Programmer’s Reference

XmClipboardEndRetrieve(library call)

the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information

XmClipboardRetrieve(3), XmClipboardStartCopy (3), and
XmClipboardStartRetrieve (3).

798

Xm Functions

XmClipboardInquireCount(library call)

XmClipboardInquireCount

Purpose A clipboard function that returns the number of data item formats

Synopsis #include <Xm/CutPaste.h>
int XmClipboardInquireCount (display, window, count,

max_format_name_length)
Display * display;
Window window;
int * count;
unsigned long * max_format_name_length;

Description

XmClipboardInquireCount returns the number of data item formats available for
the data item in the clipboard. This function also returns the maximum name-length
for all formats in which the data item is stored.

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

count Returns the number of data item formats available for the data item in
the clipboard. If no formats are available, this argument equals 0 (zero).
The count includes the formats that were passed by name.

max_format_name_length
Specifies the maximum length of all format names for the data item in
the clipboard.

799

Motif 2.1—Programmer’s Reference

XmClipboardInquireCount(library call)

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardNoData
The function could not find data on the clipboard corresponding to the
format requested. This could occur because the clipboard is empty; there
is data on the clipboard, but not in the requested format; or the data in
the requested format was passed by name and is no longer available.

Related Information

XmClipboardStartCopy (3).

800

Xm Functions

XmClipboardInquireFormat(library call)

XmClipboardInquireFormat

Purpose A clipboard function that returns a specified format name

Synopsis #include <Xm/CutPaste.h>
int XmClipboardInquireFormat (display, window, index, format_name_buf,

buffer_len, copied_len)
Display * display;
Window window;
int index;
XtPointer format_name_buf;
unsigned long buffer_len;
unsigned long * copied_len;

Description

XmClipboardInquireFormat returns a specified format name for the data item in the
clipboard. If the name must be truncated, the function returns a warning status.

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

index Specifies which of the ordered format names to obtain. If this index
is greater than the number of formats for the data item, this function
returns a 0 (zero) in thecopied_lenargument.

format_name_buf
Specifies the buffer that receives the format name.

buffer_len Specifies the number of bytes in the format name buffer.

copied_len Specifies the number of bytes in the data item copied to the buffer. If
this argument equals 0 (zero), there is nonth format for the data item.

801

Motif 2.1—Programmer’s Reference

XmClipboardInquireFormat(library call)

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardTruncate
The data returned is truncated because the user did not provide a buffer
large enough to hold the data.

XmClipboardNoData
The function could not find data on the clipboard corresponding to the
format requested. This could occur because the clipboard is empty; there
is data on the clipboard, but not in the requested format; or the data in
the requested format was passed by name and is no longer available.

Related Information

XmClipboardStartCopy (3).

802

Xm Functions

XmClipboardInquireLength(library call)

XmClipboardInquireLength

Purpose A clipboard function that returns the length of the stored data

Synopsis #include <Xm/CutPaste.h>
int XmClipboardInquireLength (display, window, format_name, length)

Display * display;
Window window;
char * format_name;
unsigned long * length;

Description

XmClipboardInquireLength returns the length of the data stored under a specified
format name for the clipboard data item. If no data is found for the specified format,
or if there is no item on the clipboard, this function returns a value of 0 (zero) in the
lengthargument.

Any format passed by name is assumed to havelength passed in a call to
XmClipboardCopy , even though the data has not yet been transferred to the clipboard
in that format.

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

format_name
Specifies the name of the format for the data item.

length Specifies the length of the next data item in the specified format. This
argument equals 0 (zero) if no data is found for the specified format, or
if there is no item on the clipboard.

803

Motif 2.1—Programmer’s Reference

XmClipboardInquireLength(library call)

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardNoData
The function could not find data on the clipboard corresponding to the
format requested. This could occur because the clipboard is empty; there
is data on the clipboard, but not in the requested format; or the data in
the requested format was passed by name and is no longer available.

Related Information

XmClipboardCopy (3) andXmClipboardStartCopy (3).

804

Xm Functions

XmClipboardInquirePendingItems(library call)

XmClipboardInquirePendingItems

Purpose A clipboard function that returns a list of data ID/private ID pairs

Synopsis #include <Xm/CutPaste.h>
int XmClipboardInquirePendingItems (display, window, format_name, item_list, count)

Display * display;
Window window;
char * format_name;
XmClipboardPendingList * item_list;
unsigned long * count;

Description

XmClipboardInquirePendingItems returns a list of data ID/private ID pairs for the
specified format name. A data item is considered pending if the application originally
passed it by name, the application has not yet copied the data, and the item has not
been deleted from the clipboard. The application is responsible for freeing the memory
provided by this function to store the list. To free the memory, callXtFree.

This function is used by an application when exiting, to determine if the data that is
passed by name should be sent to the clipboard.

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

format_name
Specifies a string that contains the name of the format for which the list
of data ID/private ID pairs is to be obtained.

item_list Specifies the address of the array of data ID/private ID pairs
for the specified format name. This argument is a type

805

Motif 2.1—Programmer’s Reference

XmClipboardInquirePendingItems(library call)

XmClipboardPendingList . The application is responsible for
freeing the memory provided by this function for storing the list.

count Specifies the number of items returned in the list. If there is no data for
the specified format name, or if there is no item on the clipboard, this
argument equals 0 (zero).

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information

XmClipboardStartCopy (3).

806

Xm Functions

XmClipboardLock(library call)

XmClipboardLock

Purpose A clipboard function that locks the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardLock (display, window)

Display * display;
Window window;

Description

XmClipboardLock locks the clipboard from access by another application until
XmClipboardUnlock is called. All clipboard functions lock and unlock the
clipboard to prevent simultaneous access. This function allows the application
to keep the clipboard data from changing between calls toInquire and other
clipboard functions. The application does not need to lock the clipboard
between calls toXmClipboardStartCopy and XmClipboardEndCopy or to
XmClipboardStartRetrieve andXmClipboardEndRetrieve.

If the clipboard is already locked by another application,XmClipboardLock returns
an error status. Multiple calls to this function by the same application increase the
lock level.

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

Return Values

XmClipboardSuccess
The function was successful.

807

Motif 2.1—Programmer’s Reference

XmClipboardLock(library call)

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information

XmClipboardEndCopy (3), XmClipboardEndRetrieve(3),
XmClipboardStartCopy (3), XmClipboardStartRetrieve (3), and
XmClipboardUnlock (3).

808

Xm Functions

XmClipboardRegisterFormat(library call)

XmClipboardRegisterFormat

Purpose A clipboard function that registers a new format

Synopsis #include <Xm/CutPaste.h>
int XmClipboardRegisterFormat (display, format_name, format_length)

Display * display;
char * format_name;
int format_length;

Description

XmClipboardRegisterFormat registers a new format. Each format stored on the
clipboard should have a length associated with it; this length must be known to the
clipboard routines. Formats are known as targets in theInter-Client Communication
Conventions Manual(ICCCM). All of the formats specified by version 1.1 of the
ICCCM conventions are preregistered. Any other format that the application wants
to use must either be 8-bit data or be registered via this routine. Failure to register
the length of the data results in incompatible applications across platforms having
different byte-swapping orders.

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

format_name
Specifies the string name for the new format (target).

format_length
Specifies the format length in bits (8, 16, or 32).

Return Values

XmClipboardBadFormat
The format_namemust not be NULL, and theformat_lengthmust be
8, 16, or 32.

809

Motif 2.1—Programmer’s Reference

XmClipboardRegisterFormat(library call)

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardFail
The function failed because the specified format was already registered
with a different length from that specified now. If a specified format
was already registered with the same length as that specified now,
XmClipboardSuccessis returned.

Related Information

XmClipboardStartCopy (3).

810

Xm Functions

XmClipboardRetrieve(library call)

XmClipboardRetrieve

Purpose A clipboard function that retrieves a data item from the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardRetrieve (display, window, format_name,

buffer, length, num_bytes, private_id)
Display * display;
Window window;
char * format_name;
XtPointer buffer;
unsigned long length;
unsigned long * num_bytes;
long * private_id;

Description

XmClipboardRetrieve retrieves the current data item from clipboard storage. It
returns a warning if the clipboard is locked, if there is no data on the clipboard,
or if the data needs to be truncated because the buffer length is too short.

Between a call to XmClipboardStartRetrieve and a call to
XmClipboardEndRetrieve, multiple calls to XmClipboardRetrieve with the
same format name result in data being incrementally copied from the clipboard until
the data in that format has all been copied.

The return valueXmClipboardTruncatefrom calls toXmClipboardRetrieve indicates
that more data remains to be copied in the given format. It is recommended that any
calls to theInquire functions that the application needs to make to effect the copy
from the clipboard be made between the call toXmClipboardStartRetrieve and the
first call to XmClipboardRetrieve. This way, the application does not need to call
XmClipboardLock andXmClipboardUnlock .

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

811

Motif 2.1—Programmer’s Reference

XmClipboardRetrieve(library call)

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

format_name
Specifies the name of a format in which the data is stored on the
clipboard.

buffer Specifies the buffer to which the application wants the clipboard to copy
the data. The function allocates space to hold the data returned into the
buffer. The application is responsible for managing this allocated space.
The application can recover this allocated space by callingXtFree.

length Specifies the length of the application buffer.

num_bytes Specifies the number of bytes of data copied into the application buffer.

private_id Specifies the private data stored with the data item by the application
that placed the data item on the clipboard. If the application did not
store private data with the data item, this argument returns 0 (zero).

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardTruncate
The data returned is truncated because the user did not provide a buffer
large enough to hold the data.

XmClipboardNoData
The function could not find data on the clipboard corresponding to the
format requested. This could occur because the clipboard is empty; there
is data on the clipboard but not in the requested format; or the data in
the requested format was passed by name and is no longer available.

812

Xm Functions

XmClipboardRetrieve(library call)

Related Information

XmClipboardEndRetrieve(3), XmClipboardLock (3), XmClipboardStartCopy (3),
XmClipboardStartRetrieve (3), andXmClipboardUnlock (3).

813

Motif 2.1—Programmer’s Reference

XmClipboardStartCopy(library call)

XmClipboardStartCopy

Purpose A clipboard function that sets up a storage and data structure

Synopsis #include <Xm/CutPaste.h>
int XmClipboardStartCopy (display, window, clip_label,

timestamp, widget, callback, item_id)
Display * display;
Window window;
XmString clip_label;
Time timestamp;
Widget widget;
XmCutPasteProc callback;
long * item_id;

Description

XmClipboardStartCopy sets up storage and data structures to receive clipboard data.
An application calls this function during a cut or copy operation. The data item that
these structures receive then becomes the next data item in the clipboard.

Copying a large piece of data to the clipboard can take a long time. It is possible that,
once the data is copied, no application will ever request that data. The Motif Toolkit
provides a mechanism so that an application does not need to actually pass data to
the clipboard until the data has been requested by some application.

Instead, the application passes format and length information inXmClipboardCopy
to the clipboard functions, along with a widget ID and a callback function address that
is passed inXmClipboardStartCopy . The widget ID is necessary for communications
between the clipboard functions in the application that owns the data and the clipboard
functions in the application that requests the data.

The callback functions are responsible for copying the actual data to the clipboard
throughXmClipboardCopyByName. The callback function is also called if the data
item is removed from the clipboard and the actual data is no longer needed.

814

Xm Functions

XmClipboardStartCopy(library call)

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

clip_label Specifies the label to be associated with the data item. This argument is
used to identify the data item, as in a clipboard viewer. An example of a
label is the name of the application that places the data in the clipboard.

timestamp Specifies the time of the event that triggered the copy. A valid timestamp
must be supplied; it is not sufficient to useCurrentTime .

widget Specifies the ID of the widget that receives messages requesting data
previously passed by name. This argument must be present in order to
pass data by name. Any valid widget ID in your application can be used
for this purpose and all the message handling is taken care of by the cut
and paste functions.

callback Specifies the address of the callback function that is called when the
clipboard needs data that was originally passed by name. This is also
the callback to receive thedeletemessage for items that were originally
passed by name. This argument must be present in order to pass data
by name.

item_id Specifies the number assigned to this data item. The application uses
this number in calls toXmClipboardCopy , XmClipboardEndCopy ,
andXmClipboardCancelCopy.

For more information on passing data by name, seeXmClipboardCopy (3) and
XmClipboardCopyByName(3).

The widget and callback arguments must be present in order to pass data by name.
The callback format is as follows:
void (*callback) (widget, data_id, private, reason)

Widget widget;
long *data_id;
long *private;
int * reason;

widget Specifies the ID of the widget passed to this function.

815

Motif 2.1—Programmer’s Reference

XmClipboardStartCopy(library call)

data_id Specifies the identifying number returned byXmClipboardCopy , which
identifies the pass-by-name data.

private Specifies the private information passed toXmClipboardCopy .

reason Specifies the reason.XmCR_CLIPBOARD_DATA_DELETE or
XmCR_CLIPBOARD_DATA_REQUEST are the possible values.

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information

XmClipboardCancelCopy(3), XmClipboardCopy (3),
XmClipboardCopyByName(3), XmClipboardEndCopy (3),
XmClipboardEndRetrieve(3), XmClipboardInquireCount (3),
XmClipboardInquireFormat (3), XmClipboardInquireLength (3),
XmClipboardInquirePendingItems (3), XmClipboardLock (3),
XmClipboardRegisterFormat(3), XmClipboardRetrieve(3),
XmClipboardStartRetrieve (3), XmClipboardUndoCopy(3),
XmClipboardUnlock (3), andXmClipboardWithdrawFormat (3).

816

Xm Functions

XmClipboardStartRetrieve(library call)

XmClipboardStartRetrieve

Purpose A clipboard function that prepares to retrieve data from the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardStartRetrieve (display, window, timestamp)

Display * display;
Window window;
Time timestamp;

Description

XmClipboardStartRetrieve tells the clipboard routines that the application is ready
to start copying an item from the clipboard. The clipboard is locked by this
routine and stays locked untilXmClipboardEndRetrieve is called. Between a call
to XmClipboardStartRetrieve and a call toXmClipboardEndRetrieve, multiple
calls to XmClipboardRetrieve with the same format name result in data being
incrementally copied from the clipboard until the data in that format has all been
retrieved.

A return value ofXmClipboardTruncatefrom calls toXmClipboardRetrieve indicates
that more data remains to be copied in the given format. It is recommended that any
calls to theInquire functions that the application needs to make to complete the copy
from the clipboard be made between the call toXmClipboardStartRetrieve and the
first call to XmClipboardRetrieve. This way, the application does not need to call
XmClipboardLock andXmClipboardUnlock .

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

timestamp Specifies the time of the event that triggered the copy. A valid timestamp
must be supplied; it is not sufficient to useCurrentTime .

817

Motif 2.1—Programmer’s Reference

XmClipboardStartRetrieve(library call)

Return Values

XmClipboardSuccess
The function is successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information

XmClipboardEndRetrieve(3), XmClipboardInquireCount (3),
XmClipboardInquireFormat (3), XmClipboardInquireLength (3),
XmClipboardInquirePendingItems (3), XmClipboardLock (3),
XmClipboardRetrieve(3), XmClipboardStartCopy (3), and
XmClipboardUnlock (3).

818

Xm Functions

XmClipboardUndoCopy(library call)

XmClipboardUndoCopy

Purpose A clipboard function that deletes the last item placed on the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardUndoCopy (display, window)

Display * display;
Window window;

Description

XmClipboardUndoCopy deletes the last item placed on the clipboard if the item was
placed there by an application with the passeddisplay and window arguments. Any
data item deleted from the clipboard by the original call toXmClipboardCopy is
restored. If thedisplayor window IDs do not match the last copied item, no action is
taken, and this function has no effect.

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each clipboard function it calls.

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application

819

Motif 2.1—Programmer’s Reference

XmClipboardUndoCopy(library call)

the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information

XmClipboardLock (3) andXmClipboardStartCopy (3).

820

Xm Functions

XmClipboardUnlock(library call)

XmClipboardUnlock

Purpose A clipboard function that unlocks the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardUnlock (display, window, remove_all_locks)

Display * display;
Window window;
Boolean remove_all_locks;

Description

XmClipboardUnlock unlocks the clipboard, enabling it to be accessed by other
applications.

If multiple calls to XmClipboardLock have occurred, the same number of calls to
XmClipboardUnlock is necessary to unlock the clipboard, unlessremove_all_locks
is set to True.

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

remove_all_locks
When True, indicates that all nested locks should be removed. When
False, indicates that only one level of lock should be removed.

Return Values

XmClipboardSuccess
The function was successful.

821

Motif 2.1—Programmer’s Reference

XmClipboardUnlock(library call)

XmClipboardFail
The function failed because the clipboard was not locked or was locked
by another application.

Related Information

XmClipboardCancelCopy(3), XmClipboardCopy (3), XmClipboardEndCopy (3),
XmClipboardEndRetrieve(3), XmClipboardInquireCount (3),
XmClipboardInquireFormat (3), XmClipboardInquireLength (3),
XmClipboardInquirePendingItems (3), XmClipboardLock (3),
XmClipboardRegisterFormat(3), XmClipboardRetrieve(3),
XmClipboardStartCopy (3), XmClipboardStartRetrieve (3),
XmClipboardUndoCopy(3), andXmClipboardWithdrawFormat (3).

822

Xm Functions

XmClipboardWithdrawFormat(library call)

XmClipboardWithdrawFormat

Purpose A clipboard function that indicates that the application no longer wants to supply a
data item

Synopsis #include <Xm/CutPaste.h>
int XmClipboardWithdrawFormat (display, window, data_id)

Display * display;
Window window;
long data_id;

Description

XmClipboardWithdrawFormat indicates that the application no longer supplies a
data item to the clipboard that the application had previously passed by name.

display Specifies a pointer to theDisplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget’s window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each clipboard function it calls.

data_id Specifies an identifying number assigned to the data item, that uniquely
identifies the data item and the format. This was assigned to the item
when it was originally passed byXmClipboardCopy .

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with

823

Motif 2.1—Programmer’s Reference

XmClipboardWithdrawFormat(library call)

the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information

XmClipboardCopy (3) andXmClipboardStartCopy (3).

824

Xm Functions

XmComboBoxAddItem(library call)

XmComboBoxAddItem

Purpose add an item to the ComboBox widget

Synopsis #include <Xm/ComboBox.h>

void XmComboBoxAddItem(
Widget w,
XmString item,
int pos,
Booleanunique);

Description

The XmComboBoxAddItem function adds the given item to the XmComboBox at
the given position.

The w argument specifies the XmComboBox widget ID.

The item argument specifies theXmString for the new item.

The posargument specifies the position of the new item.

The uniqueargument specifies if this item should duplicate an identical item or not.

Application Usage

The functionsXmComboBoxAddItem andXmComboBoxDeletePoshave different
naming conventions (Item versus Pos) because of the objects they are manipulating.
The Item is a string to be added, the Pos is a numeric position number.

Return Values

The XmComboBoxAddItem function returns no value.

825

Motif 2.1—Programmer’s Reference

XmComboBoxAddItem(library call)

Related Information

XmComboBoxDeletePos(3), XmComboBoxSetItem(3),
XmComboBoxSelectItem(3).

826

Xm Functions

XmComboBoxDeletePos(library call)

XmComboBoxDeletePos

Purpose Delete a XmComboBox item

Synopsis #include <Xm/ComboBox.h>

void XmComboBoxDeletePos(
Widget w,
int pos);

Description

TheXmComboBoxDeletePosfunction deletes a specified item from a XmComboBox
widget.

The w argument specifies the XmComboBox widget ID.

The posargument specifies the position of the item to be deleted.

Application Usage

The functionsXmComboBoxAddItem andXmComboBoxDeletePoshave different
naming conventions (Item versus Pos) because of the objects they are manipulating.
The Item is a string to be added, the Pos is a numeric position number.

Return Values

The XmComboBoxDeletePosfunction returns no value.

Related Information

XmComboBoxAddItem(3), XmComboBoxSetItem(3),
XmComboBoxSelectItem(3).

827

Motif 2.1—Programmer’s Reference

XmComboBoxSelectItem(library call)

XmComboBoxSelectItem

Purpose select a XmComboBox item

Synopsis #include <Xm/ComboBox.h>

void XmComboBoxSelectItem(
Widget w,
XmString item);

Description

The XmComboBoxSelectItem function selects an item in the XmList of the
XmComboBox widget.

The w argument specifies the XmComboBox widget ID.

The item argument specifies theXmString of the item to be selected. If theitem is
not found on the list,XmComboBoxSelectItemnotifies the user via theXtWarning
function.

Return Values

The XmComboBoxSelectItemfunction returns no value.

Related Information

XmComboBoxAddItem(3), XmComboBoxDeletePos(3),
XmComboBoxSetItem(3); XtWarning (3). in the CAE Specification, Window
Management: X Toolkit Intrinsics.

828

Xm Functions

XmComboBoxSetItem(library call)

XmComboBoxSetItem

Purpose set an item in the XmComboBox list

Synopsis #include <Xm/ComboBox.h>

void XmComboBoxSetItem(
Widget w,
XmString item);

Description

The XmComboBoxSetItem function selects an item in the XmList of the given
XmComboBox widget and makes it the first visible item in the list.

The w argument specifies the XmComboBox widget ID.

The itemargument specifies theXmString for the item to be set in the XmComboBox.
If the item is not found on the list,XmComboBoxSetItem notifies the user via the
XtWarning function.

Return Values

The XmComboBoxSetItem function returns no value.

Related Information

XmComboBoxAddItem(3), XmComboBoxDeletePos(3),
XmComboBoxSelectItem(3); XtWarning (3). in the CAE Specification, Window
Management: X Toolkit Intrinsics.

829

Motif 2.1—Programmer’s Reference

XmComboBoxUpdate(library call)

XmComboBoxUpdate

Purpose A ComboBox function that resynchronizes data

Synopsis #include <Xm/ComboBox.h>

void XmComboBoxUpdate(
Widget widget);

Description

XmComboBoxUpdate resynchronizes the internal data structures of a specified
ComboBox widget. This function is useful when an application manipulates
ComboBox’s child widgets, possibly changing data structures. For example, you
might want to use theXmComboBoxUpdate function after a ComboBox List child
selection has been changed without notification.

widget Specifies the ComboBox widget ID.

Related Information

XmComboBox(3).

830

Xm Functions

XmCommandAppendValue(library call)

XmCommandAppendValue

Purpose A Command function that appends the passed XmString to the end of the string
displayed in the command area of the widget

Synopsis #include <Xm/Command.h>

void XmCommandAppendValue(
Widget widget,
XmString command);

Description

XmCommandAppendValue appends the passedXmString to the end of the string
displayed in the command area of the Command widget.

widget Specifies the Command widget ID

command Specifies the passedXmString

For a complete definition of Command and its associated resources, see
XmCommand(3).

Related Information

XmCommand(3).

831

Motif 2.1—Programmer’s Reference

XmCommandError(library call)

XmCommandError

Purpose A Command function that displays an error message

Synopsis #include <Xm/Command.h>

void XmCommandError(
Widget widget,
XmString error);

Description

XmCommandError displays an error message in the history area of the Command
widget. TheXmString error is displayed until the next command entered occurs.

widget Specifies the Command widget ID

error Specifies the passedXmString

For a complete definition of Command and its associated resources, see
XmCommand(3).

Related Information

XmCommand(3).

832

Xm Functions

XmCommandGetChild(library call)

XmCommandGetChild

Purpose A Command function that is used to access a component

Synopsis #include <Xm/Command.h>

Widget XmCommandGetChild(
Widget widget,
unsigned charchild);

Description

XmCommandGetChild is used to access a component within a Command. The
parameters given to the function are the Command widget and a value indicating
which component to access.

widget Specifies the Command widget ID.

child Specifies a component within the Command. The following values are
legal for this parameter:

• XmDIALOG_COMMAND_TEXT

• XmDIALOG_PROMPT_LABEL

• XmDIALOG_HISTORY_LIST

• XmDIALOG_WORK_AREA

For a complete definition of Command and its associated resources, see
XmCommand(3).

Return Values

Returns the widget ID of the specified Command component. An application should
not assume that the returned widget will be of any particular class.

833

Motif 2.1—Programmer’s Reference

XmCommandGetChild(library call)

Related Information

XmCommand(3).

834

Xm Functions

XmCommandSetValue(library call)

XmCommandSetValue

Purpose A Command function that replaces a displayed string

Synopsis #include <Xm/Command.h>

void XmCommandSetValue(
Widget widget,
XmString command);

Description

XmCommandSetValue replaces the string displayed in the command area of the
Command widget with the passedXmString .

widget Specifies the Command widget ID

command Specifies the passedXmString

For a complete definition of Command and its associated resources, see
XmCommand(3).

Related Information

XmCommand(3).

835

Motif 2.1—Programmer’s Reference

XmContainerCopy(library call)

XmContainerCopy

Purpose Container widget function to copy primary selection to the clipboard

Synopsis #include <Xm/Container.h>

Boolean XmContainerCopy(
Widget container,
Time timestamp);

Description

XmContainerCopy copies the primary selected container items to the clipboard. This
routine calls theXmNconvertCallback procedures, possibly multiple times, with the
selectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with the
parm member set toXmCOPY.

container Specifies the Container widget ID.

timestamp Specifies the server time at which to modify the selection value.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

The function returns False in the following cases: if the primary selection is NULL,
if the widget does not own the primary selection, or if the function is unable to gain
ownership of the clipboard selection. Otherwise, it returns True.

Related Information

XmContainer(3).

836

Xm Functions

XmContainerCopyLink(library call)

XmContainerCopyLink

Purpose Container widget function to copy links to the clipboard

Synopsis #include <Xm/Container.h>

Boolean XmContainerCopyLink(
Widget container,
Time timestamp);

Description

XmContainerCopyLink copies links to the primary selected items to the clipboard.
This routine calls theXmNconvertCallback procedures, possibly multiple times, with
theselectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with
the parm member set toXmLINK . The Container widget itself does not copy any
links; XmNconvertCallback procedures are responsible for copying the link to the
clipboard and for taking any related actions.

container Specifies the Container widget ID.

timestamp Specifies the server time at which to modify the selection value.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

The function returns False in the following cases: if the primary selection is NULL,
if the widget does not own the primary selection, or if the function is unable to gain
ownership of the clipboard selection. Otherwise, it returns True.

837

Motif 2.1—Programmer’s Reference

XmContainerCopyLink(library call)

Related Information

XmContainer(3).

838

Xm Functions

XmContainerCut(library call)

XmContainerCut

Purpose Container widget function to move items to the clipboard

Synopsis #include <Xm/Container.h>

Boolean XmContainerCut(
Widget container,
Time timestamp);

Description

XmContainerCut cuts the primary selected items to the clipboard. This routine calls
the XmNconvertCallback procedures, possibly multiple times, with theselection
member of theXmConvertCallbackStruct set to CLIPBOARDand with theparm
member set toXmMOVE . If the transfer is successful, this routine then calls the
XmNconvertCallback procedures for theCLIPBOARDselection and theDELETE
target.

container Specifies the Container widget ID.

timestamp Specifies the server time at which to modify the selection value.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

The function returns False in the following cases: if the primary selection is NULL,
if the widget does not own the primary selection, or if the function is unable to gain
ownership of the clipboard selection. Otherwise, it returns True.

839

Motif 2.1—Programmer’s Reference

XmContainerCut(library call)

Related Information

XmContainer(3).

840

Xm Functions

XmContainerGetItemChildren(library call)

XmContainerGetItemChildren

Purpose Container widget function to find all children of an item

Synopsis #include <Xm/Container.h>

int XmContainerGetItemChildren(
Widget container,
Widget item,
WidgetList * item_children);

Description

XmContainerGetItemChildren allocates a WidgetList and stores within it the widget
IDs of all widgets that haveitem specified as the value of theirXmNentryParent
resource. The application programmer is responsible for freeing the allocated
WidgetList using XtFree. The number of widget IDs returned initem_children
is returned by the function. If no widgets specifyitem as the value of their
XmNentryParent resource, the function returns zero anditem_children is left
unchanged.

container Specifies the Container widget ID.

item Specifies a widgetID withincontainer.

item_children
Returned array of Widgets.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

This function returns a count of all widgets that haveitem specified as the value of
their XmNentryParent resource.

841

Motif 2.1—Programmer’s Reference

XmContainerGetItemChildren(library call)

Related Information

XmContainer(3).

842

Xm Functions

XmContainerPaste(library call)

XmContainerPaste

Purpose Container widget function to insert items from the clipboard

Synopsis #include <Xm/Container.h>

Boolean XmContainerPaste(
Widget container);

Description

XmContainerPaste requests data transfer from the clipboard selection to the
Container. This routine calls the widget’sXmNdestinationCallback procedures with
the selectionmember of theXmDestinationCallbackStruct set toCLIPBOARDand
with the operationmember set toXmCOPY. The Container widget itself performs
no transfers; theXmNdestinationCallback procedures are responsible for inserting
the clipboard selection and for taking any related actions.

container Specifies the Container widget ID.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

The function returns False if no data transfer takes place. Otherwise, it returns True.

Related Information

XmContainer(3).

843

Motif 2.1—Programmer’s Reference

XmContainerPasteLink(library call)

XmContainerPasteLink

Purpose Container widget function to insert links from the clipboard

Synopsis #include <Xm/Container.h>

Boolean XmContainerPasteLink(
Widget container);

Description

XmContainerPasteLink requests data transfer from the clipboard selection to the
Container. This routine calls the widget’sXmNdestinationCallback procedures with
the selectionmember of theXmDestinationCallbackStruct set toCLIPBOARDand
with theoperationmember set toXmLINK . The Container widget itself performs no
transfers; theXmNdestinationCallback procedures are responsible for inserting the
link to the clipboard selection and for taking any related actions.

container Specifies the Container widget ID.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

The function returns False if no data transfer takes place. Otherwise, it returns True.

Related Information

XmContainer(3).

844

Xm Functions

XmContainerRelayout(library call)

XmContainerRelayout

Purpose Container widget relayout function

Synopsis #include <Xm/Container.h>

void XmContainerRelayout(
Widget container);

Description

XmContainerRelayout forces a layout of all items in the Container using the
XmNpositionIndex andXmNentryParent constraint resources associated with each
item.

container Specifies the Container widget ID.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Related Information

XmContainer(3).

845

Motif 2.1—Programmer’s Reference

XmContainerReorder(library call)

XmContainerReorder

Purpose Container widget function to reorder children

Synopsis #include <Xm/Container.h>

void XmContainerReorder(
Widget container,
WidgetList widgets,
int num_widgets);

Description

XmContainerReorder obtains the XmNpositionIndex constraint resources of
each widget specified inwidgets, sorts them in ascending order, and inserts the
XmNpositionIndex constraint resources in the new order into each widget. If
the XmNlayoutType resource of Container isXmOUTLINE or XmDETAIL ,
XmContainerReorder will force a layout of all items.

container Specifies the Container widget ID.

widgets Specifies an array of widget children ofcontainer.

num_widgetsSpecifies the number of items in thewidgetsarray.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Related Information

XmContainer(3).

846

Xm Functions

XmConvertStringToUnits(library call)

XmConvertStringToUnits

Purpose A function that converts a string specification to a unit value

Synopsis #include <Xm/Xm.h>

int XmConvertStringToUnits(
Screen *screen,
String spec,
int orientation,
int to_type,
XtEnum * parse_error);

Description

XmConvertStringToUnits converts a string specification value and returns the
converted value as the return value from the function. This function uses the specified
screen’s resolution to compute the number of units for the string specification.

screen Specifies the screen whose resolution is to be used for the computation.

spec Specifies the string, in<floating value><unit> format, to be converted.

orientation Specifies whether the converter uses the horizontal or vertical screen
resolution when performing the conversion. Theorientation parameter
can have values ofXmHORIZONTAL or XmVERTICAL .

to_type Converts the value to the unit type specified. Refer to theXmNunitType
resource of theXmGadget, XmManager, or XmPrimitive reference
page. This parameter can have one of the following values:

XmPIXELS The returned value will be the number of pixels.

XmMILLIMETERS
The returned value will be the number of millimeters.

847

Motif 2.1—Programmer’s Reference

XmConvertStringToUnits(library call)

Xm100TH_MILLIMETERS
The returned values will be the number of 1/100
millimeters.

XmCENTIMETERS
The returned values will be the number of centimeters.

XmINCHES
The returned values will be the number of inches.

Xm1000TH_INCHES
The returned values will be the number of 1/100 inches.

XmPOINTS
The returned values will be the number of points. A point
is a text processing unit defined as 1/72 of an inch.

Xm100TH_POINTS
The returned values will be the number of 1/100 points.

XmFONT_UNITS
All values provided to the widget are treated as font
units. A font unit has horizontal and vertical components.
These are the values of the XmScreen resources
XmNhorizontalFontUnit andXmNverticalFontUnit .

Xm100TH_FONT_UNITS
All values provided to the widget are treated as 1/
100 of a font unit. A font unit has horizontal and
vertical components. These are the values of the
XmScreen resourcesXmNhorizontalFontUnit and
XmNverticalFontUnit .

parse_error
Specifies if a parsing error occurred. This is set to a value of True
indicates that an error occurred, a value of False to indicate no error.

Return Values

Returns the converted value. If a NULL screen, incorrectorientation, or incorrect
unit_type is supplied as parameter data, or if a parsing error occurred, 0 (zero) is
returned.

848

Xm Functions

XmConvertStringToUnits(library call)

Related Information

XmConvertUnits(3), XmSetFontUnits(3), andXmScreen(3).

849

Motif 2.1—Programmer’s Reference

XmConvertUnits(library call)

XmConvertUnits

Purpose A function that converts a value in one unit type to another unit type

Synopsis #include <Xm/Xm.h>

int XmConvertUnits(
Widget widget,
int orientation,
int from_unit_type,
int from_value,
int to_unit_type);

Description

XmConvertUnits converts the value and returns it as the return value from the
function. For resources of type, dimension, or position, you can specify units using the
syntax described in theXmNunitType resource of theXmPrimitive reference page.

widget Specifies the widget for which the data is to be converted.

orientation Specifies whether the converter uses the horizontal or vertical screen
resolution when performing the conversions. Theorientationparameter
can have values ofXmHORIZONTAL or XmVERTICAL .

from_unit_type
Specifies the current unit type of the supplied value

from_value Specifies the value to be converted

to_unit_type Converts the value to the unit type specified

The parametersfrom_unit_typeand to_unit_typecan have the following values:

XmPIXELS
All values provided to the widget are treated as pixel values. This is the
default for the resource.

850

Xm Functions

XmConvertUnits(library call)

XmMILLIMETERS
All values provided to the widget are treated as millimeter values.

Xm100TH_MILLIMETERS
All values provided to the widget are treated as 1/100 of a millimeter.

XmCENTIMETERS
All values provided to the widget are treated as centimeter values.

XmINCHES
All values provided to the widget are treated as inch values.

Xm1000TH_INCHES
All values provided to the widget are treated as 1/1000 of an inch.

XmPOINTS
All values provided to the widget are treated as point values. A point is
a unit used in text processing applications and is defined as 1/72 of an
inch.

Xm100TH_POINTS
All values provided to the widget are treated as 1/100 of a point. A point
is a unit typically used in text processing applications and is defined as
1/72 of an inch.

XmFONT_UNITS
All values provided to the widget are treated as normal font units.
A font unit has horizontal and vertical components. These are the
values of the XmScreen resourcesXmNhorizontalFontUnit and
XmNverticalFontUnit .

Xm100TH_FONT_UNITS
All values provided to the widget are treated as 1/100 of a font
unit. A font unit has horizontal and vertical components. These are
the values of the XmScreen resourcesXmNhorizontalFontUnit and
XmNverticalFontUnit .

Return Values

Returns the converted value. If a NULL widget, incorrectorientation, or incorrect
unit_typeis supplied as parameter data, 0 (zero) is returned.

851

Motif 2.1—Programmer’s Reference

XmConvertUnits(library call)

Related Information

XmPrimitive , XmSetFontUnits(3), andXmScreen(3).

852

Xm Functions

XmCreateArrowButton(library call)

XmCreateArrowButton

Purpose The ArrowButton widget creation function

Synopsis #include <Xm/ArrowB.h>

Widget XmCreateArrowButton(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateArrowButton creates an instance of an ArrowButton widget and returns
the associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of ArrowButton and its associated resources, see
XmArrowButton (3).

Return Values

Returns the ArrowButton widget ID.

Related Information

XmArrowButton (3).

853

Motif 2.1—Programmer’s Reference

XmCreateArrowButtonGadget(library call)

XmCreateArrowButtonGadget

Purpose The ArrowButtonGadget creation function

Synopsis #include <Xm/ArrowBG.h>

Widget XmCreateArrowButtonGadget(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateArrowButtonGadget creates an instance of an ArrowButtonGadget widget
and returns the associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of ArrowButtonGadget and its associated resources, see
XmArrowButtonGadget (3).

Return Values

Returns the ArrowButtonGadget widget ID.

Related Information

XmArrowButtonGadget (3).

854

Xm Functions

XmCreateBulletinBoard(library call)

XmCreateBulletinBoard

Purpose The BulletinBoard widget creation function

Synopsis #include <Xm/BulletinB.h>

Widget XmCreateBulletinBoard(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateBulletinBoard creates an instance of a BulletinBoard widget and returns
the associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of BulletinBoard and its associated resources, see
XmBulletinBoard (3).

Return Values

Returns the BulletinBoard widget ID.

Related Information

XmBulletinBoard (3).

855

Motif 2.1—Programmer’s Reference

XmCreateBulletinBoardDialog(library call)

XmCreateBulletinBoardDialog

Purpose The BulletinBoard BulletinBoardDialog convenience creation function

Synopsis #include <Xm/BulletinB.h>

Widget XmCreateBulletinBoardDialog(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateBulletinBoardDialog is a convenience creation function that creates
a DialogShell and an unmanaged BulletinBoard child of the DialogShell. A
BulletinBoardDialog is used for interactions not supported by the standard dialog
set. This function does not automatically create any labels, buttons, or other
dialog components. Such components should be added by the application after the
BulletinBoardDialog is created.

Use XtManageChild to pop up the BulletinBoardDialog (passing the BulletinBoard
as the widget parameter); useXtUnmanageChild to pop it down.

XmCreateBulletinBoardDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of BulletinBoard and its associated resources, see
XmBulletinBoard (3).

856

Xm Functions

XmCreateBulletinBoardDialog(library call)

Return Values

Returns the BulletinBoard widget ID.

Related Information

XmBulletinBoard (3).

857

Motif 2.1—Programmer’s Reference

XmCreateCascadeButton(library call)

XmCreateCascadeButton

Purpose The CascadeButton widget creation function

Synopsis #include <Xm/CascadeB.h>

Widget XmCreateCascadeButton(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateCascadeButtoncreates an instance of a CascadeButton widget and returns
the associated widget ID.

parent Specifies the parent widget ID. The parent must be a RowColumn
widget.

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of CascadeButton and its associated resources, see
XmCascadeButton(3).

Return Values

Returns the CascadeButton widget ID.

858

Xm Functions

XmCreateCascadeButton(library call)

Related Information

XmCascadeButton(3).

859

Motif 2.1—Programmer’s Reference

XmCreateCascadeButtonGadget(library call)

XmCreateCascadeButtonGadget

Purpose The CascadeButtonGadget creation function

Synopsis #include <Xm/CascadeBG.h>

Widget XmCreateCascadeButtonGadget(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateCascadeButtonGadgetcreates an instance of a CascadeButtonGadget and
returns the associated widget ID.

parent Specifies the parent widget ID. The parent must be a RowColumn
widget.

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of CascadeButtonGadget and its associated resources, see
XmCascadeButtonGadget(3).

Return Values

Returns the CascadeButtonGadget widget ID.

860

Xm Functions

XmCreateCascadeButtonGadget(library call)

Related Information

XmCascadeButtonGadget(3).

861

Motif 2.1—Programmer’s Reference

XmCreateComboBox(library call)

XmCreateComboBox

Purpose The default ComboBox widget creation function

Synopsis #include <Xm/ComboBox.h>

Widget XmCreateComboBox(
Widget parent,
String name,
ArgList arglist,
Cardinal arg_count);

Description

XmCreateComboBox creates an instance of a ComboBox widget of
XmNcomboBoxType XmCOMBO_BOXand returns the associated widget ID.

parent Specifies the parent widget ID.

name Specifies the name of the created widget.

arglist Specifies the argument list.

arg_count Specifies the number of attribute/value pairs in the argument list (arglist).

For a complete definition of ComboBox and its associated resources, see
XmComboBox(3).

Return Values

Returns the ComboBox widget ID.

Related Information

XmComboBox(3).

862

Xm Functions

XmCreateCommand(library call)

XmCreateCommand

Purpose The Command widget creation function

Synopsis #include <Xm/Command.h>

Widget XmCreateCommand(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateCommand creates an instance of a Command widget and returns the
associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of Command and its associated resources, see
XmCommand(3).

Return Values

Returns the Command widget ID.

Related Information

XmCommand(3).

863

Motif 2.1—Programmer’s Reference

XmCreateContainer(library call)

XmCreateContainer

Purpose The Container widget creation function

Synopsis #include <Xm/Container.h>

Widget XmCreateContainer(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateContainer creates an instance of a Container widget and returns the
associated widget ID.

parent Specifies the parent widget ID.

name Specifies the name of the created widget.

arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argument list (arglist).

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

This function returns the Container widget ID.

Related Information

XmContainer(3).

864

Xm Functions

XmCreateDialogShell(library call)

XmCreateDialogShell

Purpose The DialogShell widget creation function

Synopsis #include <Xm/DialogS.h>

Widget XmCreateDialogShell(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateDialogShell creates an instance of a DialogShell widget and returns the
associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of DialogShell and its associated resources, see
XmDialogShell(3).

Return Values

Returns the DialogShell widget ID.

Related Information

XmDialogShell(3).

865

Motif 2.1—Programmer’s Reference

XmCreateDragIcon(library call)

XmCreateDragIcon

Purpose A Drag and Drop function that creates a DragIcon widget

Synopsis #include <Xm/DragIcon.h>

Widget XmCreateDragIcon(
Widget widget,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateDragIcon creates a DragIcon and returns the associated widget ID.

widget Specifies the ID of the widget that the function uses to access default
values for visual attributes of the DragIcon. This widget may be different
than the actual parent of the DragIcon.

name Specifies the name of the DragIcon widget.

arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argument list (arglist).

For a complete definition of DragIcon and its associated resources, see
XmDragIcon(3).

Return Values

The function creates a DragIcon and returns the associated widget ID.

866

Xm Functions

XmCreateDragIcon(library call)

Related Information

XmDragContext(3), XmDragIcon(3), andXmScreen(3).

867

Motif 2.1—Programmer’s Reference

XmCreateDrawingArea(library call)

XmCreateDrawingArea

Purpose The DrawingArea widget creation function

Synopsis #include <Xm/DrawingA.h>

Widget XmCreateDrawingArea(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateDrawingArea creates an instance of a DrawingArea widget and returns the
associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of DrawingArea and its associated resources, see
XmDrawingArea (3).

Return Values

Returns the DrawingArea widget ID.

Related Information

XmDrawingArea (3).

868

Xm Functions

XmCreateDrawnButton(library call)

XmCreateDrawnButton

Purpose The DrawnButton widget creation function

Synopsis #include <Xm/DrawnB.h>

Widget XmCreateDrawnButton(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateDrawnButton creates an instance of a DrawnButton widget and returns
the associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of DrawnButton and its associated resources, see
XmDrawnButton (3).

Return Values

Returns the DrawnButton widget ID.

Related Information

XmDrawnButton (3).

869

Motif 2.1—Programmer’s Reference

XmCreateDropDownComboBox(library call)

XmCreateDropDownComboBox

Purpose The Drop-down ComboBox widget creation function

Synopsis #include <Xm/ComboBox.h>

Widget XmCreateDropDownComboBox(
Widget parent,
String name,
ArgList arglist,
Cardinal arg_count);

Description

XmCreateDropDownComboBox creates an instance of a ComboBox widget of
XmNcomboBoxType XmDROP_DOWN_COMBO_BOXand returns the associated
widget ID.

parent Specifies the parent widget ID.

name Specifies the name of the created widget.

arglist Specifies the argument list.

arg_count Specifies the number of attribute/value pairs in the argument list (arglist).

For a complete definition of ComboBox and its associated resources, see
XmComboBox(3).

Return Values

Returns the ComboBox widget ID.

870

Xm Functions

XmCreateDropDownComboBox(library call)

Related Information

XmComboBox(3).

871

Motif 2.1—Programmer’s Reference

XmCreateDropDownList(library call)

XmCreateDropDownList

Purpose The Drop-down list ComboBox widget creation function

Synopsis #include <Xm/ComboBox.h>

Widget XmCreateDropDownList(
Widget parent,
String name,
ArgList arglist,
Cardinal arg_count);

Description

XmCreateDropDownList creates an instance of a ComboBox widget of
XmNcomboBoxType XmDROP_DOWN_LISTand returns the associated widget ID.

parent Specifies the parent widget ID.

name Specifies the name of the created widget.

arglist Specifies the argument list.

arg_count Specifies the number of attribute/value pairs in the argument list (arglist).

For a complete definition of ComboBox and its associated resources, see
XmComboBox(3).

Return Values

Returns the ComboBox widget ID.

Related Information

XmComboBox(3).

872

Xm Functions

XmCreateErrorDialog(library call)

XmCreateErrorDialog

Purpose The MessageBox ErrorDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateErrorDialog(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateErrorDialog is a convenience creation function that creates a DialogShell
and an unmanaged MessageBox child of the DialogShell. An ErrorDialog warns the
user of an invalid or potentially dangerous condition. It includes a symbol, a message,
and three buttons. The default symbol is an octagon with a diagonal slash. The default
button labels areOK, Cancel, andHelp.

Use XtManageChild to pop up the ErrorDialog (passing the MessageBox as the
widget parameter); useXtUnmanageChild to pop it down.

XmCreateErrorDialog forces the value of the Shell resourceXmNallowShellResize
to True.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3).

873

Motif 2.1—Programmer’s Reference

XmCreateErrorDialog(library call)

Return Values

Returns the MessageBox widget ID.

Related Information

XmMessageBox(3).

874

Xm Functions

XmCreateFileSelectionBox(library call)

XmCreateFileSelectionBox

Purpose The FileSelectionBox widget creation function

Synopsis #include <Xm/FileSB.h>

Widget XmCreateFileSelectionBox(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateFileSelectionBox creates an unmanaged FileSelectionBox. A
FileSelectionBox is used to select a file and includes the following:

• An editable text field for the directory mask

• A scrolling list of filenames

• An editable text field for the selected file

• Labels for the list and text fields

• Four buttons

The default button labels areOK, Filter , Cancel, and Help. Additional work area
children may be added to the FileSelectionBox after creation. FileSelectionBox
inherits the layout functionality provided by SelectionBox for any additional work
area children.

If the parent of the FileSelectionBox is a DialogShell, useXtManageChild to pop up
the FileSelectionDialog (passing the FileSelectionBox as the widget parameter); use
XtUnmanageChild to pop it down.

parent Specifies the parent widget ID

name Specifies the name of the created widget

875

Motif 2.1—Programmer’s Reference

XmCreateFileSelectionBox(library call)

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of FileSelectionBox and its associated resources, see
XmFileSelectionBox(3).

Return Values

Returns the FileSelectionBox widget ID.

Related Information

XmFileSelectionBox(3).

876

Xm Functions

XmCreateFileSelectionDialog(library call)

XmCreateFileSelectionDialog

Purpose The FileSelectionBox FileSelectionDialog convenience creation function

Synopsis #include <Xm/FileSB.h>

Widget XmCreateFileSelectionDialog(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateFileSelectionDialog is a convenience creation function that creates
a DialogShell and an unmanaged FileSelectionBox child of the DialogShell. A
FileSelectionDialog selects a file. It includes the following:

• An editable text field for the directory mask

• A scrolling list of filenames

• An editable text field for the selected file

• Labels for the list and text fields

• Four buttons

The default button labels areOK, Filter , Cancel, andHelp. One additionalWorkArea
child may be added to the FileSelectionBox after creation.

UseXtManageChild to pop up the FileSelectionDialog (passing the FileSelectionBox
as the widget parameter); useXtUnmanageChild to pop it down.

XmCreateFileSelectionDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID

name Specifies the name of the created widget

877

Motif 2.1—Programmer’s Reference

XmCreateFileSelectionDialog(library call)

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of FileSelectionBox and its associated resources, see
XmFileSelectionBox(3).

Return Values

Returns the FileSelectionBox widget ID.

Related Information

XmFileSelectionBox(3).

878

Xm Functions

XmCreateForm(library call)

XmCreateForm

Purpose The Form widget creation function

Synopsis #include <Xm/Form.h>

Widget XmCreateForm(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateForm creates an instance of a Form widget and returns the associated
widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of Form and its associated resources, seeXmForm (3).

Return Values

Returns the Form widget ID.

Related Information

XmForm (3).

879

Motif 2.1—Programmer’s Reference

XmCreateFormDialog(library call)

XmCreateFormDialog

Purpose A Form FormDialog convenience creation function

Synopsis #include <Xm/Form.h>

Widget XmCreateFormDialog(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateFormDialog is a convenience creation function that creates a DialogShell
and an unmanaged Form child of the DialogShell. A FormDialog is used for
interactions not supported by the standard dialog set. This function does not
automatically create any labels, buttons, or other dialog components. Such components
should be added by the application after the FormDialog is created.

Use XtManageChild to pop up the FormDialog (passing the Form as the widget
parameter); useXtUnmanageChild to pop it down.

XmCreateFormDialog forces the value of the Shell resourceXmNallowShellResize
to True.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of Form and its associated resources, seeXmForm (3).

880

Xm Functions

XmCreateFormDialog(library call)

Return Values

Returns the Form widget ID.

Related Information

XmForm (3).

881

Motif 2.1—Programmer’s Reference

XmCreateFrame(library call)

XmCreateFrame

Purpose The Frame widget creation function

Synopsis #include <Xm/Frame.h>

Widget XmCreateFrame(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateFrame creates an instance of a Frame widget and returns the associated
widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of Frame and its associated resources, seeXmFrame(3).

Return Values

Returns the Frame widget ID.

Related Information

XmFrame(3).

882

Xm Functions

XmCreateIconGadget(library call)

XmCreateIconGadget

Purpose The IconGadget widget creation function

Synopsis #include <Xm/IconG.h>

Widget XmCreateIconGadget(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateIconGadget creates an instance of an IconGadget widget and returns the
associated widget ID.

parent Specifies the parent widget ID.

name Specifies the name of the created widget.

arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argument list (arglist).

For a complete definition of IconGadget and its associated resources, see
XmIconGadget(3).

Return Values

Returns the IconGadget widget ID.

Related Information

XmIconGadget(3).

883

Motif 2.1—Programmer’s Reference

XmCreateInformationDialog(library call)

XmCreateInformationDialog

Purpose The MessageBox InformationDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateInformationDialog(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateInformationDialog is a convenience creation function that creates
a DialogShell and an unmanaged MessageBox child of the DialogShell. An
InformationDialog gives the user information, such as the status of an action. It
includes a symbol, a message, and three buttons. The default symbol isi. The default
button labels areOK, Cancel, andHelp.

Use XtManageChild to pop up the InformationDialog (passing the MessageBox as
the widget parameter); useXtUnmanageChild to pop it down.

XmCreateInformationDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3).

884

Xm Functions

XmCreateInformationDialog(library call)

Return Values

Returns the MessageBox widget ID.

Related Information

XmMessageBox(3).

885

Motif 2.1—Programmer’s Reference

XmCreateLabel(library call)

XmCreateLabel

Purpose The Label widget creation function

Synopsis #include <Xm/Label.h>

Widget XmCreateLabel(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateLabel creates an instance of a Label widget and returns the associated
widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of Label and its associated resources, seeXmLabel(3).

Return Values

Returns the Label widget ID.

Related Information

XmLabel(3).

886

Xm Functions

XmCreateLabelGadget(library call)

XmCreateLabelGadget

Purpose The LabelGadget creation function

Synopsis #include <Xm/LabelG.h>

Widget XmCreateLabelGadget(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateLabelGadgetcreates an instance of a LabelGadget widget and returns the
associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of LabelGadget and its associated resources, see
XmLabelGadget(3).

Return Values

Returns the LabelGadget widget ID.

Related Information

XmLabelGadget(3).

887

Motif 2.1—Programmer’s Reference

XmCreateList(library call)

XmCreateList

Purpose The List widget creation function

Synopsis #include <Xm/List.h>

Widget XmCreateList(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateList creates an instance of a List widget and returns the associated widget
ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of List and its associated resources, seeXmList (3).

Return Values

Returns the List widget ID.

Related Information

XmList (3).

888

Xm Functions

XmCreateMainWindow(library call)

XmCreateMainWindow

Purpose The MainWindow widget creation function

Synopsis #include <Xm/MainW.h>

Widget XmCreateMainWindow(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateMainWindow creates an instance of a MainWindow widget and returns
the associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of MainWindow and its associated resources, see
XmMainWindow (3).

Return Values

Returns the MainWindow widget ID.

Related Information

XmMainWindow (3).

889

Motif 2.1—Programmer’s Reference

XmCreateMenuBar(library call)

XmCreateMenuBar

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateMenuBar(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateMenuBar creates an instance of a RowColumn widget of type
XmMENU_BAR and returns the associated widget ID. It is provided as a
convenience function for creating RowColumn widgets configured to operate as a
MenuBar and is not implemented as a separate widget class.

The MenuBar widget is generally used for building a Pulldown menu system.
Typically, a MenuBar is created and placed along the top of the application window,
and several CascadeButtons are inserted as the children. Each of the CascadeButtons
has a Pulldown menu pane associated with it. These Pulldown menu panes must have
been created as children of the MenuBar. The user interacts with the MenuBar by
using either the mouse or the keyboard.

The MenuBar displays a 3-D shadow along its border. The application controls the
shadow attributes using the visual-related resources supported byXmManager.

The MenuBar widget is homogeneous in that it accepts only children that are a subclass
of XmCascadeButtonor XmCascadeButtonGadget. Attempting to insert a child of
a different class results in a warning message.

If the MenuBar does not have enough room to fit all of its subwidgets on a single line,
the MenuBar attempts to wrap the remaining entries onto additional lines if allowed
by the geometry manager of the parent widget.

890

Xm Functions

XmCreateMenuBar(library call)

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCascadeButton(3), XmCascadeButtonGadget(3),
XmCreatePulldownMenu(3), XmCreateSimpleMenuBar(3), XmManager(3),
XmRowColumn(3), andXmVaCreateSimpleMenuBar(3).

891

Motif 2.1—Programmer’s Reference

XmCreateMenuShell(library call)

XmCreateMenuShell

Purpose The MenuShell widget creation function

Synopsis #include <Xm/MenuShell.h>

Widget XmCreateMenuShell(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateMenuShell creates an instance of a MenuShell widget and returns the
associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of MenuShell and its associated resources, see
XmMenuShell(3).

Return Values

Returns the MenuShell widget ID.

Related Information

XmMenuShell(3).

892

Xm Functions

XmCreateMessageBox(library call)

XmCreateMessageBox

Purpose The MessageBox widget creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateMessageBox(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateMessageBoxcreates an unmanaged MessageBox. A MessageBox is used
for common interaction tasks, which include giving information, asking questions, and
reporting errors. It includes an optional symbol, a message, and three buttons.

By default, there is no symbol. The default button labels areOK, Cancel, andHelp.

If the parent of the MessageBox is a DialogShell, useXtManageChild to pop
up the MessageBox (passing the MessageBox as the widget parameter); use
XtUnmanageChild to pop it down.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3).

893

Motif 2.1—Programmer’s Reference

XmCreateMessageBox(library call)

Return Values

Returns the MessageBox widget ID.

Related Information

XmMessageBox(3).

894

Xm Functions

XmCreateMessageDialog(library call)

XmCreateMessageDialog

Purpose The MessageBox MessageDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateMessageDialog(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateMessageDialog is a convenience creation function that creates a
DialogShell and an unmanaged MessageBox child of the DialogShell. A
MessageDialog is used for common interaction tasks, which include giving
information, asking questions, and reporting errors. It includes a symbol, a message,
and three buttons. By default, there is no symbol. The default button labels areOK,
Cancel, andHelp.

Use XtManageChild to pop up the MessageDialog (passing the MessageBox as the
widget parameter); useXtUnmanageChild to pop it down.

XmCreateMessageDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3).

895

Motif 2.1—Programmer’s Reference

XmCreateMessageDialog(library call)

Return Values

Returns the MessageBox widget ID.

Related Information

XmMessageBox(3).

896

Xm Functions

XmCreateNotebook(library call)

XmCreateNotebook

Purpose The Notebook widget creation function

Synopsis #include <Xm/Notebook.h>

void XmCreateNotebook(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateNotebook creates an instance of a Notebook widget and returns the
associated widget ID.

parent Specifies the parent widget ID.

name Specifies the name of the created widget.

arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argument list (arglist).

For a complete definition of Notebook and its associated resources, see
XmNotebook(3).

Return Values

Returns the Notebook widget ID.

Related Information

XmNotebook(3).

897

Motif 2.1—Programmer’s Reference

XmCreateOptionMenu(library call)

XmCreateOptionMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateOptionMenu(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateOptionMenu creates an instance of a RowColumn widget of type
XmMENU_OPTION and returns the associated widget ID.

It is provided as a convenience function for creating a RowColumn widget configured
to operate as an OptionMenu and is not implemented as a separate widget class.

The OptionMenu widget is a specialized RowColumn manager composed of a label,
a selection area, and a single Pulldown menu pane. When an application creates
an OptionMenu widget, it supplies the label string and the Pulldown menu pane.
In order for the operation to be successful, there must be a validXmNsubMenuId
resource set when this function is called. The LabelGadget and the selection area (a
CascadeButtonGadget) are created by the OptionMenu.

The OptionMenu’s Pulldown menu pane must not contain any ToggleButtons
or ToggleButtonGadgets. The results of including CascadeButtons or
CascadeButtonGadgets in the OptionMenu’s Pulldown menu pane are undefined.

An OptionMenu is laid out with the label displayed on one side of the widget and
the selection area on the other side whenXmNorientation is XmHORIZONTAL.
The layout of the label with respect to the selection area depends on the
XmNlayoutDirection resource in the horizontal orientation. If the value is
XmVERTICAL , the label is above the selection area. The selection area has a dual

898

Xm Functions

XmCreateOptionMenu(library call)

purpose; it displays the label of the last item selected from the associated Pulldown
menu pane, and it provides the means for posting the Pulldown menu pane.

The OptionMenu typically does not display any 3-D visuals around itself or the
internal LabelGadget. By default, the internal CascadeButtonGadget has a visible
3-D shadow. The application may change this by getting the CascadeButtonGadget
ID using XmOptionButtonGadget, and then callingXtSetValuesusing the standard
visual-related resources.

The Pulldown menu pane is posted when the mouse pointer is moved over the selection
area and a mouse button that is defined by OptionMenu’s RowColumn parent is
pressed. The Pulldown menu pane is posted and positioned so that the last selected
item is directly over the selection area. The mouse is then used to arm the desired
menu item. When the mouse button is released, the armed menu item is selected and
the label within the selection area is changed to match that of the selected item. By
default,BSelectis used to interact with an OptionMenu. The default can be changed
with the RowColumn resourceXmNmenuPost.

The OptionMenu also operates with the keyboard interface mechanism. If the
application has established a mnemonic with the OptionMenu, pressingAlt with
the mnemonic causes the Pulldown menu pane to be posted with traversal enabled.
The standard traversal keys can then be used to move within the menu pane. Pressing
Return or typing a mnemonic or accelerator for one of the menu items selects that

item.

An application may use theXmNmenuHistory resource to indicate which item in
the Pulldown menu pane should be treated as the current choice and have its label
displayed in the selection area. By default, the first selectable item in the Pulldown
menu pane is used.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

The user can specify resources in a resource file for the automatically created
widgets and gadgets of an OptionMenu. These widgets (or gadgets) and the associated
OptionMenu areas are

Option Menu Label Gadget
OptionLabel

899

Motif 2.1—Programmer’s Reference

XmCreateOptionMenu(library call)

Option Menu Cascade Button
OptionButton

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCascadeButtonGadget(3), XmCreatePulldownMenu(3),
XmCreateSimpleOptionMenu(3), XmLabelGadget(3),
XmOptionButtonGadget(3), XmOptionLabelGadget(3), XmRowColumn(3), and
XmVaCreateSimpleOptionMenu(3).

900

Xm Functions

XmCreatePanedWindow(library call)

XmCreatePanedWindow

Purpose The PanedWindow widget creation function

Synopsis #include <Xm/PanedW.h>

Widget XmCreatePanedWindow(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreatePanedWindowcreates an instance of a PanedWindow widget and returns
the associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of PanedWindow and its associated resources, see
XmPanedWindow(3).

Return Values

Returns the PanedWindow widget ID.

Related Information

XmPanedWindow(3).

901

Motif 2.1—Programmer’s Reference

XmCreatePopupMenu(library call)

XmCreatePopupMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreatePopupMenu(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreatePopupMenu creates an instance of a RowColumn widget of type
XmMENU_POPUP and returns the associated widget ID. When this function is
used to create the Popup menu pane, a MenuShell widget is automatically created
as the parent of the menu pane. The parent of the MenuShell widget is the widget
indicated by theparentparameter.

XmCreatePopupMenu is provided as a convenience function for creating
RowColumn widgets configured to operate as Popup menu panes and is not
implemented as a separate widget class.

The PopupMenu is used as the first menu pane within a PopupMenu system; all other
menu panes are of the Pulldown type. A Popup menu pane displays a 3-D shadow,
unless the feature is disabled by the application. The shadow appears around the edge
of the menu pane.

The Popup menu pane must be created as the child of a MenuShell widget in order
to function properly when it is incorporated into a menu. If the application uses this
convenience function for creating a Popup menu pane, the MenuShell is automatically
created as the real parent of the menu pane. If the application does not use this
convenience function to create the RowColumn to function as a Popup menu pane, it
is the application’s responsibility to create the MenuShell widget.

902

Xm Functions

XmCreatePopupMenu(library call)

To access the PopupMenu, the application must first position the widget using the
XmMenuPosition function and then manage it usingXtManageChild.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

Popup menu panes support tear-off capabilities for tear-off menus through
XmRowColumn resources. For a complete definition of RowColumn and its
associated resources, seeXmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateSimplePopupMenu(3), XmMenuPosition(3), XmMenuShell(3),
XmRowColumn(3), andXmVaCreateSimplePopupMenu(3).

903

Motif 2.1—Programmer’s Reference

XmCreatePromptDialog(library call)

XmCreatePromptDialog

Purpose The SelectionBox PromptDialog convenience creation function

Synopsis #include <Xm/SelectioB.h>

Widget XmCreatePromptDialog(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreatePromptDialog is a convenience creation function that creates a DialogShell
and an unmanaged SelectionBox child of the DialogShell. A PromptDialog prompts
the user for text input. It includes a message, a text input region, and three managed
buttons. The default button labels areOK, Cancel, andHelp. An additional button,
with Apply as the default label, is created unmanaged; it may be explicitly managed
if needed. One additionalWorkArea child may be added to the SelectionBox after
creation.

XmCreatePromptDialog forces the value of the SelectionBox resource
XmNdialogType to XmDIALOG_PROMPT .

Use XtManageChild to pop up the PromptDialog (passing the SelectionBox as the
widget parameter); useXtUnmanageChild to pop it down.

XmCreatePromptDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

904

Xm Functions

XmCreatePromptDialog(library call)

For a complete definition of SelectionBox and its associated resources, see
XmSelectionBox(3).

Return Values

Returns the SelectionBox widget ID.

Related Information

XmSelectionBox(3).

905

Motif 2.1—Programmer’s Reference

XmCreatePulldownMenu(library call)

XmCreatePulldownMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreatePulldownMenu(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreatePulldownMenu creates an instance of a RowColumn widget of type
XmMENU_PULLDOWN and returns the associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

Specifies the number of attribute/value pairs in the argument list (arglist). When
this function is used to create the Pulldown menu pane, a MenuShell widget is
automatically created as the parent of the menu pane. If the widget specified by
the parentparameter is a Popup or a Pulldown menu pane, the MenuShell widget is
created as a child of theparent MenuShell; otherwise, it is created as a child of the
specifiedparentwidget.

XmCreatePulldownMenu is provided as a convenience function for creating
RowColumn widgets configured to operate as Pulldown menu panes and is not
implemented as a separate widget class.

A Pulldown menu pane displays a 3-D shadow, unless the feature is disabled by the
application. The shadow appears around the edge of the menu pane.

906

Xm Functions

XmCreatePulldownMenu(library call)

A Pulldown menu pane is used with submenus that are to be attached to a
CascadeButton or a CascadeButtonGadget. This is the case for all menu panes that
are part of a PulldownMenu system (a MenuBar), the menu pane associated with an
OptionMenu, and any menu panes that cascade from a Popup menu pane. Pulldown
menu panes that are to be associated with an OptionMenu must be created before the
OptionMenu is created.

The Pulldown menu pane must be attached to a CascadeButton or
CascadeButtonGadget that resides in a MenuBar, a Popup menu pane, a
Pulldown menu pane, or an OptionMenu. It is attached with the button resource
XmNsubMenuId.

A MenuShell widget is required between the Pulldown menu pane and its parent. If
the application uses this convenience function for creating a Pulldown menu pane, the
MenuShell is automatically created as the real parent of the menu pane; otherwise, it
is the application’s responsibility to create the MenuShell widget.

To function correctly when incorporated into a menu, the Pulldown menu pane’s
hierarchy must be considered. This hierarchy depends on the type of menu system
that is being built, as follows:

• If the Pulldown menu pane is to be pulled down from a MenuBar, itsparentmust
be the MenuBar.

• If the Pulldown menu pane is to be pulled down from a Popup or another Pulldown
menu pane, itsparentmust be that Popup or Pulldown menu pane.

• If the Pulldown menu pane is to be pulled down from an OptionMenu, itsparent
must be the same as the OptionMenu parent.

PullDown menu panes support tear-off capabilities for tear-off menus through
XmRowColumn resources. For a complete definition of RowColumn and its
associated resources, seeXmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

907

Motif 2.1—Programmer’s Reference

XmCreatePulldownMenu(library call)

Related Information

XmCascadeButton(3), XmCascadeButtonGadget(3), XmCreateOptionMenu(3),
XmCreatePopupMenu(3), XmCreateSimplePulldownMenu(3), XmMenuShell(3),
XmRowColumn(3), andXmVaCreateSimplePulldownMenu(3).

908

Xm Functions

XmCreatePushButton(library call)

XmCreatePushButton

Purpose The PushButton widget creation function

Synopsis #include <Xm/PushB.h>

Widget XmCreatePushButton(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreatePushButton creates an instance of a PushButton widget and returns the
associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of PushButton and its associated resources, see
XmPushButton(3).

Return Values

Returns the PushButton widget ID.

Related Information

XmPushButton(3).

909

Motif 2.1—Programmer’s Reference

XmCreatePushButtonGadget(library call)

XmCreatePushButtonGadget

Purpose The PushButtonGadget creation function

Synopsis #include <Xm/PushBG.h>

Widget XmCreatePushButtonGadget(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreatePushButtonGadgetcreates an instance of a PushButtonGadget widget and
returns the associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of PushButtonGadget and its associated resources, see
XmPushButtonGadget(3).

Return Values

Returns the PushButtonGadget widget ID.

Related Information

XmPushButtonGadget(3).

910

Xm Functions

XmCreateQuestionDialog(library call)

XmCreateQuestionDialog

Purpose The MessageBox QuestionDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateQuestionDialog(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateQuestionDialog is a convenience creation function that creates
a DialogShell and an unmanaged MessageBox child of the DialogShell. A
QuestionDialog is used to get the answer to a question from the user. It includes a
symbol, a message, and three buttons. The default symbol is a question mark. The
default button labels areOK, Cancel, andHelp.

UseXtManageChild to pop up the QuestionDialog (passing the MessageBox as the
widget parameter); useXtUnmanageChild to pop it down.

XmCreateQuestionDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3).

911

Motif 2.1—Programmer’s Reference

XmCreateQuestionDialog(library call)

Return Values

Returns the MessageBox widget ID.

Related Information

XmMessageBox(3).

912

Xm Functions

XmCreateRadioBox(library call)

XmCreateRadioBox

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateRadioBox(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateRadioBox creates an instance of a RowColumn widget of type
XmWORK_AREA and returns the associated widget ID. Typically, this is a
composite widget that contains multiple ToggleButtonGadgets. The RadioBox
arbitrates and ensures that at most one ToggleButtonGadget is on at any time.

Unless the application supplies other values in thearglist, this function provides
initial values for several RowColumn resources. It initializesXmNpacking to
XmPACK_COLUMN , XmNradioBehavior to True,XmNisHomogeneousto True,
andXmNentryClass to XmToggleButtonGadgetClass.

In a RadioBox, the ToggleButton or ToggleButtonGadget resource
XmNindicatorType defaults to XmONE_OF_MANY , and the ToggleButton
or ToggleButtonGadget resourceXmNvisibleWhenOff defaults to True.

This routine is provided as a convenience function for creating RowColumn widgets.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

913

Motif 2.1—Programmer’s Reference

XmCreateRadioBox(library call)

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateRowColumn(3), XmCreateSimpleCheckBox(3),
XmCreateSimpleRadioBox(3), XmCreateWorkArea (3), XmRowColumn(3),
XmVaCreateSimpleCheckBox(3), andXmVaCreateSimpleRadioBox(3).

914

Xm Functions

XmCreateRowColumn(library call)

XmCreateRowColumn

Purpose The RowColumn widget creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateRowColumn(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateRowColumn creates an instance of a RowColumn widget and returns the
associated widget ID. IfXmNrowColumnType is not specified, then it is created with
XmWORK_AREA , which is the default.

If this function is used to create a Popup Menu of typeXmMENU_POPUP or
a Pulldown Menu of typeXmMENU_PULLDOWN , a MenuShell widget is not
automatically created as the parent of the menu pane. The application must first create
the MenuShell by using eitherXmCreateMenuShell or the standard toolkit create
function.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

915

Motif 2.1—Programmer’s Reference

XmCreateRowColumn(library call)

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateMenuBar(3), XmCreateMenuShell(3), XmCreateOptionMenu(3),
XmCreatePopupMenu(3), XmCreatePulldownMenu(3), XmCreateRadioBox(3),
XmCreateSimpleCheckBox(3), XmCreateSimpleMenuBar(3),
XmCreateSimpleOptionMenu(3), XmCreateSimplePopupMenu(3),
XmCreateSimplePulldownMenu(3), XmCreateSimpleRadioBox(3),
XmCreateWorkArea (3), XmRowColumn(3), XmVaCreateSimpleCheckBox(3),
XmVaCreateSimpleMenuBar(3), XmVaCreateSimpleOptionMenu(3),
XmVaCreateSimplePopupMenu(3), XmVaCreateSimplePulldownMenu(3), and
XmVaCreateSimpleRadioBox(3).

916

Xm Functions

XmCreateScale(library call)

XmCreateScale

Purpose The Scale widget creation function

Synopsis #include <Xm/Scale.h>

Widget XmCreateScale(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateScalecreates an instance of a Scale widget and returns the associated widget
ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of Scale and its associated resources, seeXmScale(3).

Return Values

Returns the Scale widget ID.

Related Information

XmScale(3).

917

Motif 2.1—Programmer’s Reference

XmCreateScrollBar(library call)

XmCreateScrollBar

Purpose The ScrollBar widget creation function

Synopsis #include <Xm/ScrollBar.h>

Widget XmCreateScrollBar(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateScrollBar creates an instance of a ScrollBar widget and returns the
associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of ScrollBar and its associated resources, see
XmScrollBar (3).

Return Values

Returns the ScrollBar widget ID.

Related Information

XmScrollBar (3).

918

Xm Functions

XmCreateScrolledList(library call)

XmCreateScrolledList

Purpose The List ScrolledList convenience creation function

Synopsis #include <Xm/List.h>

Widget XmCreateScrolledList(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateScrolledList creates an instance of a List widget that is contained
within a ScrolledWindow. The ScrolledWindow parent is created managed. All
ScrolledWindow subarea widgets are automatically created by this function. The ID
returned by this function is that of the List widget (not the ScrolledWindow widget).
Use this widget ID for all operations on the List widget. Use the widget ID of the
List widget’s parent for all operations on the ScrolledWindow. To obtain the ID of
the ScrolledWindow widget associated with the List widget, use the Xt Intrinsics
XtParent function. The name of the ScrolledWindow created by this function is
formed by concatenatingSWonto the end of thenamespecified in the parameter list.

All arguments to either the List or the ScrolledWindow widget can be specified
at creation time using this function. Changes to initial position and size are
sent only to the ScrolledWindow widget. Other resources are sent to the List or
the ScrolledWindow widget as appropriate. Note that the result of providing the
XmNdestroyCallback resource in the creationarglist is unspecified. The application
should use theXtAddCallback function to add callbacks to the appropriate widget
(List or ScrolledWindow) after creating it.

This function forces the following initial values for ScrolledWindow resources:

• XmNscrollingPolicy is set toXmAPPLICATION_DEFINED .

• XmNvisualPolicy is set toXmVARIABLE .

919

Motif 2.1—Programmer’s Reference

XmCreateScrolledList(library call)

• XmNscrollBarDisplayPolicy is set toXmSTATIC . (No initial value is forced for
the List’s XmNscrollBarDisplayPolicy.)

• XmNshadowThicknessis set to 0 (zero).

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of List and its associated resources, seeXmList (3).

Return Values

Returns the List widget ID.

Related Information

XmList (3) andXmScrolledWindow(3).

920

Xm Functions

XmCreateScrolledText(library call)

XmCreateScrolledText

Purpose The Text ScrolledText convenience creation function

Synopsis #include <Xm/Text.h>

Widget XmCreateScrolledText(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateScrolledText creates an instance of a Text widget that is contained
within a ScrolledWindow. The ScrolledWindow parent is created managed. All
ScrolledWindow subarea widgets are automatically created by this function. The ID
returned by this function is that of the Text widget (not the ScrolledWindow widget).
Use this widget ID for all operations on the Text widget. Use the widget ID of the
Text widget’s parent for all operations on the ScrolledWindow. To obtain the ID of
the ScrolledWindow widget associated with the Text widget, use the Xt Intrinsics
XtParent function. The name of the ScrolledWindow created by this function is
formed by concatenating the lettersSW onto the end of thenamespecified in the
parameter list.

The Text widget defaults to single-line text edit; therefore, no ScrollBars are displayed.
The Text resourceXmNeditMode must be set toXmMULTI_LINE_EDIT to display
the ScrollBars. The results of placing a Text widget inside a ScrolledWindow when
the Text’sXmNeditMode is XmSINGLE_LINE_EDIT are undefined.

All arguments to either the Text or the ScrolledWindow widget can be specified
at creation time with this function. Changes to initial position and size are sent
only to the ScrolledWindow widget. Other resources are sent to the Text or
the ScrolledWindow widget as appropriate. Note that the result of providing the
XmNdestroyCallback resource in the creationarglist is unspecified. The application

921

Motif 2.1—Programmer’s Reference

XmCreateScrolledText(library call)

should use theXtAddCallback function to add callbacks to the appropriate widget
(Text or ScrolledWindow) after creating it.

This function forces the following initial values for ScrolledWindow resources:

• XmNscrollingPolicy is set toXmAPPLICATION_DEFINED .

• XmNvisualPolicy is set toXmVARIABLE .

• XmNscrollBarDisplayPolicy is set toXmSTATIC .

• XmNshadowThicknessis set to 0 (zero).

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns the Text widget ID.

Related Information

XmScrolledWindow(3) andXmText(3).

922

Xm Functions

XmCreateScrolledWindow(library call)

XmCreateScrolledWindow

Purpose The ScrolledWindow widget creation function

Synopsis #include <Xm/ScrolledW.h>

Widget XmCreateScrolledWindow(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateScrolledWindow creates an instance of a ScrolledWindow widget and
returns the associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of ScrolledWindow and its associated resources, see
XmScrolledWindow(3).

Return Values

Returns the ScrolledWindow widget ID.

Related Information

XmScrolledWindow(3).

923

Motif 2.1—Programmer’s Reference

XmCreateSelectionBox(library call)

XmCreateSelectionBox

Purpose The SelectionBox widget creation function

Synopsis #include <Xm/SelectioB.h>

Widget XmCreateSelectionBox(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateSelectionBoxcreates an unmanaged SelectionBox. A SelectionBox is used
to get a selection from a list of alternatives from the user and includes the following:

• A scrolling list of alternatives

• An editable text field for the selected alternative

• Labels for the list and text field

• Three or four buttons

The default button labels areOK, Cancel, and Help. By default, anApply button
is also created. If the parent of the SelectionBox is a DialogShell, it is managed;
otherwise it is unmanaged. Additional work area children may be added to the
SelectionBox after creation.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of SelectionBox and its associated resources, see
XmSelectionBox(3).

924

Xm Functions

XmCreateSelectionBox(library call)

Return Values

Returns the SelectionBox widget ID.

Related Information

XmSelectionBox(3).

925

Motif 2.1—Programmer’s Reference

XmCreateSelectionDialog(library call)

XmCreateSelectionDialog

Purpose The SelectionBox SelectionDialog convenience creation function

Synopsis #include <Xm/SelectioB.h>

Widget XmCreateSelectionDialog(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateSelectionDialog is a convenience creation function that creates a
DialogShell and an unmanaged SelectionBox child of the DialogShell. A
SelectionDialog offers the user a choice from a list of alternatives and gets a
selection. It includes the following:

• A scrolling list of alternatives

• An editable text field for the selected alternative

• Labels for the text field

• Four buttons

The default button labels areOK, Cancel, Apply , andHelp. One additionalWorkArea
child may be added to the SelectionBox after creation.

XmCreateSelectionDialog forces the value of the SelectionBox resource
XmNdialogType to XmDIALOG_SELECTION .

XmCreateSelectionDialog forces the value of the Shell resource
XmNallowShellResizeto True.

UseXtManageChild to pop up the SelectionDialog (passing the SelectionBox as the
widget parameter); useXtUnmanageChild to pop it down.

926

Xm Functions

XmCreateSelectionDialog(library call)

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of SelectionBox and its associated resources, see
XmSelectionBox(3).

Return Values

Returns the SelectionBox widget ID.

Related Information

XmSelectionBox(3).

927

Motif 2.1—Programmer’s Reference

XmCreateSeparator(library call)

XmCreateSeparator

Purpose The Separator widget creation function

Synopsis #include <Xm/Separator.h>

Widget XmCreateSeparator(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateSeparator creates an instance of a Separator widget and returns the
associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of Separator and its associated resources, see
XmSeparator(3).

Return Values

Returns the Separator widget ID.

Related Information

XmSeparator(3).

928

Xm Functions

XmCreateSeparatorGadget(library call)

XmCreateSeparatorGadget

Purpose The SeparatorGadget creation function

Synopsis #include <Xm/SeparatoG.h>

Widget XmCreateSeparatorGadget(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateSeparatorGadget creates an instance of a SeparatorGadget widget and
returns the associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of SeparatorGadget and its associated resources, see
XmSeparatorGadget(3).

Return Values

Returns the SeparatorGadget widget ID.

Related Information

XmSeparatorGadget(3).

929

Motif 2.1—Programmer’s Reference

XmCreateSimpleCheckBox(library call)

XmCreateSimpleCheckBox

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateSimpleCheckBox(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateSimpleCheckBox creates an instance of a RowColumn widget of type
XmWORK_AREA and returns the associated widget ID.

This routine creates a CheckBox and its ToggleButtonGadget children. A CheckBox
is similar to a RadioBox, except that more than one button can be selected at a time.
The name of each button isbutton_n, where n is an integer from 0 (zero) to the
number of buttons in the menu minus 1. Buttons are named and created in the order
they are specified in the RowColumn simple menu creation resources supplied in the
argument list.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

A number of resources exist specifically for use with this and other simple menu
creation routines. The only button type allowed in theXmNbuttonType resource is
XmCHECKBUTTON . For a complete definition of RowColumn and its associated
resources, seeXmRowColumn(3).

930

Xm Functions

XmCreateSimpleCheckBox(library call)

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateRadioBox(3), XmCreateRowColumn(3),
XmCreateSimpleRadioBox(3), XmRowColumn(3),
XmVaCreateSimpleCheckBox(3), andXmVaCreateSimpleRadioBox(3).

931

Motif 2.1—Programmer’s Reference

XmCreateSimpleMenuBar(library call)

XmCreateSimpleMenuBar

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateSimpleMenuBar(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateSimpleMenuBar creates an instance of a RowColumn widget of type
XmMENU_BAR and returns the associated widget ID.

This routine creates a MenuBar and its CascadeButtonGadget children. The name of
each button isbutton_n, wheren is an integer from 0 (zero) to the number of buttons
in the menu minus 1. Buttons are named and created in the order they are specified
in the RowColumn simple menu creation resources supplied in the argument list.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

A number of resources exist specifically for use with this and other simple menu
creation routines. The only button type allowed in theXmNbuttonType resource is
XmCASCADEBUTTON . For a complete definition of RowColumn and its associated
resources, seeXmRowColumn(3).

932

Xm Functions

XmCreateSimpleMenuBar(library call)

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateMenuBar(3), XmCreateRowColumn(3), XmRowColumn(3), and
XmVaCreateSimpleMenuBar(3).

933

Motif 2.1—Programmer’s Reference

XmCreateSimpleOptionMenu(library call)

XmCreateSimpleOptionMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateSimpleOptionMenu(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateSimpleOptionMenu creates an instance of a RowColumn widget of type
XmMENU_OPTION and returns the associated widget ID.

This routine creates an OptionMenu and its submenu containing PushButtonGadget
or CascadeButtonGadget children. The name of each button isbutton_n, wheren is
an integer from 0 (zero) to the number of buttons in the menu minus 1. The name of
each separator isseparator_n, wheren is an integer from 0 (zero) to the number of
separators in the menu minus 1. Buttons and separators are named and created in the
order they are specified in the RowColumn simple menu creation resources supplied
in the argument list.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

The user can specify resources in a resource file for the automatically created
widgets and gadgets of an OptionMenu. These widgets (or gadgets) and the associated
OptionMenu areas are

934

Xm Functions

XmCreateSimpleOptionMenu(library call)

Option Menu Label Gadget
OptionLabel

Option Menu Cascade Button
OptionButton

A number of resources exist specifically for use with this and other simple
menu creation routines. The only button types allowed in theXmNbuttonType
resource areXmPUSHBUTTON, XmCASCADEBUTTON , XmSEPARATOR, and
XmDOUBLE_SEPARATOR . For a complete definition of RowColumn and its
associated resources, seeXmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateOptionMenu(3), XmCreateRowColumn(3), XmRowColumn(3), and
XmVaCreateSimpleOptionMenu(3).

935

Motif 2.1—Programmer’s Reference

XmCreateSimplePopupMenu(library call)

XmCreateSimplePopupMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateSimplePopupMenu(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateSimplePopupMenucreates an instance of a RowColumn widget of type
XmMENU_POPUP and returns the associated widget ID.

This routine creates a Popup menu pane and its button children. The name of each
button isbutton_n, wheren is an integer from 0 (zero) to the number of buttons in
the menu minus 1. The name of each separator isseparator_n, wheren is an integer
from 0 (zero) to the number of separators in the menu minus 1. The name of each
title is label_n, wheren is an integer from 0 (zero) to the number of titles in the menu
minus 1. Buttons, separators, and titles are named and created in the order in which
they are specified in the RowColumn simple menu creation resources supplied in the
argument list.

parent Specifies the widget ID of the parent of the MenuShell

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

A number of resources exist specifically for use with this and other
simple menu creation routines. The only button types allowed in the
XmNbuttonType resource are XmCASCADEBUTTON , XmPUSHBUTTON,
XmRADIOBUTTON , XmCHECKBUTTON , XmTITLE , XmSEPARATOR, and

936

Xm Functions

XmCreateSimplePopupMenu(library call)

XmDOUBLE_SEPARATOR . For a complete definition of RowColumn and its
associated resources, seeXmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreatePopupMenu(3), XmCreateRowColumn(3), XmRowColumn(3), and
XmVaCreateSimplePopupMenu(3).

937

Motif 2.1—Programmer’s Reference

XmCreateSimplePulldownMenu(library call)

XmCreateSimplePulldownMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateSimplePulldownMenu(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateSimplePulldownMenucreates an instance of a RowColumn widget of type
XmMENU_PULLDOWN and returns the associated widget ID.

This routine creates a Pulldown menu pane and its button children. The name of each
button isbutton_n, wheren is an integer from 0 (zero) to the number of buttons in
the menu minus 1. The name of each separator isseparator_n, wheren is an integer
from 0 (zero) to the number of separators in the menu minus 1. The name of each
title is label_n, wheren is an integer from 0 (zero) to the number of titles in the menu
minus 1. Buttons, separators, and titles are named and created in the order they are
specified in the RowColumn simple menu creation resources supplied in the argument
list.

parent Specifies the widget ID of the parent of the MenuShell

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

A number of resources exist specifically for use with this and other
simple menu creation routines. The only button types allowed in the
XmNbuttonType resource are XmCASCADEBUTTON , XmPUSHBUTTON,
XmRADIOBUTTON , XmCHECKBUTTON , XmTITLE , XmSEPARATOR, and

938

Xm Functions

XmCreateSimplePulldownMenu(library call)

XmDOUBLE_SEPARATOR . For a complete definition of RowColumn and its
associated resources, seeXmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreatePulldownMenu(3), XmCreateRowColumn(3), XmRowColumn(3), and
XmVaCreateSimplePulldownMenu(3).

939

Motif 2.1—Programmer’s Reference

XmCreateSimpleRadioBox(library call)

XmCreateSimpleRadioBox

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateSimpleRadioBox(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateSimpleRadioBox creates an instance of a RowColumn widget of type
XmWORK_AREA and returns the associated widget ID.

This routine creates a RadioBox and its ToggleButtonGadget children. The name of
each button isbutton_n, wheren is an integer from 0 (zero) to the number of buttons
in the menu minus 1. Buttons are named and created in the order they are specified
in the RowColumn simple menu creation resources supplied in the argument list.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

A number of resources exist specifically for use with this and other simple menu
creation routines. The only button type allowed in theXmNbuttonType resource is
XmRADIOBUTTON . For a complete definition of RowColumn and its associated
resources, seeXmRowColumn(3).

940

Xm Functions

XmCreateSimpleRadioBox(library call)

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateRadioBox(3), XmCreateRowColumn(3),
XmCreateSimpleCheckBox(3), XmRowColumn(3), and
XmVaCreateSimpleRadioBox(3).

941

Motif 2.1—Programmer’s Reference

XmCreateSimpleSpinBox(library call)

XmCreateSimpleSpinBox

Purpose the SimpleSpinBox widget creation function

Synopsis #include <Xm/SSpinB.h>

Widget XmCreateSimpleSpinBox(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

TheXmCreateSimpleSpinBoxfunction creates an instance of a SpinBox widget and
returns the associated widget ID.

The parentargument specifies the parent widget ID.

The nameargument specifies the name of the created widget.

The arglist argument specifies the argument list.

The argcountargument specifies the number of attribute/value pairs in the argument
list.

Return Values

Upon successful completion, theXmCreateSimpleSpinBox function returns the
SimpleSpinBox widget ID.

Related Information

XmSimpleSpinBox(3).

942

Xm Functions

XmCreateSpinBox(library call)

XmCreateSpinBox

Purpose The SpinBox creation function

Synopsis #include <Xm/SpinB.h>

Widget XmCreateSpinBox(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateSpinBox creates a SpinBox widget.

This function creates a SpinBox with two arrows, but without any traversable children
(choices to spin). The application can create text children to go with this parent
SpinBox usingXmCreateTextField or XmCreateText.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of SpinBox and its associated resources, seeXmSpinBox(3).

Return Values

Returns the SpinBox widget ID.

943

Motif 2.1—Programmer’s Reference

XmCreateSpinBox(library call)

Related Information

XmSpinBox(3)

944

Xm Functions

XmCreateTemplateDialog(library call)

XmCreateTemplateDialog

Purpose A MessageBox TemplateDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateTemplateDialog(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateTemplateDialog is a convenience creation function that
creates a DialogShell and an unmanaged MessageBox child of the
DialogShell. The MessageBox widget’sXmNdialogType resource is set to
XmDIALOG_TEMPLATE . By default, the TemplateDialog widget contains only
the separator child. You can build a customized dialog by adding children to the
TemplateDialog.

You can create the standard MessageBox pushbuttons,Cancel, Help, and
OK, by specifying the associated callback and label string resources. Setting
XmNsymbolPixmap or XmNmessageStringcreates a symbol or message label.

UseXtManageChild to pop up the TemplateDialog (passing the MessageBox as the
widget parameter); useXtUnmanageChild to pop it down.

XmCreateTemplateDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

945

Motif 2.1—Programmer’s Reference

XmCreateTemplateDialog(library call)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3).

Return Values

Returns the MessageBox widget ID.

Related Information

XmMessageBox(3).

946

Xm Functions

XmCreateText(library call)

XmCreateText

Purpose The Text widget creation function

Synopsis #include <Xm/Text.h>

Widget XmCreateText(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateText creates an instance of a Text widget and returns the associated widget
ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns the Text widget ID.

Related Information

XmText(3).

947

Motif 2.1—Programmer’s Reference

XmCreateTextField(library call)

XmCreateTextField

Purpose The TextField widget creation function

Synopsis #include <Xm/TextF.h>

Widget XmCreateTextField(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateTextField creates an instance of a TextField widget and returns the
associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns the TextField widget ID.

Related Information

XmTextField(3).

948

Xm Functions

XmCreateToggleButton(library call)

XmCreateToggleButton

Purpose The ToggleButton widget creation function

Synopsis #include <Xm/ToggleB.h>

Widget XmCreateToggleButton(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateToggleButtoncreates an instance of a ToggleButton widget and returns the
associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of ToggleButton and its associated resources, see
XmToggleButton(3).

Return Values

Returns the ToggleButton widget ID.

Related Information

XmToggleButton(3).

949

Motif 2.1—Programmer’s Reference

XmCreateToggleButtonGadget(library call)

XmCreateToggleButtonGadget

Purpose The ToggleButtonGadget creation function

Synopsis #include <Xm/ToggleBG.h>

Widget XmCreateToggleButtonGadget(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateToggleButtonGadget creates an instance of a ToggleButtonGadget and
returns the associated widget ID.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of ToggleButtonGadget and its associated resources, see
XmToggleButtonGadget(3).

Return Values

Returns the ToggleButtonGadget widget ID.

Related Information

XmToggleButtonGadget(3).

950

Xm Functions

XmCreateWarningDialog(library call)

XmCreateWarningDialog

Purpose The MessageBox WarningDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateWarningDialog(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateWarningDialog is a convenience creation function that creates
a DialogShell and an unmanaged MessageBox child of the DialogShell. A
WarningDialog warns users of action consequences and gives them a choice of
resolutions. It includes a symbol, a message, and three buttons. The default symbol
is an exclamation point. The default button labels areOK, Cancel, andHelp.

Use XtManageChild to pop up the WarningDialog (passing the MessageBox as the
widget parameter); useXtUnmanageChild to pop it down.

XmCreateWarningDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3).

951

Motif 2.1—Programmer’s Reference

XmCreateWarningDialog(library call)

Return Values

Returns the MessageBox widget ID.

Related Information

XmMessageBox(3).

952

Xm Functions

XmCreateWorkArea(library call)

XmCreateWorkArea

Purpose A function that creates a RowColumn WorkArea

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateWorkArea(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateWorkArea creates an instance of a RowColumn widget and returns the
associated widget ID. The widget is created withXmNrowColumnType set to
XmWORK_AREA .

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

953

Motif 2.1—Programmer’s Reference

XmCreateWorkArea(library call)

Related Information

XmCreateRadioBox(3), XmCreateSimpleCheckBox(3),
XmCreateSimpleRadioBox(3), XmRowColumn(3),
XmVaCreateSimpleCheckBox(3), andXmVaCreateSimpleRadioBox(3).

954

Xm Functions

XmCreateWorkingDialog(library call)

XmCreateWorkingDialog

Purpose The MessageBox WorkingDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateWorkingDialog(
Widget parent,
String name,
ArgList arglist,
Cardinal argcount);

Description

XmCreateWorkingDialog is a convenience creation function that creates
a DialogShell and an unmanaged MessageBox child of the DialogShell. A
WorkingDialog informs users that there is a time-consuming operation in progress
and allows them to cancel the operation. It includes a symbol, a message, and three
buttons. The default symbol is an hourglass. The default button labels areOK,
Cancel, andHelp.

Use XtManageChild to pop up the WorkingDialog (passing the MessageBox as the
widget parameter); useXtUnmanageChild to pop it down.

XmCreateWorkingDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3).

955

Motif 2.1—Programmer’s Reference

XmCreateWorkingDialog(library call)

Return Values

Returns the MessageBox widget ID.

Related Information

XmMessageBox(3).

956

Xm Functions

XmCvtByteStreamToXmString(library call)

XmCvtByteStreamToXmString

Purpose A compound string function that converts from a compound string in Byte Stream
format to a compound string

Synopsis #include <Xm/Xm.h>

XmString XmCvtByteStreamToXmString(
unsigned char *property);

Description

XmCvtByteStreamToXmString converts a stream of bytes representing a compound
string in Byte Stream format to a compound string. This routine is typically used
by the destination of a data transfer operation to produce a compound string from a
transferred Byte Stream representation.

property Specifies a compound string representation in Byte Stream format.

Return Values

Returns a compound string. The function allocates space to hold the returned
compound string. The application is responsible for managing this allocated space.
The application can recover this allocated space by callingXmStringFree.

Related Information

XmString (3), XmCvtXmStringToByteStream(3), andXmStringFree(3).

957

Motif 2.1—Programmer’s Reference

XmCvtCTToXmString(library call)

XmCvtCTToXmString

Purpose A compound string function that converts compound text to a compound string

Synopsis #include <Xm/Xm.h>

XmString XmCvtCTToXmString(
char * text);

Description

XmCvtCTToXmString converts a (char *) string in compound text format to a
compound string. The application must callXtAppInitialize before calling this
function. Conversion of compound text to compound strings is implementation
dependent.

text Specifies a string in compound text format to be converted to a
compound string.

Return Values

Returns a compound string derived from the compound text. The function allocates
space to hold the returned compound string. The application is responsible for
managing the allocated space. The application can recover the allocated space by
calling XmStringFree. The compound text is assumed to be NULL-terminated;
NULLs within the compound text are handled correctly. The handling of
HORIZONTAL TABULATION (HT) control characters within the compound text is
undefined. The compound text format is described in the X Consortium Standard
Compound Text Encoding.

Related Information

XmCvtXmStringToCT (3).

958

Xm Functions

XmCvtStringToUnitType(library call)

XmCvtStringToUnitType

Purpose A function that converts a string to a unit-type value

Synopsis #include <Xm/Xm.h>

void XmCvtStringToUnitType(
XrmValuePtr args,
Cardinal * num_args,
XrmValue * from_val,
XrmValue * to_val);

Description

XmCvtStringToUnitType converts a string to a unit type. Refer to the reference
pages forXmGadget, XmManager, or XmPrimitive for a description of the valid
unit types. Use of this function as a resource converter is obsolete. It has been replaced
by a new resource converter that uses the RepType facility.

args Specifies a list of additionalXrmValuearguments to the converter if
additional context is needed to perform the conversion. For example,
the string-to-font converter needs the widget’s screen and the string-to-
pixel converter needs the widget’s screen and color map. This argument
is often NULL.

num_args Specifies the number of additionalXrmValuearguments. This argument
is often zero.

from_val Specifies the value to convert

to_val Specifies the descriptor to use to return the converted value

Related Information

XmGadget(3), XmManager(3), andXmPrimitive (3).

959

Motif 2.1—Programmer’s Reference

XmCvtTextPropertyToXmStringTable(library call)

XmCvtTextPropertyToXmStringTable

Purpose A function that converts from a TextProperty Structure to a StringTable

Synopsis #include <Xm/Xm.h>
int XmCvtTextPropertyToXmStringTable (display, text_prop, string_table_return,

count_return)
Display *display;
XTextProperty * text_prop;
XmStringTable * string_table_return;
int * count_return;

Description

XmCvtTextPropertyToXmStringTable converts the specified XTextProperty
structure into anXmStringTable, as follows:

• If the encoding member oftext_prop is the Atom STRING, each returned
XmString has a tag of "ISO8859-1" and a text type ofXmCHARSET_TEXT .

• If the encoding member oftext_prop is the encoding of the current locale,
and if that encoding is notSTRING, each returnedXmString has a tag of
_MOTIF_DEFAULT_LOCALE and a text type ofXmMULTIBYTE_TEXT .

• If the encoding member oftext_propis other thanSTRINGor the encoding of the
current locale, the contents of the returned compound strings are implementation
dependent.

If conversion depends on the locale and the current locale is not supported, the
function returnsXLocaleNotSupported. If conversion to the encoding of the current
locale is required and if the locale is supported but no converter is available for
the encoding specified intext_prop, the function returnsXConverterNotFound. For
supported locales, existence of a converter fromCOMPOUND_TEXT, STRING, or the
encoding of the current locale is guaranteed ifXSupportsLocale returns True for the
current locale (but the actual text may contain unconvertible characters). Conversion
of other encodings to the encoding of the current locale is implementation dependent.
In all of these error cases, the function does not set any return values.

960

Xm Functions

XmCvtTextPropertyToXmStringTable(library call)

If an element of the value member oftext_prop is not convertible toXmString ,
the corresponding entry in the returnedXmStringTable will be NULL, and
XmCvtTextPropertyToXmStringTable returns Success.

To free the storage for theXmStringTable and its count_returncompound strings
returned by this function, first free eachXmString in the table usingXmStringFree,
and then free theXmStringTable itself usingXtFree.

display Specifies the connection to the X server.

text_prop Specifies a pointer to theXTextProperty. The format member of
text_propmust be 8.

string_table_return
Specifies theXmStringTable array into which the converted compound
strings are placed.

count_return Specifies the number ofXmStrings returned by this function.

Return Values

Upon success, this function returns the set ofXmStrings in string_table_return, and
it returns the number ofXmStrings in count_return, and returns Success. Otherwise,
it returns the following:

XLocaleNotSupported
Returned if conversion depends on the locale and the current locale is
not supported.

XConverterNotFound
Returned if conversion to the encoding of the current locale is required
and if the locale is supported but no converter is available for the
encoding specified intext_prop.

Related Information

XmCvtXmStringTableToTextProperty (3), XmText(3), andXmTextGetString(3).

961

Motif 2.1—Programmer’s Reference

XmCvtXmStringTableToTextProperty(library call)

XmCvtXmStringTableToTextProperty

Purpose A function that converts from XmStringTable to an XTextProperty Structure

Synopsis #include <Xm/Xm.h>
int XmCvtXmStringTableToTextProperty (display, string_table, count, style, text_prop_return)

Display *display;
XmStringTable string_table;
int count;
XmICCEncodingStyle style;
XTextProperty * text_prop_return;

Description

XmCvtXmStringTableToTextProperty converts theXmStrings in the specified
XmStringTable into anXTextPropertystructure.

The function sets the encoding member oftext_prop_returnto an Atom for the
specified display naming the encoding determined by the specified style, and it converts
the firstcountcompound strings in the specifiedXmStringTable to this encoding for
storage in thetext_prop_returnvalue member. Following are the possible encoding
styles:

XmSTYLE_COMPOUND_STRING
The encoding is _MOTIF_COMPOUND_STRING. The function
converts each specifiedXmString to a compound string in Byte Stream
format.

XmSTYLE_COMPOUND_TEXT
The encoding isCOMPOUND_TEXT. The function converts each
specifiedXmString to compound text.

XmSTYLE_LOCALE
The encoding is the encoding of the current locale. The function converts
each specifiedXmString to the encoding of the current locale.

962

Xm Functions

XmCvtXmStringTableToTextProperty(library call)

XmSTYLE_STRING
The encoding isSTRING(plain C strings encoded in ISO8859-1), and
the function converts each specifiedXmString to STRING.

XmSTYLE_TEXT
If all specifiedXmStrings are fully convertible to the encoding of the
current locale, the encoding is the encoding of the current locale, and
the function converts each specifiedXmString to the encoding of the
current locale. Otherwise, the encoding isCOMPOUND_TEXT, and the
function converts each specified compound string to compound text.

XmSTYLE_STANDARD_ICC_TEXT
If all specifiedXmStrings are fully convertible toSTRING, the encoding
is STRING, and the function converts each specifiedXmString to
STRING. Otherwise, the encoding isCOMPOUND_TEXT, and the
function converts each specifiedXmString to compound text.

display Specifies the connection to the X server.

string_table Specifies a set ofXmStrings.

count Specifies the number ofXmStrings to be converted instring_table.

style Specifies the manner in which the property is encoded.

text_prop_return
Returns theXTextPropertystructure.

To free the storage for the value member of theXTextProperty, useXtFree.

Return Values

If conversion depends on the locale and the current locale is not supported, the
function returnsXLocaleNotSupported. In both of these cases, the function does
not settext_prop_return.

To determine whether the function is guaranteed not to returnXLocaleNotSupported,
useXSupportsLocale.

Related Information

XmCvtXmStringToByteStream(3), XmCvtTextPropertyToXmStringTable (3), and
XmStringTable(3).

963

Motif 2.1—Programmer’s Reference

XmCvtXmStringToByteStream(library call)

XmCvtXmStringToByteStream

Purpose A compound string function that converts a compound string to a Byte Stream format

Synopsis #include <Xm/Xm.h>

unsigned int XmCvtXmStringToByteStream(
XmString string,
unsigned char **prop_return);

Description

XmCvtXmStringToByteStream converts a compound string to a string of bytes
representing the compound string in Byte Stream format. This routine is typically used
by the source of a data transfer operation to produce a Byte Stream representation for
transferring a compound string to a destination.

If prop_returnis not NULL, this function creates a string of characters in Byte Stream
format and returns it inprop_return. The function also returns the number of bytes
in prop_return. If prop_returnis NULL, the function does not return the Byte Stream
format string, but it does calculate and return the number of bytes that would appear
in the Byte Stream format string.

string Specifies a compound string to be converted to Byte Stream format

prop_return Specifies a pointer to a string in Byte Stream format that is created
and returned by this function. Ifprop_returnis NULL, no Byte Stream
format string is returned. When a Byte Stream format string is returned,
the function allocates space to hold it. The application is responsible for
managing this allocated space. The application can recover the allocated
space by callingXtFree.

964

Xm Functions

XmCvtXmStringToByteStream(library call)

Return Values

Returns the number of bytes in the Byte Stream representation (whether or not the
Byte Stream representation is returned).

Related Information

XmString (3) andXmCvtByteStreamToXmString(3).

965

Motif 2.1—Programmer’s Reference

XmCvtXmStringToCT(library call)

XmCvtXmStringToCT

Purpose A compound string function that converts a compound string to compound text

Synopsis #include <Xm/Xm.h>

char * XmCvtXmStringToCT(
XmString string);

Description

XmCvtXmStringToCT converts a compound string to a (char *) string in compound
text format. The application must callXtAppInitialize before calling this function.
The converter uses the font list tag associated with a given compound string segment to
select a compound text format for that segment. A registry defines a mapping between
font list tags and compound text encoding formats. The converter uses the following
algorithm for each compound string segment:

1. If the compound string segment tag is mapped to
XmFONTLIST_DEFAULT_TAG in the registry, the converter passes the text
of the compound string segment toXmbTextListToTextProperty with an
encoding style ofXCompoundTextStyle and uses the resulting compound text
for that segment.

2. If the compound string segment tag is mapped to an MIT registered charset in
the registry, the converter creates the compound text for that segment using the
charset (from the registry) and the text of the compound string segment as defined
in the X Consortium StandardCompound Text Encoding.

3. If the compound string segment tag is mapped to a charset in the registry that
is neitherXmFONTLIST_DEFAULT_TAG nor an MIT registered charset, the
converter creates the compound text for that segment using the charset (from the
registry) and the text of the compound string segment as an "extended segment"
with a variable number of octets per character.

4. If the compound string segment tag is not mapped in the registry, the result is
implementation dependent.

966

Xm Functions

XmCvtXmStringToCT(library call)

string Specifies a compound string to be converted to compound text.

Return Values

Returns a (char *) string in compound text format. This format is described in the X
Consortium StandardCompound Text Encoding. The function allocates space to hold
the returned string. The application is responsible for managing the allocated space.
The application can recover the allocated space by callingXtFree.

Related Information

XmCvtCTToXmString (3), XmFontList (3), XmMapSegmentEncoding(3),
XmRegisterSegmentEncoding(3), andXmString .

967

Motif 2.1—Programmer’s Reference

XmDeactivateProtocol(library call)

XmDeactivateProtocol

Purpose A VendorShell function that deactivates a protocol without removing it

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmDeactivateProtocol(
Widget shell,
Atom property,
Atom protocol);

Description

XmDeactivateProtocol deactivates a protocol without removing it. It updates the
handlers and theproperty if the shell is realized. It is sometimes useful to allow a
protocol’s state information (callback lists, and so on) to persist, even though the client
may choose to temporarily resign from the interaction. The main use of this capability
is to gray/ungrayf.send_msgentries in the MWM system menu. To support this
capability,protocol is allowed to be in one of two states: active or inactive. Ifprotocol
is active andshell is realized,property contains theprotocol Atom. If protocol is
inactive,Atom is not present in theproperty.

XmDeactivateWMProtocol is a convenience interface. It calls
XmDeactivateProtocol with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

property Specifies the protocol property

protocol Specifies the protocol atom

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

968

Xm Functions

XmDeactivateProtocol(library call)

Related Information

mwm(1), VendorShell(3), XmActivateProtocol(3), XmDeactivateWMProtocol(3),
andXmInternAtom (3).

969

Motif 2.1—Programmer’s Reference

XmDeactivateWMProtocol(library call)

XmDeactivateWMProtocol

Purpose A VendorShell convenience interface that deactivates a protocol without removing it

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmDeactivateWMProtocol(
Widget shell,
Atom protocol);

Description

XmDeactivateWMProtocol is a convenience interface. It calls
XmDeactivateProtocol with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

protocol Specifies the protocol atom

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmActivateWMProtocol (3), XmDeactivateProtocol(3), and
XmInternAtom (3).

970

Xm Functions

XmDestroyPixmap(library call)

XmDestroyPixmap

Purpose A pixmap caching function that removes a pixmap from the pixmap cache

Synopsis #include <Xm/Xm.h>

Boolean XmDestroyPixmap(
Screen* screen,
Pixmap pixmap);

Description

XmDestroyPixmap removes pixmaps that are no longer used. Pixmaps are completely
freed only when there is no further reference to them.

screen Specifies the display screen for which the pixmap was requested

pixmap Specifies the pixmap to be destroyed

Return Values

Returns True when successful; returns False if there is no matching screen and pixmap
in the pixmap cache.

Related Information

XmInstallImage(3), XmUninstallImage(3), andXmGetPixmap(3).

971

Motif 2.1—Programmer’s Reference

XmDirectionMatch(library call)

XmDirectionMatch

Purpose A function that checks for a specified direction component

Synopsis #include <Xm/Xm.h>
Boolean XmDirectionMatch (d1, d2)

XmDirection d1;
XmDirection d2;

Description

XmDirectionMatch compares twoXmDirection values. The function returns a
Boolean value depending on whether or not the two input values "match." The
simplest match is whend1 and d2 are identical. However, other matches are
possible.XmDirectionMatch attempts to compare specified bits only; nonspecified
bits automatically match.

For example, suppose thatd1 equalsXmTOP_TO_BOTTOM_RIGHT_TO_LEFT .
In this case, the function will return True ifd2 equals eitherXmRIGHT_TO_LEFT
or XmTOP_TO_BOTTOM . However, the function will return
False if d2 equals XmTOP_TO_BOTTOM_LEFT_TO_RIGHT ,
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT , or
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT .

Note that direction can be thought of as having three components, a horizontal
component, a vertical component, and the precedence among them. This means
that in addition to the previously mentioned directions, the function will still return
False if d1 equals XmTOP_TO_BOTTOM_RIGHT_TO_LEFT and d2 equals
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM .

d1 Specifies anXmDirection value.

d2 Specifies anXmDirection value.

972

Xm Functions

XmDirectionMatch(library call)

Return Values

Returns True ifd1 "matches"d2; otherwise, returns False.

Related Information

XmDirection (3), XmDirectionMatchPartial (3),
XmDirectionToStringDirection (3), XmString (3), XmStringDirection (3), and
XmStringDirectionToDirection (3).

973

Motif 2.1—Programmer’s Reference

XmDirectionMatchPartial(library call)

XmDirectionMatchPartial

Purpose A function that checks for a specified direction component

Synopsis #include <Xm/Xm.h>
Boolean XmDirectionMatchPartial (d1, d2, dmask)

XmDirection d1;
XmDirection d2;
XmDirection dmask;

Description

XmDirectionMatchPartial comparesd1 and d2 along the direction component
specified bydmask. For example, ifdmaskequalsXmVERTICAL_MASK , then the
function will compare only the vertical components ofd1 andd2.

d1 Specifies anXmDirection value to check.

d2 Specifies anXmDirection value to check.

dmask Specifies the direction component along whichd1 and
d2 are to be checked. Appropriate values fordmask are
XmHORIZONTAL_MASK , XmVERTICAL_MASK , and
XmPRECEDENCE_MASK .

Return Values

Returns True if thed1 andd2 match in the component specified bydmask; otherwise,
returns False.

Related Information

XmDirection (3), XmDirectionMatch (3), XmDirectionToStringDirection (3),
XmStringDirection (3), andXmStringDirectionToDirection (3).

974

Xm Functions

XmDirectionToStringDirection(library call)

XmDirectionToStringDirection

Purpose A function that converts an XmDirection value to an XmStringDirection value

Synopsis #include <Xm/Xm.h>
XmStringDirection XmDirectionToStringDirection (dir)

XmDirection dir;

Description

XmDirectionToStringDirection converts the specifiedXmDirection direction value
to its equivalentXmStringDirection value. Basically, if theXmDirection value has
a horizontal direction specification, that horizontal element is used; otherwise, the
XmStringDirection value is interpreted asXmSTRING_DIRECTION_L_TO_R .
This function provides backward compatibility with theXmStringDirection data type.

Note that the Motif toolkit also contains anXmStringDirectionToDirection routine
to convert anXmStringDirection value to itsXmDirection equivalent.

dir Specifies theXmDirection value to be converted.

Return Values

Returns the followingXmStringDirection values:

XmSTRING_DIRECTION_R_TO_L
If the dir argument has a right to left horizontal direction value in it,
for exampleXmRIGHT_TO_LEFT_TOP_TO_BOTTOM .

XmSTRING_DIRECTION_L_TO_R
If the dir argument has a left to right horizontal direction in it,
for exampleXmLEFT_TO_RIGHT_TOP_TO_BOTTOM , or if the
horizontal direction value in thedir argument is ambiguous, such as in
the XmTOP_TO_BOTTOM value.

975

Motif 2.1—Programmer’s Reference

XmDirectionToStringDirection(library call)

XmSTRING_DIRECTION_DEFAULT
If there was no horizontal direction specified.

Related Information

XmDirection (3), XmDirectionMatch (3), XmDirectionMatchPartial (3),
XmDirectionToStringDirection (3), XmString (3), XmStringDirection (3), and
XmStringDirectionToDirection (3),

976

Xm Functions

XmDragCancel(library call)

XmDragCancel

Purpose A Drag and Drop function that terminates a drag transaction

Synopsis #include <Xm/DragDrop.h>

void XmDragCancel(
Widget dragcontext);

Description

XmDragCancel terminates a drag operation and cancels any pending actions of the
specified DragContext. This routine can only be called by the initiator client.

dragcontext Specifies the ID of the DragContext widget associated with the drag and
drop transaction to be terminated

For a complete definition of DragContext and its associated resources, see
XmDragContext(3).

Related Information

XmDragContext(3) andXmDragStart (3).

977

Motif 2.1—Programmer’s Reference

XmDragStart(library call)

XmDragStart

Purpose A Drag and Drop function that initiates a drag and drop transaction

Synopsis #include <Xm/DragDrop.h>

Widget XmDragStart(
Widget widget,
XEvent *event,
ArgList arglist,
Cardinal argcount);

Description

XmDragStart initiates a drag operation. This routine returns the DragContext widget
that it initializes for the associated drag transaction. The toolkit is responsible for
freeing the DragContext when the drag and drop transaction is complete.

widget Specifies the ID of the smallest widget and/or gadget that encloses the
source elements selected for a drag operation.

event Specifies theXEventthat triggered the drag operation. This event must
be a ButtonPress event.

arglist Specifies the argument list. AnyXmDragContext resources not
specified in the argument list are obtained from the resource database
or are set to their default values.

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of DragContext and its associated resources, see
XmDragContext(3).

978

Xm Functions

XmDragStart(library call)

Return Values

Returns the ID of the DragContext widget that controls this drag and drop transaction.
Returns NULL if the drag cannot be initiated.

Related Information

XmDragCancel(3) andXmDragContext(3).

979

Motif 2.1—Programmer’s Reference

XmDropSite(library call)

XmDropSite

Purpose The DropSite Registry

Synopsis #include <Xm/DragDrop.h>

Description

A client registers a widget or gadget as a drop site using theXmDropSiteRegister
function. In addition, this routine defines the behavior and capabilities of a drop
site by specifying appropriate resources. For example, theXmNimportTargets and
XmNnumImportTargets resources identify respectively the selection target types and
number of types supported by a drop site. The visual animation effects associated with
a drop site are also described with DropSite resources.

Drop site animation effects that occur in response to the pointer entering a valid
drop site are called drag-under effects. A receiver can select from several animation
styles supplied by the toolkit or can provide customized animation effects. Drag-under
effects supplied by the toolkit include border highlighting, shadow in/out drawing, and
pixmap representation.

When a preregister drag protocol style is used, the toolkit generates drag-under visual
effects based on the value of theXmNanimationStyle resource. In dynamic mode, if
the drop siteXmNdragProc resource is NULL, the toolkit also provides animation
effects based on theXmNanimationStyle resource. Otherwise, if theXmNdragProc
routine is specified, the receiver can either assume responsibility for animation effects
(through theXmNdragProc routine) or rely on the toolkit to provide animation. An
application can either handle all or none of the animation effects for a particular drop
site. That is, an application should never do a partial job of animation on a particular
drop site.

Drop sites may overlap. The initial stacking order corresponds to the order in which
the drop sites were registered. When a drop site overlaps another drop site, the drag-
under effects of the drop site underneath are clipped by the obscuring drop site(s).

980

Xm Functions

XmDropSite(library call)

The XmDropSiteUpdate routine sets resources for a widget that is registered as a
drop site.XmDropSiteRetrieve gets drop site resource values previously specified for
a registered widget. These routines are used instead ofXtSetValuesandXtGetValues.

Classes

XmDropSite does not inherit from any widget class.

New Resources

The following table defines a set of widget resources used by the programmer to
specify data. To reference a resource by name or by class in a.Xdefaults file, remove
the XmN or XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in a.Xdefaults file, remove theXm prefix and use the remaining
letters (in either lowercase or uppercase, but include any underscores between words).
The codes in the access column indicate if the given resource can be set at creation time
(C), set by usingXmDropSiteUpdate (S), retrieved by usingXmDropSiteRetrieve
(G), or is not applicable (N/A).

XmDropSite Resource Set

Name Class Type Default Access

XmNanimationMask XmCAnimationMask Pixmap XmUNSPECIFIED_-

PIXMAP

CSG

XmNanimationPixmap XmCAnimationPixmap Pixmap XmUNSPECIFIED_-

PIXMAP

CSG

XmNanimationPixmap-

Depth

XmCAnimationPixmap-

Depth

int 0 CSG

XmNanimationStyle XmCAnimationStyle unsigned char XmDRAG_UNDER_-

HIGHLIGHT

CSG

XmNdragProc XmCDragProc XtCallbackProc NULL CSG

XmNdropProc XmCDropProc XtCallbackProc NULL CSG

XmNdropRectangles XmCDropRectangles XRectangle * dynamic CSG

XmNdropSiteActivity XmCDropSite- Activity unsigned char XmDROP_SITE_-

ACTIVE

CSG

XmNdropSiteOperations XmCDropSite-

Operations

unsigned char XmDROP_MOVE | -

XmDROP_COPY

CSG

XmNdropSiteType XmCDropSiteType unsigned char XmDROP_SITE_-

SIMPLE

CG

981

Motif 2.1—Programmer’s Reference

XmDropSite(library call)

XmNimportTargets XmCImportTargets Atom * NULL CSG

XmNnumDropRectangles XmCNumDrop-

Rectangles

Cardinal 1 CSG

XmNnumImportTargets XmCNumImport-

Targets

Cardinal 0 CSG

XmNanimationMask
Specifies a mask to use with the pixmap specified by
XmNanimationPixmap when the animation style is
XmDRAG_UNDER_PIXMAP .

XmNanimationPixmap
Specifies a pixmap for drag-under animation when the animation style
is XmDRAG_UNDER_PIXMAP . The pixmap is drawn with its origin
at the upper left corner of the bounding box of the drop site. If the
drop site window is larger than the animation pixmap, the portion of
the window not covered by the pixmap will be tiled with the window’s
background color.

XmNanimationPixmapDepth
Specifies the depth of the pixmap specified by the
XmNanimationPixmap resource. When the depth is 1, the
colors are taken from the foreground and background of the drop
site widget. For any other value, drop site animation occurs only if
the XmNanimationPixmapDepth matches the depth of the drop site
window. Colors are derived from the current colormap.

XmNanimationStyle
Specifies the drag-under animation style used when a drag enters a valid
drop site. The possible values are

XmDRAG_UNDER_HIGHLIGHT
The drop site uses highlighting effects.

XmDRAG_UNDER_SHADOW_OUT
The drop site uses an outset shadow.

XmDRAG_UNDER_SHADOW_IN
The drop site uses an inset shadow.

982

Xm Functions

XmDropSite(library call)

XmDRAG_UNDER_PIXMAP
The drop site uses the pixmap specified by
XmNanimationPixmap to indicate that it can
receive the drop.

XmDRAG_UNDER_NONE
The drop site does not use animation effects. A client
using a dynamic protocol, may provide drag-under effects
in its XmNdragProc routine.

XmNdragProc
Specifies the procedure that is invoked when the drop site receives a
crossing, motion, or operation changed message. This procedure is called
only when a dynamic protocol is used. The type of structure whose
address is passed to this procedure isXmDragProcCallbackStruct.
The reason sent to the procedure is one of the following:

• XmCR_DROP_SITE_ENTER_MESSAGE

• XmCR_DROP_SITE_LEAVE_MESSAGE

• XmCR_DRAG_MOTION

• XmCR_OPERATION_CHANGED

The drag procedure may change the values of some members
of the XmDragProcCallbackStruct passed to it. After the drag
procedure returns, the toolkit uses the final values in initializing some
members of the callback structure passed to the appropriate callbacks
of the initiator (the DragContext’sXmNdropSiteEnterCallback,
XmNdropSiteLeaveCallback, XmNdragMotionCallback , or
XmNoperationChangedCallbackcallbacks).

XmNdropProc
Specifies the procedure that is invoked when a drop (excluding a cancel
or interrupt action) occurs on a drop site regardless of the status of
the drop site. The type of the structure whose address is passed to
this procedure isXmDropProcCallbackStruct . The reason sent to the
procedure isXmCR_DROP_MESSAGE.

The drop procedure may change the values of some members of the
XmDropProcCallbackStruct passed to it. After the drop procedure
returns, the toolkit uses the final values in initializing some members

983

Motif 2.1—Programmer’s Reference

XmDropSite(library call)

of the XmDropStartCallbackStruct passed to the initiator’s drop start
callbacks (the DragContext’sXmNdropStartCallback callbacks).

XmNdropRectangles
Specifies a list of rectangles that describe the shape of a drop site. The
locations of the rectangles are relative to the origin of the enclosing
object. WhenXmNdropRectanglesis NULL, the drop site is assumed
to be the sensitive area of the enclosing widget. IfXmNdropSiteType
is XmDROP_SITE_COMPOSITE, this resource cannot be specified
by the application.

Retrieving this resource returns allocated memory that needs to be freed
with the XtFree function.

XmNdropSiteActivity
Indicates whether a drop site is active or inactive. The values are
XmDROP_SITE_ACTIVE , XmDROP_SITE_INACTIVE , and
XmDROP_SITE_IGNORE. An active drop site can receive a drop,
whereas an inactive drop site is dormant. An inactive drop site is
treated as if it was not a registered drop site and any drag-under
visuals associated with entering or leaving the drop site do not occur.
However, it is still used for clipping drag-under effects. A value
of XmDROP_SITE_IGNORE indicates that a drop site should be
ignored for all purposes.

XmNdropSiteOperations
Specifies the set of valid operations associated with a drop site. This
resource is a bit mask that is formed by combining one or more of
the following values using a bitwise operation such as inclusive OR
(|): XmDROP_COPY, XmDROP_LINK , andXmDROP_MOVE . The
valueXmDROP_NOOP for this resource indicates that no operations
are valid.

XmNdropSiteType
Specifies the type of the drop site. The possible values are

XmDROP_SITE_SIMPLE
The widget does not have any additional children that are
registered as drop sites.

XmDROP_SITE_COMPOSITE
The widget will have children that are registered as drop
sites.

984

Xm Functions

XmDropSite(library call)

XmNimportTargets
Specifies the list of target atoms that this drop site accepts.

XmNnumDropRectangles
Specifies the number of rectangles in theXmNdropRectangles list. If
the drop site type isXmDROP_SITE_COMPOSITE, this resource can
not be specified by the application.

XmNnumImportTargets
Specifies the number of atoms in the target atom list.

Callback Information

A pointer to the following structure is passed to theXmNdragProc routine when the
drop site receives crossing, motion, or operation changed messages:

typedef struct
{

int reason;
XEvent *event;
Time timeStamp;
Widget dragContext;
Positionx;
Positiony;
unsigned chardropSiteStatus;
unsigned charoperation;
unsigned charoperations;
Booleananimate;

} XmDragProcCallbackStruct, *XmDragProcCallback;

reason Indicates why the callback was invoked.

event Points to theXEventthat triggered the callback.

timeStamp Specifies the timestamp of the logical event.

dragContext Specifies the ID of the DragContext widget associated with the
transaction.

x Indicates the x-coordinate of the pointer relative to the drop site.

y Indicates the y-coordinate of the pointer relative to the drop site.

dropSiteStatus
An IN/OUT member that indicates whether or not a drop site is valid.

985

Motif 2.1—Programmer’s Reference

XmDropSite(library call)

When reason is XmCR_DROP_SITE_ENTER_MESSAGE
or XmCR_OPERATION_CHANGED ,
or reason is XmCR_DRAG_MOTION or
XmCR_DROP_SITE_LEAVE_MESSAGE and the pointer is not in
the same drop site as on the previous invocation of the drag procedure,
the toolkit initializes dropSiteStatus to XmDROP_SITE_VALID
if the DragContext’s XmNexportTargets and the DropSite’s
XmNimportTargets are compatible and if the initial value of the
operation member is notXmDROP_NOOP. Otherwise, the toolkit
initializes dropSiteStatus to XmDROP_SITE_INVALID .

When the reason is XmCR_DRAG_MOTION or
XmCR_DROP_SITE_LEAVE_MESSAGE and the pointer is
within the same drop site as on the previous invocation of the
drag procedure, the toolkit initializesdropSiteStatus to the value
of dropSiteStatus at the time the previous invocation of the drag
procedure returns.

The drag procedure may change the value of this member. After the
drag procedure returns, the toolkit uses the final value in initializing the
dropSiteStatusmember of the callback struct passed to the appropriate
callbacks of the initiator.

operation An IN/OUT member that identifies an operation.

The toolkit initializes operation by selecting an operation from the
bitwise AND of the initial value of theoperations member and
the value of the DropSite’sXmNdropSiteOperations resource.
The toolkit searches this set first forXmDROP_MOVE , then
for XmDROP_COPY, then for XmDROP_LINK , and initializes
operation to the first operation it finds in the set. If the toolkit
finds none of these operations in the set, it initializesoperation to
XmDROP_NOOP.

The drag procedure may change the value of this member. After the
drag procedure returns, the toolkit uses the final value in initializing
the operationmember of the callback struct passed to the appropriate
callbacks of the initiator.

operations An IN/OUT member that indicates the set of operations supported for
the source data.

986

Xm Functions

XmDropSite(library call)

If the user does not select an operation (by pressing a modifier key),
the toolkit initializes operations to the value of the DragContext’s
XmNdragOperations resource. If the user does select an operation, the
toolkit initializes operationsto the bitwise AND of the corresponding
operation and the value of the DragContext’sXmNdragOperations
resource. If the resulting set of operations is empty, the toolkit initializes
operationsto XmDROP_NOOP.

The drag procedure may change the value of this member. After the
drag procedure returns, the toolkit uses the final value in initializing
the operationsmember of the callback struct passed to the appropriate
callbacks of the initiator.

animate An OUT member that indicates whether the toolkit or the receiver client
provides drag-under effects for a valid drop site. Ifanimateis set to True,
the toolkit provides drop site animation per theXmNanimationStyle
resource value; if it is set to False, the receiver generates drag-under
animation effects.

A pointer to the following structure is passed to theXmNdropProc routine when the
drop site receives a drop message:

typedef struct
{

int reason;
XEvent *event;
Time timeStamp;
Widget dragContext;
Positionx;
Positiony;
unsigned chardropSiteStatus;
unsigned charoperation;
unsigned charoperations;
unsigned chardropAction;

} XmDropProcCallbackStruct, *XmDropProcCallback;

reason Indicates why the callback was invoked.

event Specifies theXEventthat triggered the callback.

timeStamp Specifies the timestamp of the logical event.

987

Motif 2.1—Programmer’s Reference

XmDropSite(library call)

dragContext Specifies the ID of the DragContext widget associated with the
transaction.

x Indicates the x-coordinate of the pointer relative to the drop site.

y Indicates the y-coordinate of the pointer relative to the drop site.

dropSiteStatus
An IN/OUT member that indicates whether or not a drop site is valid.

The toolkit initializes dropSiteStatus to XmDROP_SITE_VALID
if the DragContext’s XmNexportTargets and the DropSite’s
XmNimportTargets are compatible and if the initial value of the
operation member is notXmDROP_NOOP. Otherwise, the toolkit
initializes dropSiteStatus to XmDROP_SITE_INVALID .

The drop procedure may change the value of this member. After the
drop procedure returns, the toolkit uses the final value in initializing
the dropSiteStatus member of the XmDropStartCallbackStruct
passed to the initiator’s drop start callbacks (the DragContext’s
XmNdropStartCallback callbacks).

operation An IN/OUT member that identifies an operation.

The toolkit initializes operation by selecting an operation from the
bitwise AND of the initial value of theoperations member and
the value of the DropSite’sXmNdropSiteOperations resource.
The toolkit searches this set first forXmDROP_MOVE , then
for XmDROP_COPY, then for XmDROP_LINK , and initializes
operation to the first operation it finds in the set. If it finds none of
these operations in the set, it initializesoperationto XmDROP_NOOP.

The drop procedure may change the value of this member. After
the drop procedure returns, the toolkit uses the final value in
initializing the operationmember of theXmDropStartCallbackStruct
passed to the initiator’s drop start callbacks (the DragContext’s
XmNdropStartCallback callbacks).

operations An IN/OUT member that indicates the set of operations supported for
the source data.

If the user does not select an operation (by pressing a modifier key),
the toolkit initializes operations to the value of the DragContext’s
XmNdragOperations resource. If the user does select an operation, the
toolkit initializes operationsto the bitwise AND of the corresponding

988

Xm Functions

XmDropSite(library call)

operation and the value of the DragContext’sXmNdragOperations
resource. If the resulting set of operations is empty, the toolkit initializes
operationsto XmDROP_NOOP.

The drop procedure may change the value of this member. After the
drop procedure returns, the toolkit uses the final value in initializing
the operations member of the XmDropStartCallbackStruct
passed to the initiator’s drop start callbacks (the DragContext’s
XmNdropStartCallback callbacks).

dropAction An IN/OUT member that identifies the action associated with the drop.
The possible values are

XmDROP A drop was attempted. If the drop site is valid, drop
transfer handling proceeds.

XmDROP_HELP
The user has requested help on the drop site.

The drop procedure may change the value of this member. After the
drop procedure returns, the toolkit uses the final value in initializing
the dropAction member of the XmDropStartCallbackStruct
passed to the initiator’s drop start callbacks (the DragContext’s
XmNdropStartCallback callbacks).

Related Information

XmDragContext(3), XmDragIcon(3), XmDropSiteConfigureStackingOrder(3),
XmDropSiteEndUpdate(3), XmDropSiteQueryStackingOrder(3),
XmDropSiteRegister(3), XmDropSiteStartUpdate(3), XmDropSiteUpdate(3),
XmDropSiteUnregister(3), XmDropTransfer (3), and
XmTargetsAreCompatible(3).

989

Motif 2.1—Programmer’s Reference

XmDropSiteConfigureStackingOrder(library call)

XmDropSiteConfigureStackingOrder

Purpose A Drag and Drop function that reorders a stack of widgets that are registered drop
sites

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteConfigureStackingOrder(
Widget widget,
Widget sibling,
Cardinal stack_mode);

Description

XmDropSiteConfigureStackingOrder changes the stacking order of the drop site
specified bywidget. The stacking order controls the manner in which drag-under
effects are clipped by overlapping siblings, regardless of whether they are active. The
stack mode is relative either to the entire stack, or to another drop site within the
stack. The stack order can be modified only if the drop sites are siblings in both the
widget and drop site hierarchy, and the widget parent of the drop sites is registered
as a composite drop site.

widget Specifies the drop site to be restacked.

sibling Specifies a sibling drop site for stacking operations. If specified, then
widget is restacked relative to this drop site’s stack position.

stack_mode Specifies the new stack position for the specified widget. The values are
XmABOVE and XmBELOW . If a sibling is specified, thenwidget is
restacked as follows:

XmABOVE The widget is placed just above the sibling.

XmBELOW
The widget is placed just below the sibling.

If the sibling parameter is not specified, thenwidget is restacked as
follows:

990

Xm Functions

XmDropSiteConfigureStackingOrder(library call)

XmABOVE The widget is placed at the top of the stack.

XmBELOW
The widget is placed at the bottom of the stack.

For a complete definition of DropSite and its associated resources, seeXmDropSite(3).

Related Information

XmDropSite(3), XmDropSiteRetrieve(3), and
XmDropSiteQueryStackingOrder(3).

991

Motif 2.1—Programmer’s Reference

XmDropSiteEndUpdate(library call)

XmDropSiteEndUpdate

Purpose A Drag and Drop function that facilitates processing updates to multiple drop sites

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteEndUpdate(
Widget widget);

Description

XmDropSiteEndUpdate is used in conjunction withXmDropSiteStartUpdate
to process updates to multiple drop sites within the same hierarchy.
XmDropSiteStartUpdate and XmDropSiteEndUpdate signal the beginning
and the end respectively of a series of calls toXmDropSiteUpdate. Calls to
XmDropSiteStartUpdate and XmDropSiteEndUpdate can be recursively stacked.
Using these routines optimizes the processing of update information.

widget Specifies the ID of any widget within a given hierarchy. The function
uses this widget to identify the shell that contains the drop sites.

For a complete definition of DropSite and its associated resources, seeXmDropSite(3).

Related Information

XmDropSiteStartUpdate(3) andXmDropSiteUpdate(3).

992

Xm Functions

XmDropSiteQueryStackingOrder(library call)

XmDropSiteQueryStackingOrder

Purpose A Drag and Drop function that returns the parent, a list of children, and the number
of children for a specified widget

Synopsis #include <Xm/DragDrop.h>

Status XmDropSiteQueryStackingOrder(
Widget widget,
Widget *parent_return,
Widget ** child_returns,
Cardinal * num_child_returns);

Description

XmDropSiteQueryStackingOrder obtains the parent, a list of children registered as
drop sites, and the number of children registered as drop sites for a given widget.
The children are listed in current stacking order, from bottom-most (first child) to the
top-most (last child). This function allocates memory for the returned data that must
be freed by callingXtFree.

widget Specifies the widget ID. For this widget, you obtain the list of its
children, its parent, and the number of children.

parent_return
Returns the widget ID of the drop site parent of the specified widget.

child_returns
Returns a pointer to the list of drop site children associated with
the specified widget. The function allocates memory to hold the list.
The application is responsible for managing the allocated space. The
application can recover the allocated space by callingXtFree.

num_child_returns
Returns the number of drop site children for the specified widget.

For a complete definition of DropSite and its associated resources, seeXmDropSite(3).

993

Motif 2.1—Programmer’s Reference

XmDropSiteQueryStackingOrder(library call)

Return Values

Returns 0 (zero) if the routine fails; returns a nonzero value if it succeeds.

Related Information

XmDropSite(3) andXmDropSiteConfigureStackingOrder(3).

994

Xm Functions

XmDropSiteRegister(library call)

XmDropSiteRegister

Purpose A Drag and Drop function that identifies a drop site and assigns resources that specify
its behavior

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteRegister(
Widget widget,
ArgList arglist,
Cardinal argcount);

Description

XmDropSiteRegister identifies the specified widget or gadget as a drop site and sets
resource values that define the drop site’s behavior. The routine assigns default values
to any resources that are not specified in the argument list. The toolkit generates
a warning message if a drop site is registered withXmNdropSiteActivity set to
XmDROP_SITE_ACTIVE and theXmNdropProc resource is NULL.

If the drop site is a descendant of a widget that is registered as a drop site,
the XmNdropSiteType resource of the ancestor drop site must be specified as
XmDROP_SITE_COMPOSITE. The ancestor must be registered before the
descendant. The drop site is stacked above all other sibling drop sites already
registered.

widget Specifies the ID of the widget to be registered.

arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argument list (arglist).

For a complete definition of DropSite and its associated resources, seeXmDropSite(3).

995

Motif 2.1—Programmer’s Reference

XmDropSiteRegister(library call)

Related Information

XmDisplay(3), XmDropSite(3), XmDropSiteEndUpdate(3),
XmDropSiteStartUpdate(3), XmDropSiteUpdate(3), XmDropSiteUnregister(3),
andXmScreen(3).

996

Xm Functions

XmDropSiteRegistered(library call)

XmDropSiteRegistered

Purpose A Drag and Drop function that determines if a drop site has been registered

Synopsis #include <Xm/DragDrop.h>

Boolean XmDropSiteRegistered(
Widget widget);

Description

XmDropSiteRegistereddetermines if the specified widget has a drop site registered.
If a drop site is registered, this function returns True.

widget Specifies the ID of the widget being queried.

For a complete definition of DropSite and its associated resources, seeXmDropSite(3).

Return Values

If the widget is not a registered drop site, this function returns False. Otherwise, it
returns True.

Related Information

XmDisplay(3), XmDropSite(3), XmDropSiteEndUpdate(3),
XmDropSiteStartUpdate(3), XmDropSiteUpdate(3), XmDropSiteUnregister(3),
andXmScreen(3).

997

Motif 2.1—Programmer’s Reference

XmDropSiteRetrieve(library call)

XmDropSiteRetrieve

Purpose A Drag and Drop function that retrieves resource values set on a drop site

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteRetrieve(
Widget widget,
ArgList arglist,
Cardinal argcount);

Description

XmDropSiteRetrieve extracts values for the given resources from the drop site
specified bywidget. An initiator can also obtain information about the current drop
site by passing the associated DragContext widget as thewidget parameter to this
routine. The initiator can retrieve all of the drop site resources exceptXmNdragProc
andXmNdropProc using this method.

widget Specifies the ID of the widget that encloses the drop site.

arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argument list (arglist).

For a complete definition of DropSite and its associated resources, seeXmDropSite(3).

Related Information

XmDropSite(3) andXmDropSiteUpdate(3).

998

Xm Functions

XmDropSiteStartUpdate(library call)

XmDropSiteStartUpdate

Purpose A Drag and Drop function that facilitates processing updates to multiple drop sites

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteStartUpdate(
Widget widget);

Description

XmDropSiteStartUpdate is used in conjunction withXmDropSiteEndUpdate
to process updates to multiple drop sites within the same shell widget.
XmDropSiteStartUpdate and XmDropSiteEndUpdate signal the beginning
and the end respectively of a series of calls toXmDropSiteUpdate. Calls to
XmDropSiteStartUpdate and XmDropSiteEndUpdate can be recursively stacked.
Using these routines optimizes the processing of update information.

widget Specifies the ID of any widget within a given hierarchy. The function
uses this widget to identify the shell that contains the drop sites.

For a complete definition of DropSite and its associated resources, seeXmDropSite(3).

Related Information

XmDropSite(3), XmDropSiteEndUpdate(3), andXmDropSiteUpdate(3).

999

Motif 2.1—Programmer’s Reference

XmDropSiteUnregister(library call)

XmDropSiteUnregister

Purpose A Drag and Drop function that frees drop site information

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteUnregister(
Widget widget);

Description

XmDropSiteUnregister informs the toolkit that the specified widget is no longer a
registered drop site. The function frees all associated drop site information.

widget Specifies the ID of the widget, registered as a drop site, that is to be
unregistered

For a complete definition of DropSite and its associated resources, seeXmDropSite(3).

Related Information

XmDropSite(3) andXmDropSiteRegister(3).

1000

Xm Functions

XmDropSiteUpdate(library call)

XmDropSiteUpdate

Purpose A Drag and Drop function that sets resource values for a drop site

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteUpdate(
Widget widget,
ArgList arglist,
Cardinal argcount);

Description

XmDropSiteUpdate modifies drop site resources associated with the specified widget.
This routine updates the drop site resources specified in thearglist.

widget Specifies the ID of the widget registered as a drop site

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of DropSite and its associated resources, seeXmDropSite(3).

Related Information

XmDropSite(3), XmDropSiteEndUpdate(3), XmDropSiteRegister(3),
XmDropSiteStartUpdate(3), andXmDropSiteUnregister(3).

1001

Motif 2.1—Programmer’s Reference

XmDropTransferAdd(library call)

XmDropTransferAdd

Purpose A Drag and Drop function that enables additional drop transfer entries to be processed
after initiating a drop transfer

Synopsis #include <Xm/DragDrop.h>

void XmDropTransferAdd(
Widget drop_transfer,
XmDropTransferEntryRec * transfers,
Cardinal num_transfers);

Description

XmDropTransferAdd identifies a list of additional drop transfer entries to be
processed after a drop transfer is started.

drop_transfer
Specifies the ID of the DropTransfer widget returned by
XmDropTransferStart

transfers Specifies the additional drop transfer entries that the receiver wants
processed

num_transfers
Specifies the number of items in thetransfersarray

For a complete definition of DropTransfer and its associated resources, see
XmDropTransfer (3).

Related Information

XmDragContext(3), XmDropTransfer (3), andXmDropTransferStart (3).

1002

Xm Functions

XmDropTransferStart(library call)

XmDropTransferStart

Purpose A Drag and Drop function that initiates a drop transfer

Synopsis #include <Xm/DragDrop.h>

Widget XmDropTransferStart(
Widget widget,
ArgList arglist,
Cardinal argcount);

Description

XmDropTransferStart initiates a drop transfer and uses the specified argument list
to initialize anXmDropTransfer object. The DropTransfer object can be manipulated
with XtSetValues and XtGetValues until the last call to theXmNtransferProc
procedure is made. After that point, the result of using the widget pointer is undefined.
The DropTransfer object is freed by the toolkit when a transfer is complete.

widget Specifies the ID of the DragContext widget associated with the
transaction

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition of DropTransfer and its associated resources, see
XmDropTransfer (3).

Return Values

Returns the ID of the DropTransfer widget.

1003

Motif 2.1—Programmer’s Reference

XmDropTransferStart(library call)

Related Information

XmDragContext(3), XmDropTransfer (3), andXmDropTransferAdd (3).

1004

Xm Functions

XmFileSelectionBoxGetChild(library call)

XmFileSelectionBoxGetChild

Purpose A FileSelectionBox function used to access a component

Synopsis #include <Xm/FileSB.h>

Widget XmFileSelectionBoxGetChild(
Widget widget,
unsigned charchild);

Description

XmFileSelectionBoxGetChild is used to access a component within a
FileSelectionBox. The parameters given to the function are the FileSelectionBox
widget and a value indicating which component to access.

NOTE: This routine is obsolete and exists for compatibility with previous releases.
Instead of callingXmFileSelectionBoxGetChild, you should callXtNameToWidget
as described in theXmFileSelectionBox(3) reference page.

widget Specifies the FileSelectionBox widget ID.

child Specifies a component within the FileSelectionBox. The following are
legal values for this parameter:

• XmDIALOG_APPLY_BUTTON

• XmDIALOG_CANCEL_BUTTON

• XmDIALOG_DEFAULT_BUTTON

• XmDIALOG_DIR_LIST

• XmDIALOG_DIR_LIST_LABEL

• XmDIALOG_FILTER_LABEL

• XmDIALOG_FILTER_TEXT

• XmDIALOG_HELP_BUTTON

1005

Motif 2.1—Programmer’s Reference

XmFileSelectionBoxGetChild(library call)

• XmDIALOG_LIST

• XmDIALOG_LIST_LABEL

• XmDIALOG_OK_BUTTON

• XmDIALOG_SELECTION_LABEL

• XmDIALOG_SEPARATOR

• XmDIALOG_TEXT

• XmDIALOG_WORK_AREA

For a complete definition of FileSelectionBox and its associated resources, see
XmFileSelectionBox(3).

Return Values

Returns the widget ID of the specified FileSelectionBox component. An application
should not assume that the returned widget will be of any particular class.

Related Information

XmFileSelectionBox(3).

1006

Xm Functions

XmFileSelectionDoSearch(library call)

XmFileSelectionDoSearch

Purpose A FileSelectionBox function that initiates a directory search

Synopsis #include <Xm/FileSB.h>

void XmFileSelectionDoSearch(
Widget widget,
XmString dirmask);

Description

XmFileSelectionDoSearchinitiates a directory and file search in a FileSelectionBox
widget. For a description of the actions that the FileSelectionBox takes when doing a
search, seeXmFileSelectionBox(3).

widget Specifies the FileSelectionBox widget ID.

dirmask Specifies the directory mask used in determining the directories and files
displayed in the FileSelectionBox lists. This value is used as themask
member of the input dataXmFileSelectionBoxCallbackStructstructure
passed to the FileSelectionBox’sXmNqualifySearchDataProc. Thedir
andpatternmembers of that structure are NULL.

For a complete definition of FileSelectionBox and its associated resources, see
XmFileSelectionBox(3).

Related Information

XmFileSelectionBox(3).

1007

Motif 2.1—Programmer’s Reference

XmFontListAdd(library call)

XmFontListAdd

Purpose A font list function that creates a new font list

Synopsis #include <Xm/Xm.h>

XmFontList XmFontListAdd(
XmFontList oldlist,
XFontStruct *font,
XmStringCharSet charset);

Description

XmFontListAdd creates a new font list consisting of the contents ofoldlist and the
new font list element being added. This function deallocatesoldlist after extracting
the required information; therefore, do not referenceoldlist thereafter.

NOTE: This function is obsolete and exists for compatibility with previous releases.
It has been replaced byXmFontListAppendEntry .

oldlist Specifies a pointer to the font list to which an entry will be added.

font Specifies a pointer to a font structure for which the new font list is
generated. This is the structure returned by the XLibXLoadQueryFont
function.

charset Specifies the character set identifier for the font. This can be
XmSTRING_DEFAULT_CHARSET , but this value does not comply
with the AES, and it may be removed in future versions of Motif. If
the value isXmSTRING_DEFAULT_CHARSET , the routine derives
the character set from the current language environment.

Return Values

Returns NULL ifoldlist is NULL; returnsoldlist if fontor charsetis NULL; otherwise,
returns a new font list.

1008

Xm Functions

XmFontListAdd(library call)

Related Information

XmFontList (3) andXmFontListAppendEntry (3).

1009

Motif 2.1—Programmer’s Reference

XmFontListAppendEntry(library call)

XmFontListAppendEntry

Purpose A font list function that appends an entry to a font list

Synopsis #include <Xm/Xm.h>

XmFontList XmFontListAppendEntry(
XmFontList oldlist,
XmFontListEntry entry);

Description

XmFontListAppendEntry creates a new font list that contains the contents ofoldlist.
This function copies the contents of the font list entry being added into this new font
list. If oldlist is NULL, XmFontListAppendEntry creates a new font list containing
only the single entry specified.

This function deallocates the original font list after extracting the required information.
The caller must free the font list entry by usingXmFontListEntryFree .

oldlist Specifies the font list to be added to

entry Specifies the font list entry to be added

Return Values

If entry is NULL, returnsoldlist; otherwise, returns a new font list.

Related Information

XmFontList (3), XmFontListEntryCreate (3), XmFontListEntryFree (3),
XmFontListEntryLoad (3), XmFontListFree(3), andXmFontListRemoveEntry(3).

1010

Xm Functions

XmFontListCopy(library call)

XmFontListCopy

Purpose A font list function that copies a font list

Synopsis #include <Xm/Xm.h>

XmFontList XmFontListCopy(
XmFontList fontlist);

Description

XmFontListCopy creates a new font list consisting of the contents of thefontlist
argument.

fontlist Specifies a font list to be copied

Return Values

Returns NULL if fontlist is NULL; otherwise, returns a new font list and allocates
space to hold the font list. The application is responsible for managing the allocated
space. The application can recover the allocated space by callingXmFontListFree.

Related Information

XmFontList (3) andXmFontListFree(3).

1011

Motif 2.1—Programmer’s Reference

XmFontListCreate(library call)

XmFontListCreate

Purpose A font list function that creates a font list

Synopsis #include <Xm/Xm.h>

XmFontList XmFontListCreate(
XFontStruct * font,
XmStringCharSet charset);

Description

XmFontListCreate creates a new font list with a single element specified by the
provided font and character set. It also allocates the space for the font list.

NOTE: This function is obsolete and exists for compatibility with previous releases.
It is replaced byXmFontListAppendEntry .

font Specifies a pointer to a font structure for which the new font list is
generated. This is the structure returned by the XLibXLoadQueryFont
function.

charset Specifies the character set identifier for the font. This can be
XmSTRING_DEFAULT_CHARSET , but this value does not comply
with the AES, and it may be removed in future versions of Motif. If
the value isXmSTRING_DEFAULT_CHARSET , the routine derives
the character set from the current language environment.

Return Values

Returns NULL if font or charsetis NULL; otherwise, returns a new font list.

1012

Xm Functions

XmFontListCreate(library call)

Related Information

XmFontList (3) andXmFontListAppendEntry (3).

1013

Motif 2.1—Programmer’s Reference

XmFontListEntryCreate(library call)

XmFontListEntryCreate

Purpose A font list function that creates a font list entry

Synopsis #include <Xm/Xm.h>

XmFontListEntry XmFontListEntryCreate(
char * tag,
XmFontType type,
XtPointer font);

Description

XmFontListEntryCreate creates a font list entry that contains either a font or font
set and is identified by a tag.

tag Specifies a NULL terminated string for the tag of the font list entry.
The tag may be specified asXmFONTLIST_DEFAULT_TAG , which
is used to identify the default font list element in a font list.

type Specifies whether thefont argument is a font structure or a font set.
Valid values areXmFONT_IS_FONT andXmFONT_IS_FONTSET.

font Specifies either anXFontSetreturned byXCreateFontSetor a pointer to
an XFontStructreturned byXLoadQueryFont.

The toolkit does not copy the X Font structure specified by thefont argument.
Therefore, an application programmer must not freeXFontStructor XFontSetuntil
all font lists and/or font entries that reference it have been freed.

Return Values

Returns a font list entry. The function allocates space to hold the returned font list
entry. The application is responsible for managing the allocated space. The application
can recover the allocated space by callingXmFontListEntryFree .

1014

Xm Functions

XmFontListEntryCreate(library call)

Related Information

XmFontList (3), XmFontListAppendEntry (3), XmFontListEntryFree (3),
XmFontListEntryGetFont (3), XmFontListEntryGetTag (3),
XmFontListEntryLoad (3), andXmFontListRemoveEntry(3).

1015

Motif 2.1—Programmer’s Reference

XmFontListEntryFree(library call)

XmFontListEntryFree

Purpose A font list function that recovers memory used by a font list entry

Synopsis #include <Xm/Xm.h>

void XmFontListEntryFree(
XmFontListEntry * entry);

Description

XmFontListEntryFree recovers memory used by a font list entry. This routine does
not free theXFontSetor XFontStructassociated with the font list entry.

entry Specifies a pointer to the font list entry to be freed. In addition, it may be
necessary to take the address of the font list entry (via the& operator)
before passing it to this function.

Related Information

XmFontList (3), XmFontListAppendEntry (3), XmFontListEntryCreate (3),
XmFontListEntryLoad (3), XmFontListNextEntry (3), and
XmFontListRemoveEntry(3).

1016

Xm Functions

XmFontListEntryGetFont(library call)

XmFontListEntryGetFont

Purpose A font list function that retrieves font information from a font list entry

Synopsis #include <Xm/Xm.h>

XtPointer XmFontListEntryGetFont(
XmFontListEntry entry,
XmFontType * type_return);

Description

XmFontListEntryGetFont retrieves font information for a specified font list entry. If
the font list entry contains a font,type_returnreturnsXmFONT_IS_FONT and the
function returns a pointer to anXFontStruct. If the font list entry contains a font set,
type_returnreturnsXmFONT_IS_FONTSET and the function returns theXFontSet.

entry Specifies the font list entry.

type_return Specifies a pointer to the type of the font element for the current entry.
Valid values areXmFONT_IS_FONT andXmFONT_IS_FONTSET.

The returnedXFontSetor XFontStructis not a copy of the toolkit data and must not
be freed.

Return Values

Returns anXFontSetor a pointer to anXFontStructstructure.

Related Information

XmFontList (3), XmFontListEntryCreate (3), XmFontListEntryGetTag (3)
XmFontListEntryLoad (3), andXmFontListNextEntry (3).

1017

Motif 2.1—Programmer’s Reference

XmFontListEntryGetTag(library call)

XmFontListEntryGetTag

Purpose A font list function that retrieves the tag of a font list entry

Synopsis #include <Xm/Xm.h>

char* XmFontListEntryGetTag(
XmFontListEntry entry);

Description

XmFontListEntryGetTag retrieves a copy of the tag of the specified font list entry.
This routine allocates memory for the tag string that must be freed by the application.

entry Specifies the font list entry

Return Values

Returns the tag for the font list entry. The function allocates space to hold the returned
tag. The application is responsible for managing the allocated space. The application
can recover the allocated space by callingXtFree.

Related Information

XmFontList (3), XmFontListEntryCreate (3), XmFontListEntryGetFont (3),
XmFontListEntryLoad (3), andXmFontListNextEntry (3).

1018

Xm Functions

XmFontListEntryLoad(library call)

XmFontListEntryLoad

Purpose A font list function that loads a font or creates a font set and creates an accompanying
font list entry

Synopsis #include <Xm/Xm.h>

XmFontListEntry XmFontListEntryLoad(
Display *display,
char * font_name,
XmFontType type,
char * tag);

Description

XmFontListEntryLoad loads a font or creates a font set based on the value of the
typeargument. It creates and returns a font list entry that contains the font or font set
and the specified tag.

If the value of type is XmFONT_IS_FONT, the function uses the
XtCvtStringToFontStruct routine to convert the value offont_name to a
font struct. If the value oftype is XmFONT_IS_FONTSET, the function uses
the XtCvtStringToFontSet converter to create a font set in the current locale.
XmFontListEntryLoad creates a font list entry that contains the font or font set
derived from the converter. For more information aboutXtCvtStringToFontStruct
andXtCvtStringToFontSet, seeX Toolkit Intrinsics—C Language Interface.

display Specifies the display where the font list will be used.

font_name Specifies an X Logical Font Description (XLFD) string, which is
interpreted either as a font name or as a base font name list. A base font
name list is a comma-separated and NULL-terminated string.

type Specifies whether thefont_nameargument refers to a font name or
to a base font name list. Valid values areXmFONT_IS_FONT and
XmFONT_IS_FONTSET.

1019

Motif 2.1—Programmer’s Reference

XmFontListEntryLoad(library call)

tag Specifies the tag of the font list entry to be created. The tag may
be specified asXmFONTLIST_DEFAULT_TAG , which is used to
identify the default font list element in a font list when specified as
part of a resource.

Return Values

If the specified font is not found, or if the specified font set cannot be created, then
either an implementation-defined font will be opened or a font set will be created,
and a warning messge will be generated. If no suitable font can be found or a font set
cannot be created, then another message will be generated and the function will return
NULL; otherwise the function returns a font list entry. If the function returns a font
list entry, the function allocates space to hold the font list entry. The application is
responsible for managing the allocated space. The application can recover the allocated
space by callingXmFontListEntryFree .

Related Information

XmFontList (3), XmFontListAppendEntry (3), XmFontListEntryCreate (3),
XmFontListEntryFree (3), XmFontListEntryGetFont (3),
XmFontListEntryGetTag (3), andXmFontListRemoveEntry(3).

1020

Xm Functions

XmFontListFree(library call)

XmFontListFree

Purpose A font list function that recovers memory used by a font list

Synopsis #include <Xm/Xm.h>

void XmFontListFree(
XmFontList list);

Description

XmFontListFree recovers memory used by a font list. This routine does not free the
XFontSetor XFontStructassociated with the specified font list.

list Specifies the font list to be freed

Related Information

XmFontList (3), XmFontListAppendEntry (3), XmFontListCopy (3), and
XmFontListRemoveEntry(3).

1021

Motif 2.1—Programmer’s Reference

XmFontListFreeFontContext(library call)

XmFontListFreeFontContext

Purpose A font list function that instructs the toolkit that the font list context is no longer
needed

Synopsis #include <Xm/Xm.h>

void XmFontListFreeFontContext(
XmFontContext context);

Description

XmFontListFreeFontContext instructs the toolkit that the context is no longer needed
and will not be used without reinitialization.

context Specifies the font list context structure that was allocated by the
XmFontListInitFontContext function

Related Information

XmFontListInitFontContext (3) andXmFontListNextEntry (3).

1022

Xm Functions

XmFontListGetNextFont(library call)

XmFontListGetNextFont

Purpose A font list function that allows applications to access the fonts and character sets in
a font list

Synopsis #include <Xm/Xm.h>

Boolean XmFontListGetNextFont(
XmFontContext context,
XmStringCharSet *charset,
XFontStruct ** font);

Description

XmFontListGetNextFont accesses the character set and font for the next entry of the
font list. The application first uses theXmFontListInitFontContext routine to create
a font list context. The application then callsXmFontListGetNextFont repeatedly
with the same context. Each succeeding call accesses the next element of the font
list. When finished, the application callsXmFontListFreeFontContext to free the
allocated font list context.

This routine allocates memory for the character set string that must be freed by the
application. The function allocates memory forcharset. The application is responsible
for managing the allocated memory. The application can recover the allocated memory
by calling XtFree.

This function is obsolete and exists for compatibility with previous releases. It is
replaced byXmFontListNextEntry . If XmFontListGetNextFont is passed a context
that contains a font set entry, it will return the first font of the font set. The next call
to the function will move to the next entry in the font list.

context Specifies the font list context

charset Specifies a pointer to a character set string; the routine returns the
character set for the current font list element

1023

Motif 2.1—Programmer’s Reference

XmFontListGetNextFont(library call)

font Specifies a pointer to a pointer to a font structure; the routine returns
the font for the current font list element

Return Values

Returns True if the returned values are valid; otherwise, returns False.

Related Information

XmFontList (3) andXmFontListNextEntry (3).

1024

Xm Functions

XmFontListInitFontContext(library call)

XmFontListInitFontContext

Purpose A font list function that allows applications to access the entries in a font list

Synopsis #include <Xm/Xm.h>

Boolean XmFontListInitFontContext(
XmFontContext *context,
XmFontList fontlist);

Description

XmFontListInitFontContext establishes a context to allow applications to access the
contents of a font list. This context is used when reading the font list entry tag, font,
or font set associated with each entry in the font list. A Boolean status is returned to
indicate whether or not the font list is valid.

If an application deallocates the font list passed toXmFontListInitFontContext as
the fontlist argument, the context established by this function is rendered no longer
valid.

context Specifies a pointer to the allocated context

fontlist Specifies the font list

Return Values

Returns True if the context was allocated; otherwise, returns False. If the function
allocated a context, the application is responsible for managing the allocated space. The
application can recover the allocated space by callingXmFontListFreeFontContext.

Related Information

XmFontList (3), XmFontListFreeFontContext(3), andXmFontListNextEntry (3).

1025

Motif 2.1—Programmer’s Reference

XmFontListNextEntry(library call)

XmFontListNextEntry

Purpose A font list function that returns the next entry in a font list

Synopsis #include <Xm/Xm.h>

XmFontListEntry XmFontListNextEntry(
XmFontContext context);

Description

XmFontListNextEntry returns the next entry in the font list. The application uses
the XmFontListInitFontContext routine to create a font list context. The first call
to XmFontListNextEntry sets the context to the first entry in the font list. The
application then callsXmFontListNextEntry repeatedly with the same context. Each
succeeding call accesses the next entry of the font list. When finished, the application
calls XmFontListFreeFontContext to free the allocated font list context.

context Specifies the font list context

Return Values

Returns NULL if the context does not refer to a valid entry or if it is at the end of
the font list; otherwise, it returns a font list entry. If the function does return a font
list entry, the font list entry is not a copy. Therefore, the application should not free
the returned font list entry.

Related Information

XmFontList (3), XmFontListEntryFree (3), XmFontListEntryGetFont (3),
XmFontListEntryGetTag (3), XmFontListFreeFontContext(3), and
XmFontListInitFontContext (3).

1026

Xm Functions

XmFontListRemoveEntry(library call)

XmFontListRemoveEntry

Purpose A font list function that removes a font list entry from a font list

Synopsis #include <Xm/Xm.h>

XmFontList XmFontListRemoveEntry(
XmFontList oldlist,
XmFontListEntry entry);

Description

XmFontListRemoveEntry creates a new font list that contains the contents ofoldlist
minus those entries specified inentry. The routine removes any entries fromoldlist
that match the components (tag, type font/font set) of the specified entry. The function
deallocates the original font list after extracting the required information. The caller
usesXmFontListEntryFree to recover memory allocated for the specified entry. This
routine does not free theXFontSetor XFontStructassociated with the font list entry
that is removed.

oldlist Specifies the font list

entry Specifies the font list entry to be removed

Return Values

If oldlist is NULL, the function returns NULL. Ifentry is NULL or no entries are
removed, the function returnsoldlist. Otherwise, it returns a new font list. If the
function returns a new font list, the function allocates space to hold the new font list.
The application is responsible for managing the allocated space. The application can
recover the allocated space by callingXmFontListFree.

1027

Motif 2.1—Programmer’s Reference

XmFontListRemoveEntry(library call)

Related Information

XmFontList (3), XmFontListAppendEntry (3), XmFontListEntryCreate (3),
XmFontListEntryFree (3), XmFontListEntryLoad (3), andXmFontListFree(3).

1028

Xm Functions

XmGetAtomName(library call)

XmGetAtomName

Purpose A function that returns the string representation for an atom

Synopsis #include <Xm/Xm.h>
#include <Xm/AtomMgr.h>

String XmGetAtomName(
Display * display,
Atom atom);

Description

XmGetAtomName returns the string representation for an atom. It mirrors theXlib
interfaces for atom management but provides client-side caching. When and where
caching is provided inXlib, the routines will become pseudonyms for theXlib routines.

display Specifies the connection to the X server

atom Specifies the atom for the property name you want returned

Return Values

Returns a string. The function allocates space to hold the returned string. The
application is responsible for managing the allocated space. The application can
recover the allocated space by callingXFree.

1029

Motif 2.1—Programmer’s Reference

XmGetColorCalculation(library call)

XmGetColorCalculation

Purpose A function to get the procedure used for default color calculation

Synopsis #include <Xm/Xm.h>

XmColorProc XmGetColorCalculation(
void);

Description

XmGetColorCalculation returns the procedure being used to calculate default colors.

For a description ofXmColorProc, seeXmSetColorCalculation(3).

Return Values

Returns the procedure used for default color calculation.

Related Information

XmChangeColor(3), XmGetColors(3), andXmSetColorCalculation(3).

1030

Xm Functions

XmGetColors(library call)

XmGetColors

Purpose A function that generates foreground, select, and shadow colors

Synopsis #include <Xm/Xm.h>

void XmGetColors(
Screen* screen,
Colormap colormap,
Pixel background,
Pixel * foreground,
Pixel * top_shadow,
Pixel * bottom_shadow,
Pixel * select);

Description

XmGetColors takes a screen, a colormap, and a background pixel, and returns pixel
values for foreground, select, and shadow colors.

screen Specifies the screen for which these colors should be allocated.

colormap Specifies the colormap from which these colors should be allocated.

background Specifies the background on which the colors should be based.

foreground Specifies a pointer to the returned foreground pixel value. If this
argument is NULL, no value is allocated or returned for this color.

top_shadow Specifies a pointer to the returned top shadow pixel value. If this
argument is NULL, no value is allocated or returned for this color.

bottom_shadow
Specifies a pointer to the returned bottom shadow pixel value. If this
argument is NULL, no value is allocated or returned for this color.

select Specifies a pointer to the returned select pixel value. If this argument is
NULL, no value is allocated or returned for this color.

1031

Motif 2.1—Programmer’s Reference

XmGetColors(library call)

Related Information

XmChangeColor(3), XmGetColorCalculation(3), andXmSetColorCalculation(3).

1032

Xm Functions

XmGetDestination(library call)

XmGetDestination

Purpose A function that returns the widget ID of the widget to be used as the current destination
for quick paste and certain clipboard operations

Synopsis #include <Xm/Xm.h>

Widget XmGetDestination(
Display *display);

Description

XmGetDestination returns the widget that is the current destination on the specified
display. The destination is generally the last editable widget on which a select, edit,
insert, or paste operation was performed and is the destination for quick paste and
certain clipboard functions. The destination is NULL until a keyboard or mouse
operation has been done on an editable widget. Refer to theMotif 2.1—Programmer’s
Guide for a description of keyboard focus.

display Specifies the display whose destination widget is to be queried

Return Values

Returns the widget ID for the current destination or NULL if there is no current
destination.

1033

Motif 2.1—Programmer’s Reference

XmGetDragContext(library call)

XmGetDragContext

Purpose A Drag and Drop function that retrieves the DragContext widget ID associated with
a timestamp

Synopsis #include <Xm/DragC.h>

Widget XmGetDragContext(
Widget refwidget,
Time timestamp);

Description

XmGetDragContext returns the widget ID of the active DragContext associated with
a given display and timestamp. A timestamp uniquely identifies which DragContext is
active when more than one drag and drop transaction has been initiated on a display. If
the specified timestamp matches a timestamp processed between the start and finish of
a single drag and drop transaction, the function returns the corresponding DragContext
ID.

refwidget Specifies the ID of the widget that the routine uses to identify the
intended display. The function returns the ID of the DragContext
associated with the display value passed by this widget.

timestamp Specifies a timestamp.

For a complete definition of DragContext and its associated resources, see
XmDragContext(3).

Return Values

Returns the ID of the DragContext widget that is active for the specified timestamp.
Otherwise, returns NULL if no active DragContext is found.

1034

Xm Functions

XmGetDragContext(library call)

Related Information

XmDragContext(3).

1035

Motif 2.1—Programmer’s Reference

XmGetFocusWidget(library call)

XmGetFocusWidget

Purpose Returns the ID of the widget that has keyboard focus

Synopsis #include <Xm/Xm.h>

Widget XmGetFocusWidget(
Widget widget);

Description

XmGetFocusWidget examines the hierarchy that contains the specified widget and
returns the ID of the widget that has keyboard focus. The function extracts the widget
ID from the associated Shell widget; therefore, the specified widget can be located
anywhere in the hierarchy.

widget Specifies a widget ID within a given hierarchy

Return Values

Returns the ID of the widget with keyboard focus. If no child of the Shell has focus,
the function returns NULL.

Related Information

XmProcessTraversal(3).

1036

Xm Functions

XmGetMenuCursor(library call)

XmGetMenuCursor

Purpose A function that returns the cursor ID for the current menu cursor

Synopsis #include <Xm/Xm.h>

Cursor XmGetMenuCursor(
Display * display);

Description

XmGetMenuCursor queries the menu cursor currently being used by this client on
the specified display and returns the cursor ID. This function returns the menu cursor
for the default screen of the display.

NOTE: XmGetMenuCursor is obsolete and exists for compatibility with previous
releases. Instead of using this function, callXtGetValues for the XmScreen resource
XmNmenuCursor.

display Specifies the display whose menu cursor is to be queried

Return Values

Returns the cursor ID for the current menu cursor or the value None if a cursor is not
yet defined. A cursor will not be defined if the application makes this call before the
client has created any menus on the specified display.

Related Information

XmScreen(3).

1037

Motif 2.1—Programmer’s Reference

XmGetPixmap(library call)

XmGetPixmap

Purpose A pixmap caching function that generates a pixmap, stores it in a pixmap cache, and
returns the pixmap

Synopsis #include <Xm/Xm.h>

Pixmap XmGetPixmap(
Screen *screen,
char * image_name,
Pixel foreground,
Pixel background);

Description

XmGetPixmap uses the parameter data to perform a lookup in the pixmap cache to
see if a pixmap has already been generated that matches the data. If one is found, a
reference count is incremented and the pixmap is returned. Applications should use
XmDestroyPixmap when the pixmap is no longer needed.

screen Specifies the display screen on which the pixmap is to be drawn. The
depth of the pixmap is the default depth for this screen.

image_nameSpecifies the name of the image to be used to generate the pixmap

foreground Combines the image with theforegroundcolor to create the pixmap if
the image referenced is a bit-per-pixel image

background Combines the image with thebackgroundcolor to create the pixmap if
the image referenced is a bit-per-pixel image

If a pixmap is not found,image_nameis used to perform a lookup in the image
cache. If an image is found, it is used to generate the pixmap, which is then cached
and returned.

If an image is not found, theimage_nameis used as a filename, and a search is made
for an X10 or X11 bitmap file. If it is found, the file is read, converted into an image,

1038

Xm Functions

XmGetPixmap(library call)

and cached in the image cache. The image is then used to generate a pixmap, which
is cached and returned.

If image_namehas a leading slash (/), it specifies a full pathname, andXmGetPixmap
opens the file as specified. Otherwise,image_namespecifies a filename. In this
case, XmGetPixmap looks for the file along a search path specified by the
XBMLANGPATH environment variable or by a default search path, which varies
depending on whether or not theXAPPLRESDIR environment variable is set. The
default search path contains a lot of directories. Therefore,XmGetPixmap will need
a relatively long time to search through all these directories for pixmaps and bitmaps.
Applications that use a lot of pixmaps and bitmaps will probably run more quickly if
XBMLANGPATH is set to a short list of directories. In addition to X bitmap files
(XBM), Motif also supports XPM (X Pixmap) file formats. TheXBMLANGPATH
specifies the path for both XBM and XPM files. Refer to theXmGetPixmapByDepth
reference page for further details.

The XBMLANGPATH environment variable specifies a search path for X bitmap
files. It can contain the substitution field%B , where theimage_nameargument to
XmGetPixmap is substituted for%B . It can also contain the substitution fields
accepted byXtResolvePathname. The substitution field%T is always mapped to
bitmaps, and%S is always mapped to NULL.

If XBMLANGPATH is not set but the environment variableXAPPLRESDIR is set,
the following pathnames are searched:

• %B

• $XAPPLRESDIR/%L/bitmaps/%N/%B

• $XAPPLRESDIR/%l_%t/bitmaps/%N/%B

• $XAPPLRESDIR/%l/bitmaps/%N/%B

• $XAPPLRESDIR/bitmaps/%N/%B

• $XAPPLRESDIR/%L/bitmaps/%B

• $XAPPLRESDIR/%l_%t/bitmaps/%B

• $XAPPLRESDIR/%l/bitmaps/%B

• $XAPPLRESDIR/bitmaps/%B

• $HOME/bitmaps/%B

• $HOME/%B

1039

Motif 2.1—Programmer’s Reference

XmGetPixmap(library call)

• /usr/lib/X11/%L/bitmaps/%N/%B

• /usr/lib/X11/%l_%t/bitmaps/%N/%B

• /usr/lib/X11/%l/bitmaps/%N/%B

• /usr/lib/X11/bitmaps/%N/%B

• /usr/lib/X11/%L/bitmaps/%B

• /usr/lib/X11/%l_%t/bitmaps/%B

• /usr/lib/X11/%l/bitmaps/%B

• /usr/lib/X11/bitmaps/%B

• /usr/include/X11/bitmaps/%B

If neither XBMLANGPATH nor XAPPLRESDIR is set, the following pathnames
are searched:

• %B

• $HOME/%L/bitmaps/%N/%B

• $HOME/%l_%t/bitmaps/%N/%B

• $HOME/%l/bitmaps/%N/%B

• $HOME/bitmaps/%N/%B

• $HOME/%L/bitmaps/%B

• $HOME/%l_%t/bitmaps/%B

• $HOME/%l/bitmaps/%B

• $HOME/bitmaps/%B

• $HOME/%B

• /usr/lib/X11/%L/bitmaps/%N/%B

• /usr/lib/X11/%l_%t/bitmaps/%N/%B

• /usr/lib/X11/%l/bitmaps/%N/%B

• /usr/lib/X11/bitmaps/%N/%B

• /usr/lib/X11/%L/bitmaps/%B

• /usr/lib/X11/%l_%t/bitmaps/%B

1040

Xm Functions

XmGetPixmap(library call)

• /usr/lib/X11/%l/bitmaps/%B

• /usr/lib/X11/bitmaps/%B

• /usr/include/X11/bitmaps/%B

These paths are defaults that vendors may change. For example, a vendor may use
different directories for/usr/lib/X11 and /usr/include/X11.

The following substitutions are used in these paths:

%B The image name, from theimage_nameargument

%N The class name of the application

%L The display’s language string. This string is influenced by
XtSetLanguageProc. The default string is determined by calling
setlocale(LC_ALL, NULL).

%l_%t The language and territory component of the display’s language string

%l The language component of the display’s language string

The contents of the file must conform to the rules for X11 bitmap files. In other words,
Motif can read any X11 conformant bitmap file.

Return Values

Returns a pixmap when successful; returnsXmUNSPECIFIED_PIXMAP if the
image corresponding toimage_namecannot be found.

Related Information

XmDestroyPixmap(3), XmGetPixmapByDepth(3), XmInstallImage(3), and
XmUninstallImage(3).

1041

Motif 2.1—Programmer’s Reference

XmGetPixmapByDepth(library call)

XmGetPixmapByDepth

Purpose A pixmap caching function that generates a pixmap, stores it in a pixmap cache, and
returns the pixmap

Synopsis #include <Xm/Xm.h>

Pixmap XmGetPixmapByDepth(
Screen *screen,
char * image_name,
Pixel foreground,
Pixel background,
int depth);

Description

XmGetPixmapByDepth uses the parameter data to perform a lookup in the pixmap
cache to see if a pixmap has already been generated that matches the data. If one
is found, a reference count is incremented and the pixmap is returned. Applications
should useXmDestroyPixmap when the pixmap is no longer needed.

screen Specifies the display screen on which the pixmap is to be drawn

image_nameSpecifies the name of the image to be used to generate the pixmap

foreground Combines the image with theforegroundcolor to create the pixmap if
the image referenced is a bit-per-pixel image

background Combines the image with thebackgroundcolor to create the pixmap if
the image referenced is a bit-per-pixel image

depth Specifies the depth of the pixmap

If a matching pixmap is not found,image_nameis used to perform a lookup in the
image cache. If an image is found, it is used to generate the pixmap, which is then
cached and returned.

1042

Xm Functions

XmGetPixmapByDepth(library call)

If an image is not found,image_nameis used as a filename, and a search is made for
an X10 or X11 bitmap file. If it is found, the file is read, converted into an image,
and cached in the image cache. The image is then used to generate a pixmap, which
is cached and returned.

If image_namehas a leading / (slash), it specifies a full pathname, and
XmGetPixmapByDepth opens the file as specified. Otherwise,image_namespecifies
a filename. In this case,XmGetPixmapByDepth looks for the file along a search
path specified by theXBMLANGPATH environment variable or by a default search
path, which varies depending on whether or not theXAPPLRESDIR environment
variable is set. The default search path contains a lot of directories. Therefore,
XmGetPixmapByDepth will need a relatively long time to search through all these
directories for pixmaps and bitmaps. Applications that use a lot of pixmaps and
bitmaps will probably run more quickly ifXBMLANGPATH is set to a short list
of directories. In addition to X bitmap files (XBM), Motif also supports XPM (X
Pixmap) file formats. TheXBMLANGPATH specifies the path for both XBM and
XPM files. XPM files are described in more detail later in this reference page.

The XBMLANGPATH environment variable specifies a search path for X bitmap
files. It can contain the substitution field%B , where theimage_nameargument to
XmGetPixmapByDepth is substituted for%B . It can also contain the substitution
fields accepted byXtResolvePathname. The substitution field%T is always mapped
to bitmaps, and%S is always mapped to NULL.

If XBMLANGPATH is not set, but the environment variableXAPPLRESDIR is set,
the following pathnames are searched:

• %B

• $XAPPLRESDIR/%L/bitmaps/%N/%B

• $XAPPLRESDIR/%l_%t/bitmaps/%N/%B

• $XAPPLRESDIR/%l/bitmaps/%N/%B

• $XAPPLRESDIR/bitmaps/%N/%B

• $XAPPLRESDIR/%L/bitmaps/%B

• $XAPPLRESDIR/%l_%t/bitmaps/%B

• $XAPPLRESDIR/%l/bitmaps/%B

• $XAPPLRESDIR/bitmaps/%B

• $HOME/bitmaps/%B

1043

Motif 2.1—Programmer’s Reference

XmGetPixmapByDepth(library call)

• $HOME/%B

• /usr/lib/X11/%L/bitmaps/%N/%B

• /usr/lib/X11/%l_%t/bitmaps/%N/%B

• /usr/lib/X11/%l/bitmaps/%N/%B

• /usr/lib/X11/bitmaps/%N/%B

• /usr/lib/X11/%L/bitmaps/%B

• /usr/lib/X11/%l_%t/bitmaps/%B

• /usr/lib/X11/%l/bitmaps/%B

• /usr/lib/X11/bitmaps/%B

• /usr/include/X11/bitmaps/%B

If neither XBMLANGPATH nor XAPPLRESDIR is set, the following pathnames
are searched:

• %B

• $HOME/%L/bitmaps/%N/%B

• $HOME/%l_%t/bitmaps/%N/%B

• $HOME/%l/bitmaps/%N/%B

• $HOME/bitmaps/%N/%B

• $HOME/%L/bitmaps/%B

• $HOME/%l_%t/bitmaps/%B

• $HOME/%l/bitmaps/%B

• $HOME/bitmaps/%B

• $HOME/%B

• /usr/lib/X11/%L/bitmaps/%N/%B

• /usr/lib/X11/%l_%t/bitmaps/%N/%B

• /usr/lib/X11/%l/bitmaps/%N/%B

• /usr/lib/X11/bitmaps/%N/%B

• /usr/lib/X11/%L/bitmaps/%B

1044

Xm Functions

XmGetPixmapByDepth(library call)

• /usr/lib/X11/%l_%t/bitmaps/%B

• /usr/lib/X11/%l/bitmaps/%B

• /usr/lib/X11/bitmaps/%B

• /usr/include/X11/bitmaps/%B

These paths are defaults that vendors may change. For example, a vendor may use
different directories for/usr/lib/X11 and /usr/include/X11.

The following substitutions are used in these paths:

%B The image name, from theimage_nameargument

%N The class name of the application

%L The display’s language string. This string is influenced by
XtSetLanguageProc. The default string is determined by calling
setlocale(LC_ALL, NULL).

%l_%t The language and territory component of the display’s language string

%l The language component of the display’s language string

The contents of the file must conform to the rules for X11 bitmap files. In other words,
Motif can read any X11 conformant bitmap file.

The XPM file format is used for storing or getting back colored X pixmaps from
files. The XPM library is provided as unsupported with Motif. To build applications
without XPM, use theNO_XPMmacro. The following shows both XBM and XPM
files, respectively, for a plaid pattern.

/* XBM file */

#define plaid_width 22

#define plaid_height 22

#define plaid_x_hot -1

#define plaid_y_hot -1

static char plaid_bits[] = {

0x75, 0xfd, 0x3f, 0xaa, 0xfa, 0x3e, 0x75, 0xfd, 0x3f, 0xaa, 0xfa, 0x3e,

0x75, 0xfd, 0x3f, 0xff, 0x57, 0x15, 0x75, 0xfd, 0x3f, 0xaa, 0xfa, 0x3e,

0x75, 0xfd, 0x3f, 0xaa, 0xfa, 0x3e, 0x75, 0xfd, 0x3f, 0x20, 0xa8, 0x2b,

0x20, 0x50, 0x15, 0x20, 0xa8, 0x2b, 0x20, 0x50, 0x15, 0x20, 0xa8, 0x2b,

0xff, 0xff, 0x3f, 0x20, 0xa8, 0x2b, 0x20, 0x50, 0x15, 0x20, 0xa8, 0x2b,

0x20, 0x50, 0x15, 0x20, 0xa8, 0x2b};

1045

Motif 2.1—Programmer’s Reference

XmGetPixmapByDepth(library call)

/* XPM file */

static char * plaid[] = {

/* plaid pixmap

* width height ncolors chars_per_pixel */

"22 22 4 2 ",

/* colors */

" c red m white s light_color ",

"Y c green m black s lines_in_mix ",

"+ c yellow m white s lines_in_dark ",

"x m black s dark_color ",

/* pixels */

"x x x x x x x x x x x x + x x x x x ",

" x x x x x x x x x x x x x x x x ",

"x x x x x x x x x x x x + x x x x x ",

" x x x x x x x x x x x x x x x x ",

"x x x x x x x x x x x x + x x x x x ",

"Y Y Y Y Y x Y Y Y Y Y + x + x + x + x + x + ",

"x x x x x x x x x x x x + x x x x x ",

" x x x x x x x x x x x x x x x x ",

"x x x x x x x x x x x x + x x x x x ",

" x x x x x x x x x x x x x x x x ",

"x x x x x x x x x x x x + x x x x x ",

" x x x x Y x x x ",

" x x x Y x x ",

" x x x x Y x x x ",

"x ",

" x x x x Y x x x ",

" x x x Y x x ",

" x x x x Y x x x ",

" x x x Y x x ",

" x x x x Y x x x "

};

Return Values

Returns a pixmap when successful; returnsXmUNSPECIFIED_PIXMAP if the
image corresponding toimage_namecannot be found.

1046

Xm Functions

XmGetPixmapByDepth(library call)

Related Information

XmDestroyPixmap(3), XmInstallImage(3), andXmUninstallImage(3).

1047

Motif 2.1—Programmer’s Reference

XmGetPostedFromWidget(library call)

XmGetPostedFromWidget

Purpose A RowColumn function that returns the widget from which a menu was posted

Synopsis #include <Xm/RowColumn.h>

Widget XmGetPostedFromWidget(
Widget menu);

Description

XmGetPostedFromWidget returns the widget from which a menu was posted. For
torn-off menus, this function returns the widget from which the menu was originally
torn. An application can use this routine during the activate callback to determine the
context in which the menu callback should be interpreted.

menu Specifies the widget ID of the menu

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Return Values

Returns the widget ID of the widget from which the menu was posted. If the menu is a
Popup Menu, the returned widget is the widget from which the menu was popped up.
If the menu is a Pulldown Menu, the returned widget is the MenuBar or OptionMenu
from which the widget was pulled down.

Related Information

XmRowColumn(3).

1048

Xm Functions

XmGetSecondaryResourceData(library call)

XmGetSecondaryResourceData

Purpose A function that provides access to secondary widget resource data

Synopsis #include <Xm/Xm.h>

Cardinal XmGetSecondaryResourceData(
WidgetClasswidget_class,
XmSecondaryResourceData **secondary_data_return);

Description

Some Motif widget classes (such as Gadget, Text, and VendorShell) have
resources that are not accessible through the functionsXtGetResourceList and
XtGetConstraintResourceList. In order to retrieve the descriptions of these
resources, an application must useXmGetSecondaryResourceData.

When a widget class has such resources, this function provides descriptions of the
resources in one or more data structures.XmGetSecondaryResourceDatatakes a
widget class argument and returns the number of these data structures associated with
the widget class. If the return value is greater than 0 (zero), the function allocates and
fills an array of pointers to the corresponding data structures. It returns this array at
the address that is the value of thesecondary_data_returnargument.

The type XmSecondaryResourceData is a pointer to a structure with two
members that are useful to an application:resources, of type XtResourceList, and
num_resources, of type Cardinal . The resourcesmember is a list of the widget
resources that are not accessible using Xt functions. Thenum_resourcesmember is
the length of theresourceslist.

If the return value is greater than 0 (zero),XmGetSecondaryResourceDataallocates
memory that the application must free. UseXtFree to free the resource list in each
structure (the value of theresourcesmember), the structures themselves, and the array
of pointers to the structures (the array whose address issecondary_data_return).

widget_classSpecifies the widget class for which secondary resource data is to be
retrieved.

1049

Motif 2.1—Programmer’s Reference

XmGetSecondaryResourceData(library call)

secondary_data_return
Specifies a pointer to an array ofXmSecondaryResourceDatapointers
to be returned by this function. If the widget class has no secondary
resource data, for example, if the value returned by the function is 0
(zero), the function returns no meaningful value for this argument.

Return Values

Returns the number of secondary resource data structures associated with this widget
class.

Examples

The following example usesXmGetSecondaryResourceDatato print the names of
the secondary resources of the Motif Text widget and then frees the data allocated by
the function:

XmSecondaryResourceData * block_array;

Cardinal num_blocks, i, j;

if (num_blocks = XmGetSecondaryResourceData (xmTextWidgetClass,

&block_array)) {

for (i = 0; i < num_blocks; i++) {

for (j = 0; j < block_array[i]->num_resources; j++) {

printf("%s\n", block_array[i]->resources[j].resource_name);

}

XtFree((char*)block_array[i]->resources);

XtFree((char*)block_array[i]);

}

XtFree((char*)block_array);

}

1050

Xm Functions

XmGetTabGroup(library call)

XmGetTabGroup

Purpose Returns the widget ID of a tab group

Synopsis #include <Xm/Xm.h>

Widget XmGetTabGroup(
Widget widget);

Description

XmGetTabGroup returns the widget ID of the tab group that contains the specified
widget.

widget Specifies a widget ID within a tab group

Return Values

Returns the widget ID of a tab group or shell, determined as follows:

• If widget is a tab group or shell, returnswidget

• If neither widgetnor any ancestor up to the nearest shell is a tab group, returns
the nearest ancestor ofwidget that is a shell

• Otherwise, returns the nearest ancestor ofwidget that is a tab group

Related Information

XmAddTabGroup (3), XmManager(3), andXmPrimitive (3).

1051

Motif 2.1—Programmer’s Reference

XmGetTearOffControl(library call)

XmGetTearOffControl

Purpose A RowColumn function that obtains the widget ID for the tear-off control in a menu

Synopsis #include <Xm/RowColumn.h>

Widget XmGetTearOffControl(
Widget menu);

Description

XmGetTearOffControl provides the application with the means for obtaining the
widget ID of the internally created tear-off control in a tear-off menu.

RowColumn creates a tear-off control for a PulldownMenu or PopupMenu when the
XmNtearOffModel resource is initialized or set toXmTEAR_OFF_ENABLED . The
tear-off control is a widget that appears as the first element in the menu. The user
tears off the menu by means of mouse or keyboard events in the tear-off control.

The tear-off control has Separator-like behavior. Once the application has obtained
the widget ID of the tear-off control, it can set resources to specify the appearance of
the control. The application or user can also set these resources in a resource file by
using the name of the control, which isTearOffControl . For a list of the resources
the application or user can set, seeXmRowColumn(3).

menu Specifies the widget ID of the RowColumn PulldownMenu or
PopupMenu

For more information on tear-off menus and a complete definition of RowColumn and
its associated resources, seeXmRowColumn(3).

Return Values

Returns the widget ID for the tear-off control, or NULL if no tear-off control exists.
An application should not assume that the returned widget will be of any particular
class.

1052

Xm Functions

XmGetTearOffControl(library call)

Related Information

XmRowColumn(3).

1053

Motif 2.1—Programmer’s Reference

XmGetVisibility(library call)

XmGetVisibility

Purpose A function that determines if a widget is visible

Synopsis #include <Xm/Xm.h>

XmVisibility XmGetVisibility(
Widget widget);

Description

XmGetVisibility returns the visibility state of the specified widget. It checks to
see if some part of the widget’s rectangular area is unobscured by the widget’s
ancestors, or some part of the widget’s rectangular area is inside the work window (but
possibly outside the clip window) of a ScrolledWindow whoseXmNscrollingPolicy
is XmAUTOMATIC and whoseXmNtraverseObscuredCallback is not NULL.

XmGetVisibility does not check to see ifwidget is obscured by its siblings
or by siblings of its ancestors. Consequently,XmGetVisibility returns
XmVISIBILITY_UNOBSCURED for widgets which are completely or
partially covered by one or more siblings ofwidget by one or more siblings of
ancestors ofwidget.

When a widget which is unrealized is being queried, it is indicated that
the widget is fully obscured. If an application unmaps awidget that has its
XmNmappedWhenManaged resource set to True, the return value is undefined.
When a widget which is unmanaged is being queried, it is indicated that the widget
is fully obscured.

widget Specifies the ID of the widget

Return Values

Returns one of the following values:

1054

Xm Functions

XmGetVisibility(library call)

XmVISIBILITY_UNOBSCURED
Indicates that the widget is mapped, not obscured, and is completely
visible on the screen.

XmVISIBILITY_PARTIALLY_OBSCURED
Indicates that the widget is mapped, and is not completely visible on
the screen (partially obscured).

XmVISIBILITY_FULLY_OBSCURED
Indicates that the widget is not at all visible on the screen.

Related Information

XmIsTraversable(3), XmManager(3), andXmProcessTraversal(3).

1055

Motif 2.1—Programmer’s Reference

XmGetXmDisplay(library call)

XmGetXmDisplay

Purpose A Display function that returns the XmDisplay object ID for a specified display

Synopsis #include <Xm/Display.h>

Widget XmGetXmDisplay(
Display *display);

Description

XmGetXmDisplay returns theXmDisplay object ID associated with a display. The
application can access Display resources withXtGetValues.

display Specifies the display for which theXmDisplay object ID is to be
returned

For a complete definition of Display and its associated resources, seeXmDisplay(3).

Return Value

Returns theXmDisplay object ID for the specified display.

Related Information

XmDisplay(3).

1056

Xm Functions

XmGetXmScreen(library call)

XmGetXmScreen

Purpose A Screen function that returns the XmScreen object ID for a specified screen

Synopsis #include <Xm/Screen.h>

Widget XmGetXmScreen(
Screen *screen);

Description

XmGetXmScreen returns theXmScreen object ID associated with a screen. The
application can access and manipulate Screen resources withXtGetValues and
XtSetValues.

screen Specifies the screen for which theXmScreen ID is to be returned

For a complete definition of Screen and its associated resources, seeXmScreen(3).

Return Values

Returns theXmScreenobject ID.

Related Information

XmScreen(3).

1057

Motif 2.1—Programmer’s Reference

XmImCloseXIM(library call)

XmImCloseXIM

Purpose An input manager function that releases the input method associated with a specified
widget

Synopsis #include <Xm/XmIm.h>

void XmImCloseXIM(
Widget widget);

Description

XmImCloseXIM closes all input contexts associated with the Input Method (IM)
of widget. widget is used to identify the Display that specifies the Input Method
opened for the widget. Upon closure, all widgets registered with the input contexts
are unregistered. Also, the Input Method specified by Display is closed.

widget Specifies the ID of a widget whose reference Input Method is to be
closed.

Related Information

XmImGetXIM (3) andXmImRegister(3).

1058

Xm Functions

XmImFreeXIC(library call)

XmImFreeXIC

Purpose An input manager function that unregisters widgets for an XIC

Synopsis #include <Xm/XmIm.h>

void XmImFreeXIC(
Widget widget,
XIC xic);

Description

XmImFreeXIC unregisters all widgets associated with the specified X Input Context
(XIC). The specifiedwidgetmust be associated with the specifiedxic.

After unregistering the associated widgets, this call frees thexic.

widget Specifies the ID of a widget used to identify theVendorShell and
XmDisplay that maintain the widget-XIC registry.

xic Specifies the Input Context associated with the widget.

Related Information

XmImGetXIC (3) andXmImSetXIC (3).

1059

Motif 2.1—Programmer’s Reference

XmImGetXIC(library call)

XmImGetXIC

Purpose An input manager function that obtains an XIC for a widget

Synopsis #include <Xm/XmIm.h>

XIC XmImGetXIC(
Widget widget,
XmInputPolicy input_policy,
ArgList args,
Cardinal num_args);

Description

XmImGetXIC creates and registers an X Input Context (XIC) with the specified
arguments forwidget. If XmINHERIT_POLICY is specified forinput_policy, a new
XIC will be created only if required to by the arguments or by theVendorShell input
policy. Any existing XIC registered withwidget is unregistered.

Refer to theVendorShell reference page for further details.

widget Specifies the ID of a widget for which an Input Context is to be created.

input_policy Specifies the type of input policy. It accepts the following values:

XmINHERIT_POLICY
Inherits the policy fromVendorShell.

XmPER_WIDGET
Creates a new XIC for this widget.

XmPER_SHELL
Creates a new XIC for the shell, if needed.

args Specifies anXtArgList parameter to use for creating the XIC.

num_args Specifies the number of arguments in theargs parameter.

1060

Xm Functions

XmImGetXIC(library call)

Return Values

Returns the created XIC. The application is responsible for freeing the returned XIC
by calling XmImFreeXIC .

Related Information

XmImSetXIC (3) andXmImFreeXIC (3).

1061

Motif 2.1—Programmer’s Reference

XmImGetXIM(library call)

XmImGetXIM

Purpose An input manager function that retrieves the input method associated with a specified
widget

Synopsis #include <Xm/XmIm.h>

XIM XmImGetXIM(
Widget widget);

Description

XmImGetXIM retrieves the XIM data structure representing the input method that
the input manager has opened for the specified widget. If an input method has not
been opened by a previous call toXmImRegister, the first time this routine is called it
opens an input method using theXmNinputMethod resource for the VendorShell. If
the XmNinputMethod is NULL, an input method is opened using the current locale.
If it cannot open an input method, the function returns NULL.

widget Specifies the ID of a widget registered with the input manager

Return Values

Returns the input method for the current locale associated with the specified widget’s
input manager; otherwise, returns NULL. The application is responsible for freeing
the returned XIM by callingXmImCloseXIM .

Related Information

XmImCloseXIM (3), XmImGetXIM (3), XmImMbLookupString (3), and
XmImRegister(3).

1062

Xm Functions

XmImMbLookupString(library call)

XmImMbLookupString

Purpose An input manager function that retrieves a composed string from an input method

Synopsis #include <Xm/XmIm.h>

int XmImMbLookupString(
Widget widget,
XKeyPressedEvent *event,
char *buffer_return,
int bytes_buffer,
KeySym *keysym_return,
int * status_return);

Description

XmImMbLookupString returns a string composed in the locale associated with the
widget’s input method and a KeySym that is currently mapped to the keycode in a
KeyPress event. The KeySym is obtained by using the standard interpretation of Shift,
Lock and Group modifiers as defined in the X Protocol specification.

An XIM will be created, but an XIC will not be created. One of the functions,
XmImSetValues, XmImVaSetValues, or XmImGetXIC , needs to be called to create
an XIC.

widget Specifies the ID of the widget registered with the input manager

event Specifies the key press event

buffer_return
Specifies the buffer in which the string is returned

bytes_buffer Specifies the size of the buffer in bytes

keysym_return
Specifies a pointer to the KeySym returned if one exists

1063

Motif 2.1—Programmer’s Reference

XmImMbLookupString(library call)

status_return
Specifies the status values returned by the function. These status values
are the same as those for theXmbLookupString function. The possible
status values are:

XBufferOverflow
The size of the buffer was insufficient to handle the
returned string. The contents ofbuffer_return and
keysym_returnare not modified. The required buffer size
is returned as a value of the function. The client should
repeat the call with a larger buffer size to receive the
string.

XLookupNone
No consistent input was composed. The contents of
buffer_returnandkeysym_returnare not modified and the
function returns a value of 0.

XLookupChars
Some input characters were composed and returned
in buffer_return. The content ofkeysym_returnis not
modified. The function returns the length of the string in
bytes.

XLookupKeysym
A keysym value was returned instead of a string. The
content ofbuffer_returnis not modified and the function
returns a value of 0.

XLookupBoth
A keysym value and a string were returned. The keysym
value may not necessarily correspond to the string
returned. The function returns the length of the string in
bytes.

Return Values

Return values depend on the status returned by the function. Refer to the description
of status values above.

1064

Xm Functions

XmImMbLookupString(library call)

Related Information

XmImGetXIM (3), XmImGetXIC (3), XmImRegister(3), XmImSetValues(3), and
XmImUnregister (3).

1065

Motif 2.1—Programmer’s Reference

XmImMbResetIC(library call)

XmImMbResetIC

Purpose An input manager function that resets the input context for a widget

Synopsis #include <Xm/XmIm.h>

void XmImMbResetIC(
Widget widget,
char **mb);

Description

XmImMbResetIC gets the XIC of the widget and resets it. It puts a pointer to a
string containing the current preedit string tomb. The caller should free the returned
string after use by callingXfree.

widget Specifies the ID of the widget.

mb Contains a pointer to the preedit string upon return.

Return Values

None

Related Information

1066

Xm Functions

XmImRegister(library call)

XmImRegister

Purpose An input manager function that registers a widget with an input manager

Synopsis #include <Xm/XmIm.h>

void XmImRegister(
Widget widget,
unsigned int reserved);

Description

XmImRegister registers a widget with its input manager. This adds the specified
widget to a list of widgets that are supported by the input manager for an input method.
If an input method has not been opened by a previous call toXmImRegister, the first
time this routine is called it opens an input method using theXmNinputMethod
resource for the VendorShell. If theXmNinputMethod is NULL, an input method is
opened using the current locale.

If an input method cannot be opened in the current locale,XLookupString provides
input processing.

The application is responsible for unregistering a widget by callingXmImUnregister .

Note that the Text, TextField, and List widgets already call theXmImRegister
function internally. You should not call this function for these widgets before calling
XmImUnregister first.

widget Specifies the ID of the widget to be registered.

reserved This argument is not used in the current release of Motif. The value
should always be 0 (zero).

Related Information

XmImGetXIM (3), XmImMbLookupString (3), andXmImUnregister (3).

1067

Motif 2.1—Programmer’s Reference

XmImSetFocusValues(library call)

XmImSetFocusValues

Purpose An input manager function that notifies an input manager that a widget has received
input focus and updates the input context attributes

Synopsis #include <Xm/XmIm.h>

void XmImSetFocusValues(
Widget widget,
ArgList arglist,
Cardinal argcount,
);

Description

XmImSetFocusValues notifies the input manager that the specified widget has
received input focus. This function also updates the attributes of the input context
associated with the widget. The focus window for the XIC is set to the window of
the widget. Thearglist argument is a list of attribute/value pairs for the input context.
This function passes the attributes and values toXICSetValues. The caller of this
routine should pass in only those values that have changed since the last call to any
of these functions;XmImSetValues, XmImSetFocusValues, XmImVaSetValues, or
XmImVaSetFocusValues. See the description in theXmImSetValues(3) reference
page for a list of associated resources.

If the previous parameters for the widget’s XIC do not allow the previously registered
XIC to be reused, that XIC will be unregistered, and a new one will be created and
registered with the widget. Note that sharing of data is preserved.

widget Specifies the ID of the widget registered with the input manager.

arglist Specifies the list of attribute/value pairs to be passed toXICSetValues.
See the description in theXmImSetValues(3) man page for a description
of resources.

argcount Specifies the number of attribute/values pairs in the argument list
(arglist)

1068

Xm Functions

XmImSetFocusValues(library call)

Note that the Text and TextField widgets call theXmImSetFocusValuesfunction when
they receive focus. Therefore, further calls to theXmImSetFocusValuesfunction for
these widgets are unnecessary.

Related Information

XmImSetValues(3), XmImVaSetFocusValues(3), andXmImVaSetValues(3).

1069

Motif 2.1—Programmer’s Reference

XmImSetValues(library call)

XmImSetValues

Purpose An input manager function that updates attributes of an input context

Synopsis #include <Xm/XmIm.h>

void XmImSetValues(
Widget widget,
ArgList arglist,
Cardinal argcount,
);

Description

XmImSetValues updates attributes of the input context associated with the specified
widget. Thearglist argument is a list of attribute/value pairs for the input context.
This function passes the attributes and values toXICSetValues. The initial call to this
routine should pass in all of the input context attributes. Thereafter, the application
programmer callsXmImSetValues, for an XIC, only if a value has changed.

If the previous parameters for the widget’s XIC do not allow the previously registered
XIC to be reused, that XIC will be unregistered, and a new one will be created and
registered with the widget. Note that sharing of data is preserved.

Note that the Text and TextField widgets call theXmImSetValues function when
they receive focus. Therefore, further calls to theXmImSetValues function for these
widgets are unnecessary.

widget Specifies the ID of the widget registered with the input manager

arglist Specifies the list of attribute/value pairs to be passed toXICSetValues;
the following attributes are accepted:XmNpreeditStartCallback
XmNpreeditDoneCallback XmNpreeditDrawCallback and
XmNpreeditCaretCallback. These attributes accept an accompanying
value of type pointer to structure of typeXIMCallback.

1070

Xm Functions

XmImSetValues(library call)

These callbacks are used only when theXmNpreeditTyperesource of
the relevantVendorShellhas the "onthespot" value, and that the XIM
supportsXIMPreeditCallbacksinput style. These values are ignored if
the condition is not met.

For each of these callbacks, if the callback value is not set by this
function, no action will be taken when the Input Method tries to call
this callback. Refer to the "Xlib - C Language X Interface, X Version
11, Release 6," Chapter 13 for the detail of these callbacks.

argcount Specifies the number of attribute/values pairs in the argument list
(arglist)

Resources that can be set for the input context include:

XmNbackground
Specifies the pixel value for the background color.

XmNbackgroundPixmap
Specifies a pixmap for tiling the background.

XmNfontList
Specifies the font list used by the widget. The input method uses the first
occurrence of a font set tagged withXmFONTLIST_DEFAULT_TAG .
If no such instance is found, the first font set in the font list is used.
If the font list does not contain a font set, a value is not passed to
XICSetValues.

XmNforeground
Specifies the pixel value for the foreground color.

XmNlineSpace
Specifies the line spacing used in the pre-edit window.

XmNrenderTable
Specifies the render table used by the widget.

XmNspotLocation
Specifies thex and y coordinates of the position where text will be
inserted in the widget handling input, whose input method style is
"OverTheSpot" . The y coordinate is the position of the baseline used
by the current text line.

1071

Motif 2.1—Programmer’s Reference

XmImSetValues(library call)

The caller may also pass any other vendor-defined resources to this function.
For additional information on the internationalization interface, see the Xlib
documentation.

Related Information

XmImSetFocusValues(3), XmImVaSetFocusValues(3), andXmImVaSetValues(3).

1072

Xm Functions

XmImSetXIC(library call)

XmImSetXIC

Purpose An input manager function that registers an existing XIC with a widget

Synopsis #include <Xm/XmIm.h>

XIC XmImSetXIC(
Widget widget,
XIC xic);

Description

XmImSetXIC registers the specified X Input Context (XIC) withwidget. Any existing
XIC registered forwidget is unregistered. The new XIC registered forwidget is
returned.

If xic was not created byXmImGetXIC or XmImRegister, it will not be subject to
closing activities when it has no widgets registered with it.

widget Specifies the ID of a widget for which a new Input Context is to be
registered.

xic Specifies the Input Context to be registered with the widget. Ifxic is
NULL, the function returns the currentXIC used bywidget.

Return Values

Returns the new XIC registered forwidget. The application is responsible for freeing
the returned XIC. To free the XIC, callXmImFreeXIC .

Related Information

XmImGetXIC (3) andXmImFreeXIC (3).

1073

Motif 2.1—Programmer’s Reference

XmImUnregister(library call)

XmImUnregister

Purpose An input manager function that removes a widget from association with its input
manager

Synopsis #include <Xm/XmIm.h>

void XmImUnregister(
Widget widget);

Description

XmImUnregister removes the specified widget from the list of widgets registered for
input by the input manager.

Note that the Text, TextField, and List widgets already call theXmImRegister
internally. You should call theXmImUnregister function for these widgets before
calling XmImRegister.

widget Specifies the ID of the widget to be unregistered

Related Information

XmImRegister(3).

1074

Xm Functions

XmImUnsetFocus(library call)

XmImUnsetFocus

Purpose An input manager function that notifies an input method that a widget has lost input
focus

Synopsis #include <Xm/XmIm.h>

void XmImUnsetFocus(
Widget widget);

Description

XmImUnsetFocusunsets a specified widget’s focus, then notifies the input manager
that the specified widget has lost its input focus.

Note that the Text, TextField, and List widgets already call theXmImUnsetFocus
internally. Therefore, further calls to theXmImUnsetFocusfunction for those widgets
are unnecessary.

widget Specifies the ID of the widget registered with the input manager

Related Information

XmImSetFocusValues(3) andXmImVaSetFocusValues(3).

1075

Motif 2.1—Programmer’s Reference

XmImVaSetFocusValues(library call)

XmImVaSetFocusValues

Purpose An input manager function that notifies an input manager that a widget has received
input focus and updates the input context attributes

Synopsis #include <Xm/XmIm.h>

void XmImVaSetFocusValues(
Widget widget);

Description

XmImVaSetFocusValues notifies the input manager that the specified widget
has received input focus. This function also updates the attributes of the input
context associated with the widget. This function passes the attributes and values
to XICSetValues. The caller of this routine should pass in only those values that
have changed since the last call to any of these functions;XmImVaSetValues,
XmImVaSetFocusValues, XmImSetValues, or XmImSetFocusValues. See the
description in theXmImSetValues(3) reference page for a list of associated
resources.

This routine uses the ANSI C variable-length argument list (varargs) calling
conventions. The variable-length argument list consists of groups of arguments
each of which contains an attribute followed by the value of the attribute. The last
argument in the list must be NULL

Note that the List and TextField widgets call theXmImVaSetFocusValuesfunction
when they receive focus. Therefore, further calls to theXmImVaSetFocusValues
function for these widgets are unnecessary.

widget Specifies the ID of the widget registered with the input manager

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

1076

Xm Functions

XmImVaSetFocusValues(library call)

Related Information

XmImSetFocusValues(3), XmImSetValues(3), andXmImVaSetValues(3).

1077

Motif 2.1—Programmer’s Reference

XmImVaSetValues(library call)

XmImVaSetValues

Purpose An input manager function that updates attributes of an input context

Synopsis #include <Xm/XmIm.h>

void XmImVaSetValues(
Widget widget);

Description

XmImVaSetValuesupdates attributes of the input context associated with the specified
widget. This function passes the attributes toXICSetValues. The initial call to this
routine should pass in all of the input context attributes. Thereafter, the application
programmer callsXmImVaSetValuesonly if a value has changed. See the description
in the XmImSetValues(3) man page for a list of associated resources.

This routine uses the ANSI C variable-length argument list (varargs) calling
convention. The variable-length argument list consists of groups of arguments each of
which contains an attribute followed by the value of the attribute. The last argument
in the list must be NULL.

Note that the List and TextField widgets call theXmImVaSetValues function
internally. Therefore, further calls to theXmImVaSetValuesfunction for these widgets
are unnecessary.

widget Specifies the ID of the widget registered with the input manager

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

Related Information

XmImSetFocusValues(3), XmImSetValues(3), andXmImVaSetFocusValues(3).

1078

Xm Functions

XmInstallImage(library call)

XmInstallImage

Purpose A pixmap caching function that adds an image to the image cache

Synopsis #include <Xm/Xm.h>

Boolean XmInstallImage(
XImage * image,
char * image_name);

Description

XmInstallImage stores an image in an image cache that can later be used to generate
a pixmap. Part of the installation process is to extend the resource converter used to
reference these images. The resource converter is given the image name so that the
image can be referenced in a.Xdefaults file. Since an image can be referenced by
a widget through its pixmap resources, it is up to the application to ensure that the
image is installed before the widget is created.

image Points to the image structure to be installed. The installation process
does not make a local copy of the image. Therefore, the application
should not destroy the image until it is uninstalled from the caching
functions.

image_nameSpecifies a string that the application uses to name the image. After
installation, this name can be used in.Xdefaults for referencing the
image. A local copy of the name is created by the image caching
functions.

The image caching functions provide a set of eight preinstalled images. These names
can be used within a.Xdefaults file for generating pixmaps for the resource for which
they are provided.

1079

Motif 2.1—Programmer’s Reference

XmInstallImage(library call)

Image Name Description

background A tile of solid background

25_foreground A tile of 25% foreground, 75%
background

50_foreground A tile of 50% foreground, 50%
background

75_foreground A tile of 75% foreground, 25%
background

horizontal A tile of horizontal lines of the two
colors

vertical A tile of vertical lines of the two colors

slant_right A tile of slanting lines of the two colors

slant_left A tile of slanting lines of the two colors

menu_cascade A tile of an arrow of the foreground
color

menu_checkmark A tile of a checkmark of the foreground
color

menu_dash A tile of one horizontal line of the
foreground color

Return Values

Returns True when successful; returns False if NULLimage, NULL image_name, or
duplicateimage_nameis used as a parameter value.

Related Information

XmUninstallImage(3), XmGetPixmap(3), andXmDestroyPixmap(3).

1080

Xm Functions

XmInternAtom(library call)

XmInternAtom

Purpose A macro that returns an atom for a given name

Synopsis #include <Xm/AtomMgr.h>

Atom XmInternAtom(
Display * display,
String name,
Booleanonly_if_exists);

Description

XmInternAtom returns an atom for a given name. The returned atom remains defined
even after the client’s connection closes. The returned atom becomes undefined when
the last connection to the X server closes.

display Specifies the connection to the X server

name Specifies the name associated with the atom you want returned. The
value ofnameis case dependent.

only_if_exists
Specifies a Boolean value. If False, the atom is created even if it does
not exist. (If it does not exist, the returned atom will beNone.) If True,
the atom is created only if it exists.

Return Values

Returns an atom.

1081

Motif 2.1—Programmer’s Reference

XmIsMotifWMRunning(library call)

XmIsMotifWMRunning

Purpose A function that determines whether the window manager is running

Synopsis #include <Xm/Xm.h>

Boolean XmIsMotifWMRunning(
Widget shell);

Description

XmIsMotifWMRunning lets a user know whether the Motif Window Manager is
running on a screen that contains a specific widget hierarchy. This function first sees
whether the _MOTIF_WM_INFO property is present on the root window of the shell’s
screen. If it is, its window field is used to query for the presence of the specified
window as a child of root.

shell Specifies the shell whose screen will be tested formwm’s presence.

Return Values

Returns True if MWM is running.

1082

Xm Functions

XmIsTraversable(library call)

XmIsTraversable

Purpose A function that identifies whether a widget can be traversed

Synopsis #include <Xm/Xm.h>

Boolean XmIsTraversable(
Widget widget);

Description

XmIsTraversable determines whether the specified widget is eligible to receive focus
through keyboard traversal. In general, a widget is eligible to receive focus when all
of the following conditions are true:

• The widget and its ancestors are not being destroyed, are sensitive, and have a
value of True forXmNtraversalOn.

• The widget and its ancestors are realized, managed, and (except for
gadgets) mapped. If an application unmaps awidget that has its
XmNmappedWhenManaged resource set to True, the return value is
undefined.

• Some part of the widget’s rectangular area is unobscured by the
widget’s ancestors, or some part of the widget’s rectangular area is
inside the work window (but possibly outside the clip window) of a
ScrolledWindow whoseXmNscrollingPolicy is XmAUTOMATIC and whose
XmNtraverseObscuredCallback is not NULL.

Some widgets may not be eligible to receive focus even if they meet all these
conditions. For example, most managers cannot receive focus through keyboard
traversal. Some widgets may be eligible to receive focus under particular conditions.
For example, a DrawingArea is eligible to receive focus if it meets the conditions
above and has no child whoseXmNtraversalOn resource is True.

1083

Motif 2.1—Programmer’s Reference

XmIsTraversable(library call)

Note that when all widgets in a shell hierarchy have been made untraversable, they
are considered to have lost focus. When a widget in this hierarchy is made traversable
again, it regains focus.

XmIsTraversable may return unexpected results whenwidget or its ancestors are
overlapped by their siblings.

widget Specifies the ID of the widget

Return Values

Returns True if the widget is eligible to receive focus through keyboard traversal;
otherwise, returns False.

Related Information

XmGetVisibility (3) andXmProcessTraversal(3).

1084

Xm Functions

XmListAddItem(library call)

XmListAddItem

Purpose A List function that adds an item to the list

Synopsis #include <Xm/List.h>

void XmListAddItem(
Widget widget,
XmString item,
int position);

Description

XmListAddItem adds an item to the list at the given position. When the item is
inserted into the list, it is compared with the currentXmNselectedItemslist. If the
new item matches an item on the selected list, it appears selected.

widget Specifies the ID of the List to which an item is added.

item Specifies the item to be added to the list.

position Specifies the position of the new item in the list. A value of 1 makes
the new item the first item in the list; a value of 2 makes it the second
item; and so on. A value of 0 (zero) makes the new item the last item
in the list.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1085

Motif 2.1—Programmer’s Reference

XmListAddItemUnselected(library call)

XmListAddItemUnselected

Purpose A List function that adds an item to the list

Synopsis #include <Xm/List.h>

void XmListAddItemUnselected(
Widget widget,
XmString item,
int position);

Description

XmListAddItemUnselected adds an item to the list at the given position. The item
does not appear selected, even if it matches an item in the currentXmNselectedItems
list.

widget Specifies the ID of the List from whose list an item is added.

item Specifies the item to be added to the list.

position Specifies the position of the new item in the list. A value of 1 makes
the new item the first item in the list; a value of 2 makes it the second
item; and so on. A value of 0 (zero) makes the new item the last item
in the list.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1086

Xm Functions

XmListAddItems(library call)

XmListAddItems

Purpose A List function that adds items to the list

Synopsis #include <Xm/List.h>

void XmListAddItems(
Widget widget,
XmString * items,
int item_count,
int position);

Description

XmListAddItems adds the specified items to the list at the given position. The first
item_countitems of theitemsarray are added to the list. When the items are inserted
into the list, they are compared with the currentXmNselectedItemslist. If any of the
new items matches an item on the selected list, it appears selected.

widget Specifies the ID of the List to which an item is added.

items Specifies a pointer to the items to be added to the list.

item_count Specifies the number of items initems. This number must be
nonnegative.

position Specifies the position of the first new item in the list. A value of 1
makes the first new item the first item in the list; a value of 2 makes
it the second item; and so on. A value of 0 (zero) makes the first new
item follow the last item in the list.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1087

Motif 2.1—Programmer’s Reference

XmListAddItemsUnselected(library call)

XmListAddItemsUnselected

Purpose A List function that adds items to a list

Synopsis #include <Xm/List.h>

void XmListAddItemsUnselected(
Widget widget,
XmString * items,
int item_count,
int position);

Description

XmListAddItemsUnselected adds the specified items to the list at the given
position. The inserted items remain unselected, even if they currently appear in the
XmNselectedItemslist.

widget Specifies the ID of the List widget to add items to.

items Specifies a pointer to the items to be added to the list.

item_count Specifies the number of elements initems. This number must be
nonnegative.

position Specifies the position of the first new item in the list. A value of 1
makes the first new item the first item in the list; a value of 2 makes
it the second item; and so on. A value of 0 (zero) makes the first new
item follow the last item of the list.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1088

Xm Functions

XmListDeleteAllItems(library call)

XmListDeleteAllItems

Purpose A List function that deletes all items from the list

Synopsis #include <Xm/List.h>

void XmListDeleteAllItems(
Widget widget);

Description

XmListDeleteAllItems deletes all items from the list.

widget Specifies the ID of the List from whose list the items are deleted

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1089

Motif 2.1—Programmer’s Reference

XmListDeleteItem(library call)

XmListDeleteItem

Purpose A List function that deletes an item from the list

Synopsis #include <Xm/List.h>

void XmListDeleteItem(
Widget widget,
XmString item);

Description

XmListDeleteItem deletes the first item in the list that matchesitem. A warning
message appears if the item does not exist.

widget Specifies the ID of the List from whose list an item is deleted.

item Specifies the text of the item to be deleted from the list. Ifitem appears
more than once in the List, only the first occurrence is matched.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1090

Xm Functions

XmListDeleteItems(library call)

XmListDeleteItems

Purpose A List function that deletes items from the list

Synopsis #include <Xm/List.h>

void XmListDeleteItems(
Widget widget,
XmString * items,
int item_count);

Description

XmListDeleteItems deletes the specified items from the list. For each element of
items, the first item in the list that matches that element is deleted. A warning message
appears if any of the items do not exist.

widget Specifies the ID of the List from whose list an item is deleted

items Specifies a pointer to items to be deleted from the list

item_count Specifies the number of elements initems This number must be
nonnegative.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1091

Motif 2.1—Programmer’s Reference

XmListDeleteItemsPos(library call)

XmListDeleteItemsPos

Purpose A List function that deletes items from the list starting at the given position

Synopsis #include <Xm/List.h>

void XmListDeleteItemsPos(
Widget widget,
int item_count,
int position);

Description

XmListDeleteItemsPosdeletes the specified number of items from the list starting at
the specified position.

widget Specifies the ID of the List from whose list an item is deleted.

item_count Specifies the number of items to be deleted. This number must be
nonnegative.

position Specifies the position in the list of the first item to be deleted. A value
of 1 indicates that the first deleted item is the first item in the list; a
value of 2 indicates that it is the second item; and so on.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1092

Xm Functions

XmListDeletePos(library call)

XmListDeletePos

Purpose A List function that deletes an item from a list at a specified position

Synopsis #include <Xm/List.h>

void XmListDeletePos(
Widget widget,
int position);

Description

XmListDeletePosdeletes an item at a specified position. A warning message appears
if the position does not exist.

widget Specifies the ID of the List from which an item is to be deleted.

position Specifies the position of the item to be deleted. A value of 1 indicates
that the first item in the list is deleted; a value of 2 indicates that the
second item is deleted; and so on. A value of 0 (zero) indicates that the
last item in the list is deleted.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1093

Motif 2.1—Programmer’s Reference

XmListDeletePositions(library call)

XmListDeletePositions

Purpose A List function that deletes items from a list based on an array of positions

Synopsis #include <Xm/List.h>

void XmListDeletePositions(
Widget widget,
int * position_list,
int position_count);

Description

XmListDeletePositionsdeletes noncontiguous items from a list. The function deletes
all items whose corresponding positions appear in theposition_listarray. A warning
message is displayed if a specified position is invalid; that is, the value is 0, a negative
integer, or a number greater than the number of items in the list.

widget Specifies the ID of the List widget

position_list Specifies an array of the item positions to be deleted. The position of
the first item in the list is 1; the position of the second item is 2; and
so on.

position_count
Specifies the number of elements in theposition_list.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1094

Xm Functions

XmListDeselectAllItems(library call)

XmListDeselectAllItems

Purpose A List function that unhighlights and removes all items from the selected list

Synopsis #include <Xm/List.h>

void XmListDeselectAllItems(
Widget widget);

Description

XmListDeselectAllItems unhighlights and removes all items from the selected list.

widget Specifies the ID of the List widget from whose list all selected items
are deselected

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1095

Motif 2.1—Programmer’s Reference

XmListDeselectItem(library call)

XmListDeselectItem

Purpose A List function that deselects the specified item from the selected list

Synopsis #include <Xm/List.h>

void XmListDeselectItem(
Widget widget,
XmString item);

Description

XmListDeselectItem unhighlights and removes from the selected list the first item in
the list that matchesitem.

widget Specifies the ID of the List from whose list an item is deselected.

item Specifies the item to be deselected from the list. Ifitem appears more
than once in the List, only the first occurrence is matched.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1096

Xm Functions

XmListDeselectPos(library call)

XmListDeselectPos

Purpose A List function that deselects an item at a specified position in the list

Synopsis #include <Xm/List.h>

void XmListDeselectPos(
Widget widget,
int position);

Description

XmListDeselectPosunhighlights the item at the specified position and deletes it from
the list of selected items.

widget Specifies the ID of the List widget

position Specifies the position of the item to be deselected. A value of 1 indicates
that the first item in the list is deselected; a value of 2 indicates that the
second item is deselected; and so on. A value of 0 (zero) indicates that
the last item in the list is deselected.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1097

Motif 2.1—Programmer’s Reference

XmListGetKbdItemPos(library call)

XmListGetKbdItemPos

Purpose A List function that returns the position of the item at the location cursor

Synopsis #include <Xm/List.h>

int XmListGetKbdItemPos(
Widget widget);

Description

XmListGetKbdItemPos returns the position of the list item at the location cursor.

widget Specifies the ID of the List widget

For a complete definition of List and its associated resources, seeXmList (3).

Return Values

Returns the position of the current keyboard item. A value of 1 indicates that the
location cursor is at the first item of the list; a value of 2 indicates that it is at the
second item; and so on. A value of 0 (zero) indicates the List widget is empty.

Related Information

XmList (3).

1098

Xm Functions

XmListGetMatchPos(library call)

XmListGetMatchPos

Purpose A List function that returns all instances of an item in the list

Synopsis #include <Xm/List.h>

Boolean XmListGetMatchPos(
Widget widget,
XmString item,
int ** position_list,
int * position_count);

Description

XmListGetMatchPos is a Boolean function that returns an array of positions where
a specified item is found in a List.

widget Specifies the ID of the List widget.

item Specifies the item to search for.

position_list Returns an array of positions at which the item occurs in the List. The
position of the first item in the list is 1; the position of the second item
is 2; and so on. When the return value is True,XmListGetMatchPos
allocates memory for this array. The caller is responsible for freeing
this memory. The caller can recover the allocated memory by calling
XtFree.

position_count
Returns the number of elements in theposition_list.

For a complete definition of List and its associated resources, seeXmList (3).

Return Values

Returns True if the specified item is present in the list, and False if it is not.

1099

Motif 2.1—Programmer’s Reference

XmListGetMatchPos(library call)

Related Information

XmList (3).

1100

Xm Functions

XmListGetSelectedPos(library call)

XmListGetSelectedPos

Purpose A List function that returns the position of every selected item in the list

Synopsis #include <Xm/List.h>

Boolean XmListGetSelectedPos(
Widget widget,
int ** position_list,
int * position_count);

Description

This routine is obsolete. It is replaced by callingXtGetValues for the List resources
XmNselectedPositionsand XmNselectedPositionCount. XmListGetSelectedPosis
a Boolean function that returns an array of the positions of the selected items in a
List.

widget Specifies the ID of the List widget.

position_list Returns an array of the positions of the selected items in the List. The
position of the first item in the list is 1; the position of the second item
is 2; and so on. When the return value is True,XmListGetSelectedPos
allocates memory for this array. The caller is responsible for freeing
this memory. The caller can recover the allocated memory by calling
XtFree.

position_count
Returns the number of elements in theposition_list.

For a complete definition of List and its associated resources, seeXmList (3).

Return Values

Returns True if the list has any selected items, and False if it does not.

1101

Motif 2.1—Programmer’s Reference

XmListGetSelectedPos(library call)

Related Information

XmList (3).

1102

Xm Functions

XmListItemExists(library call)

XmListItemExists

Purpose A List function that checks if a specified item is in the list

Synopsis #include <Xm/List.h>

Boolean XmListItemExists(
Widget widget,
XmString item);

Description

XmListItemExists is a Boolean function that checks if a specified item is present in
the list.

widget Specifies the ID of the List widget

item Specifies the item whose presence is checked

For a complete definition of List and its associated resources, seeXmList (3).

Return Values

Returns True if the specified item is present in the list.

Related Information

XmList (3).

1103

Motif 2.1—Programmer’s Reference

XmListItemPos(library call)

XmListItemPos

Purpose A List function that returns the position of an item in the list

Synopsis #include <Xm/List.h>

int XmListItemPos(
Widget widget,
XmString item);

Description

XmListItemPos returns the position of the first instance of the specified item in a list.

widget Specifies the ID of the List widget

item Specifies the item whose position is returned

For a complete definition of List and its associated resources, seeXmList (3).

Return Values

Returns the position in the list of the first instance of the specified item. The position
of the first item in the list is 1; the position of the second item is 2; and so on. This
function returns 0 (zero) if the item is not found.

Related Information

XmList (3).

1104

Xm Functions

XmListPosSelected(library call)

XmListPosSelected

Purpose A List function that determines if the list item at a specified position is selected

Synopsis #include <Xm/List.h>

Boolean XmListPosSelected(
Widget widget,
int position);

Description

XmPosSelecteddetermines if the list item at the specified position is selected or not.

widget Specifies the ID of the List widget

position Specifies the position of the list item. A value of 1 indicates the first
item in the list; a value of 2 indicates the second item; and so on. A
value of 0 (zero) specifies the last item in the list.

For a complete definition of List and its associated resources, seeXmList (3).

Return Values

Returns True if the list item is selected; otherwise, returns False if the item is not
selected or the specified position is invalid.

Related Information

XmList (3).

1105

Motif 2.1—Programmer’s Reference

XmListPosToBounds(library call)

XmListPosToBounds

Purpose A List function that returns the bounding box of an item at a specified position in a
list

Synopsis #include <Xm/List.h>

Boolean XmListPosToBounds(
Widget widget,
int position,
Position *x,
Position *y,
Dimension *width,
Dimension *height);

Description

XmListPosToBounds returns the coordinates of an item within a list and the
dimensions of its bounding box. The function returns the associated x and y-
coordinates of the upper left corner of the bounding box relative to the upper left
corner of the List widget, as well as the width and the height of the box. The caller
can pass a NULL value for thex, y, width, or height parameters to indicate that the
return value for that parameter is not requested.

widget Specifies the ID of the List widget.

position Specifies the position of the specified item. A value of 1 indicates the
first item in the list; a value of 2 indicates the second item; and so on.
A value of 0 (zero) specifies the last item in the list.

x Specifies a pointer to the returned x-coordinate of the item.

y Specifies the pointer to the returned y-coordinate of the item.

width Specifies the pointer to the returned width of the item.

height Specifies the pointer to the returned height of the item.

1106

Xm Functions

XmListPosToBounds(library call)

For a complete definition of List and its associated resources, seeXmList (3).

Return Values

If the item at the specified position is not visible, returns False, and the returned values
(if any) are undefined. Otherwise, this function returns True.

Related Information

XmList (3) andXmListYToPos(3).

1107

Motif 2.1—Programmer’s Reference

XmListReplaceItems(library call)

XmListReplaceItems

Purpose A List function that replaces the specified elements in the list

Synopsis #include <Xm/List.h>

void XmListReplaceItems(
Widget widget,
XmString * old_items,
int item_count,
XmString * new_items);

Description

XmListReplaceItems replaces each specified item of the list with a corresponding
new item. When the items are inserted into the list, they are compared with the current
XmNselectedItemslist. If any of the new items matches an item on the selected list,
it appears selected.

widget Specifies the ID of the List widget.

old_items Specifies the items to be replaced.

item_count Specifies the number of items inold_itemsandnew_items. This number
must be nonnegative.

new_items Specifies the replacement items.

Every occurrence of each element ofold_itemsis replaced with the corresponding
element fromnew_items. That is, the first element ofold_itemsis replaced with the
first element ofnew_items. The second element ofold_itemsis replaced with the
second element ofnew_items, and so on untilitem_countis reached.

For a complete definition of List and its associated resources, seeXmList (3).

1108

Xm Functions

XmListReplaceItems(library call)

Related Information

XmList (3).

1109

Motif 2.1—Programmer’s Reference

XmListReplaceItemsPos(library call)

XmListReplaceItemsPos

Purpose A List function that replaces the specified elements in the list

Synopsis #include <Xm/List.h>

void XmListReplaceItemsPos(
Widget widget,
XmString * new_items,
int item_count,
int position);

Description

XmListReplaceItemsPosreplaces the specified number of items of the List with new
items, starting at the specified position in the List. When the items are inserted into
the list, they are compared with the currentXmNselectedItemslist. If any of the new
items matches an item on the selected list, it appears selected.

widget Specifies the ID of the List widget.

new_items Specifies the replacement items.

item_count Specifies the number of items innew_itemsand the number of items in
the list to replace. This number must be nonnegative.

position Specifies the position of the first item in the list to be replaced. A value
of 1 indicates that the first item replaced is the first item in the list; a
value of 2 indicates that it is the second item; and so on.

Beginning with the item specified inposition, item_countitems in the
list are replaced with the corresponding elements fromnew_items. That
is, the item atposition is replaced with the first element ofnew_items;
the item afterpositionis replaced with the second element ofnew_items;
and so on, untilitem_countis reached.

For a complete definition of List and its associated resources, seeXmList (3).

1110

Xm Functions

XmListReplaceItemsPos(library call)

Related Information

XmList (3).

1111

Motif 2.1—Programmer’s Reference

XmListReplaceItemsPosUnselected(library call)

XmListReplaceItemsPosUnselected

Purpose A List function that replaces items in a list without selecting the replacement items

Synopsis #include <Xm/List.h>

void XmListReplaceItemsPosUnselected(
Widget widget,
XmString * new_items,
int item_count,
int position);

Description

XmListReplaceItemsPosUnselectedreplaces the specified number of items in the
list with new items, starting at the given position. The replacement items remain
unselected, even if they currently appear in theXmNselectedItemslist.

widget Specifies the ID of the List widget to replace items in.

new_items Specifies a pointer to the replacement items.

item_count Specifies the number of elements innew_itemsand the number of items
in the list to replace. This number must be nonnegative.

position Specifies the position of the first item in the list to be replaced. A value
of 1 indicates that the first item replaced is the first item in the list; a
value of 2 indicates that it is the second item; and so on.

Beginning with the item specified inposition, item_countitems in the
list are replaced with the corresponding elements fromnew_items. That
is, the item atposition is replaced with the first element ofnew_items;
the item afterpositionis replaced with the second element ofnew_items;
and so on, untilitem_countis reached.

For a complete definition of List and its associated resources, seeXmList (3).

1112

Xm Functions

XmListReplaceItemsPosUnselected(library call)

Related Information

XmList (3).

1113

Motif 2.1—Programmer’s Reference

XmListReplaceItemsUnselected(library call)

XmListReplaceItemsUnselected

Purpose A List function that replaces items in a list

Synopsis #include <Xm/List.h>

void XmListReplaceItemsUnselected(
Widget widget,
XmString * old_items,
int item_count,
XmString * new_items);

Description

XmListReplaceItemsUnselectedreplaces each specified item in the list with a
corresponding new item. The replacement items remain unselected, even if they
currently appear in theXmNselectedItemslist.

widget Specifies the ID of the List widget to replace items in.

old_items Specifies a pointer to the list items to be replaced.

item_count Specifies the number of elements inold_itemsand new_items. This
number must be nonnegative.

new_items Specifies a pointer to the replacement items. Every occurrence of each
element ofold_itemsis replaced with the corresponding element from
new_items. That is, the first element ofold_itemsis replaced with the
first element ofnew_items. The second element ofold_itemsis replaced
with the second element ofnew_items, and so on untilitem_count
is reached. If an element inold_itemsdoes not exist in the list, the
corresponding entry innew_itemsis skipped.

For a complete definition of List and its associated resources, seeXmList (3).

1114

Xm Functions

XmListReplaceItemsUnselected(library call)

Related Information

XmList (3).

1115

Motif 2.1—Programmer’s Reference

XmListReplacePositions(library call)

XmListReplacePositions

Purpose A List function that replaces items in a list based on position

Synopsis #include <Xm/List.h>

void XmListReplacePositions(
Widget widget,
int * position_list,
XmString * item_list,
int item_count;);

Description

XmListReplacePositions replaces noncontiguous items in a list. The item at each
position specified inposition_listis replaced with the corresponding entry initem_list.
When the items are inserted into the list, they are compared with the current
XmNselectedItemslist. Any of the new items that match items on the selected list
appear selected. A warning message is displayed if a specified position is invalid; that
is, the value is 0 (zero), a negative integer, or a number greater than the number of
items in the list.

widget Specifies the ID of the List widget.

position_list Specifies an array of the positions of items to be replaced. The position
of the first item in the list is 1; the position of the second item is 2; and
so on.

item_list Specifies an array of the replacement items.

item_count Specifies the number of elements inposition_list and item_list. This
number must be nonnegative.

For a complete definition of List and its associated resources, seeXmList (3).

1116

Xm Functions

XmListReplacePositions(library call)

Related Information

XmList (3).

1117

Motif 2.1—Programmer’s Reference

XmListSelectItem(library call)

XmListSelectItem

Purpose A List function that selects an item in the list

Synopsis #include <Xm/List.h>

void XmListSelectItem(
Widget widget,
XmString item,
Booleannotify);

Description

XmListSelectItem highlights and adds to the selected list the first item in the list that
matchesitem.

widget Specifies the ID of the List widget from whose list an item is selected.

item Specifies the item to be selected in the List widget. Ifitemappears more
than once in the List, only the first occurrence is matched.

notify Specifies a Boolean value that when TRUE invokes the selection
callback for the current mode. From an application interface view, calling
this function withnotify True is indistinguishable from a user-initiated
selection action. Whennotify is FALSE, no callbacks are called.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3) andXmListSelectPos(3).

1118

Xm Functions

XmListSelectPos(library call)

XmListSelectPos

Purpose A List function that selects an item at a specified position in the list

Synopsis #include <Xm/List.h>

void XmListSelectPos(
Widget widget,
int position,
Booleannotify);

Description

XmListSelectPoshighlights a List item at the specified position and adds it to the list
of selected items.

widget Specifies the ID of the List widget.

position Specifies the position of the item to be selected. A value of 1 indicates
that the first item in the list is selected; a value of 2 indicates that the
second item is selected; and so on. A value of 0 (zero) indicates that
the last item in the list is selected.

notify Specifies a Boolean value that when TRUE invokes the selection
callback for the current mode. From an application interface view, calling
this function withnotify True is indistinguishable from a user-initiated
selection action. Whennotify is FALSE, no callbacks are called.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3) andXmListSelectItem(3).

1119

Motif 2.1—Programmer’s Reference

XmListSetAddMode(library call)

XmListSetAddMode

Purpose A List function that sets add mode in the list

Synopsis #include <Xm/List.h>

void XmListSetAddMode(
Widget widget,
Booleanstate);

Description

XmListSetAddMode allows applications control over Add Mode in the extended
selection model. This function ensures that the mode it sets is compatible
with the selection policy (XmNselectionPolicy) of the widget. For example, it
cannot put the widget into add mode when the value ofXmNselectionPolicy is
XmBROWSE_SELECT.

widget Specifies the ID of the List widget

state Specifies whether to activate or deactivate Add Mode. Ifstate is True,
Add Mode is activated. Ifstateis False, Add Mode is deactivated.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1120

Xm Functions

XmListSetBottomItem(library call)

XmListSetBottomItem

Purpose A List function that makes an existing item the last visible item in the list

Synopsis #include <Xm/List.h>

void XmListSetBottomItem(
Widget widget,
XmString item);

Description

XmListSetBottomItem makes the first item in the list that matchesitem the last
visible item in the list.

widget Specifies the ID of the List widget from whose list an item is made the
last visible

item Specifies the item

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1121

Motif 2.1—Programmer’s Reference

XmListSetBottomPos(library call)

XmListSetBottomPos

Purpose A List function that makes a specified item the last visible item in the list

Synopsis #include <Xm/List.h>

void XmListSetBottomPos(
Widget widget,
int position);

Description

XmListSetBottomPos makes the item at the specified position the last visible item
in the List.

widget Specifies the ID of the List widget.

position Specifies the position of the item to be made the last visible item in the
list. A value of 1 indicates that the first item in the list is the last visible
item; a value of 2 indicates that the second item is the last visible item;
and so on. A value of 0 (zero) indicates that the last item in the list is
the last visible item.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1122

Xm Functions

XmListSetHorizPos(library call)

XmListSetHorizPos

Purpose A List function that scrolls to the specified position in the list

Synopsis #include <Xm/List.h>

void XmListSetHorizPos(
Widget widget,
int position);

Description

XmListSetHorizPos sets the XmNvalue resource of the horizontal ScrollBar
to the specified position and updates the visible portion of the list with the
new value if the List widget’sXmNlistSizePolicy is set to XmCONSTANT or
XmRESIZE_IF_POSSIBLE and the horizontal ScrollBar is currently visible. This
is equivalent to moving the horizontal ScrollBar to the specified position.

widget Specifies the ID of the List widget

position Specifies the horizontal position

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1123

Motif 2.1—Programmer’s Reference

XmListSetItem(library call)

XmListSetItem

Purpose A List function that makes an existing item the first visible item in the list

Synopsis #include <Xm/List.h>

void XmListSetItem(
Widget widget,
XmString item);

Description

XmListSetItem makes the first item in the list that matchesitem the first visible item
in the list.

widget Specifies the ID of the List widget from whose list an item is made the
first visible

item Specifies the item

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1124

Xm Functions

XmListSetKbdItemPos(library call)

XmListSetKbdItemPos

Purpose A List function that sets the location cursor at a specified position

Synopsis #include <Xm/List.h>

Boolean XmListSetKbdItemPos(
Widget widget,
int position);

Description

XmListSetKbdItemPos sets the location cursor at the item specified byposition. This
function does not determine if the item at the specified position is selected or not.

widget Specifies the ID of the List widget.

position Specifies the position of the item at which the location cursor is set. A
value of 1 indicates the first item in the list; a value of 2 indicates the
second item; and so on. A value of 0 (zero) sets the location cursor at
the last item in the list.

For a complete definition of List and its associated resources, seeXmList (3).

Return Values

Returns False if no item exists at the specified position or if the list is empty; otherwise,
returns True.

Related Information

XmList (3).

1125

Motif 2.1—Programmer’s Reference

XmListSetPos(library call)

XmListSetPos

Purpose A List function that makes the item at the given position the first visible position in
the list

Synopsis #include <Xm/List.h>

void XmListSetPos(
Widget widget,
int position);

Description

XmListSetPos makes the item at the given position the first visible position in the
list.

widget Specifies the ID of the List widget.

position Specifies the position of the item to be made the first visible item in the
list. A value of 1 indicates that the first item in the list is the first visible
item; a value of 2 indicates that the second item is the first visible item;
and so on. A value of 0 (zero) indicates that the last item in the list is
the first visible item.

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1126

Xm Functions

XmListUpdateSelectedList(library call)

XmListUpdateSelectedList

Purpose A List function that updates the XmNselectedItems resource

Synopsis #include <Xm/List.h>

void XmListUpdateSelectedList(
Widget widget);

Description

XmListUpdateSelectedListfrees the contents of the currentXmNselectedItemslist.
The routine traverses theXmNitems list and adds each currently selected item to the
XmNselectedItemslist. For each selected item, there is a corresponding entry in the
updatedXmNselectedItemslist.

widget Specifies the ID of the List widget to update

For a complete definition of List and its associated resources, seeXmList (3).

Related Information

XmList (3).

1127

Motif 2.1—Programmer’s Reference

XmListYToPos(library call)

XmListYToPos

Purpose A List function that returns the position of the item at a specified y-coordinate

Synopsis #include <Xm/List.h>

int XmListYToPos(
Widget widget,
Position y);

Description

XmListYToPos returns the position of the item at the given y-coordinate within the
list.

widget Specifies the ID of the List widget

y Specifies the y-coordinate in the list’s coordinate system

For a complete definition of List and its associated resources, seeXmList (3).

Return Values

Returns the position of the item at the specified y coordinate. A value of 1 indicates
the first item in the list; a value of 2 indicates the second item; and so on. A value of
0 (zero) indicates that no item exists at the specified y coordinate.

Related Information

XmList (3) andXmListPosToBounds(3).

1128

Xm Functions

XmMainWindowSep1(library call)

XmMainWindowSep1

Purpose A MainWindow function that returns the widget ID of the first Separator

Synopsis #include <Xm/MainW.h>

Widget XmMainWindowSep1(
Widget widget);

Description

XmMainWindowSep1 returns the widget ID of the first Separator in the
MainWindow. The first Separator is located between the MenuBar and the Command
widget. This Separator is visible only whenXmNshowSeparator is True.

NOTE: XmMainWindowSep1 is obsolete and exists for compatibility with previous
releases. UseXtNameToWidget instead. Pass a MainWindow variable as the first
argument toXtNameToWidget and passSeparator1 as the second argument.

widget Specifies the MainWindow widget ID

For a complete definition of MainWindow and its associated resources, see
XmMainWindow (3).

Return Values

Returns the widget ID of the first Separator.

Related Information

XmMainWindow (3).

1129

Motif 2.1—Programmer’s Reference

XmMainWindowSep2(library call)

XmMainWindowSep2

Purpose A MainWindow function that returns the widget ID of the second Separator widget

Synopsis #include <Xm/MainW.h>

Widget XmMainWindowSep2(
Widget widget);

Description

XmMainWindowSep2 returns the widget ID of the second Separator in the
MainWindow. The second Separator is located between the Command widget and the
ScrolledWindow. This Separator is visible only whenXmNshowSeparator is True.

NOTE: XmMainWindowSep2 is obsolete and exists for compatibility with previous
releases. UseXtNameToWidget instead. Pass a MainWindow variable as the first
argument toXtNameToWidget and passSeparator2 as the second argument.

widget Specifies the MainWindow widget ID

For a complete definition of MainWindow and its associated resources, see
XmMainWindow (3).

Return Values

Returns the widget ID of the second Separator.

Related Information

XmMainWindow (3).

1130

Xm Functions

XmMainWindowSep3(library call)

XmMainWindowSep3

Purpose A MainWindow function that returns the widget ID of the third Separator widget

Synopsis #include <Xm/MainW.h>

Widget XmMainWindowSep3(
Widget widget);

Description

XmMainWindowSep3 returns the widget ID of the third Separator in the
MainWindow. The third Separator is located between the message window and the
widget above it. This Separator is visible only whenXmNshowSeparator is True.

NOTE: XmMainWindowSep3 is obsolete and exists for compatibility with previous
releases. UseXtNameToWidget instead. Pass a MainWindow variable as the first
argument toXtNameToWidget and passSeparator3 as the second argument.

widget Specifies the MainWindow widget ID

For a complete definition of MainWindow and its associated resources, see
XmMainWindow (3).

Return Values

Returns the widget ID of the third Separator.

Related Information

XmMainWindow (3).

1131

Motif 2.1—Programmer’s Reference

XmMainWindowSetAreas(library call)

XmMainWindowSetAreas

Purpose A MainWindow function that identifies manageable children for each area

Synopsis #include <Xm/MainW.h>

void XmMainWindowSetAreas(
Widget widget,
Widget menu_bar,
Widget command_window,
Widget horizontal_scrollbar,
Widget vertical_scrollbar,
Widget work_region);

Description

XmMainWindowSetAreas identifies which of the valid children for each area (such
as the MenuBar and work region) are to be actively managed by MainWindow. This
function also sets up or adds the MenuBar, work window, command window, and
ScrollBar widgets to the application’s main window widget.

Each area is optional; therefore, the user can pass NULL to one or more of the
following arguments. The window manager provides the title bar.

NOTE: XmMainWindowSetAreas is obsolete and exists for compatibility with
previous releases. The information previously returned by this function can now
be obtained through a call toXtGetValues on theXmNscrolledWindowChildType
resource.

widget Specifies the MainWindow widget ID.

menu_bar Specifies the widget ID for the MenuBar to be associated with the
MainWindow widget. Set this ID only after creating an instance of the
MainWindow widget. The attribute name associated with this argument
is XmNmenuBar.

1132

Xm Functions

XmMainWindowSetAreas(library call)

command_window
Specifies the widget ID for the command window to be associated with
the MainWindow widget. Set this ID only after creating an instance
of the MainWindow widget. The attribute name associated with this
argument isXmNcommandWindow.

horizontal_scrollbar
Specifies the ScrollBar widget ID for the horizontal ScrollBar to be
associated with the MainWindow widget. Set this ID only after creating
an instance of the MainWindow widget. The attribute name associated
with this argument isXmNhorizontalScrollBar .

vertical_scrollbar
Specifies the ScrollBar widget ID for the vertical ScrollBar to be
associated with the MainWindow widget. Set this ID only after creating
an instance of the MainWindow widget. The attribute name associated
with this argument isXmNverticalScrollBar .

work_region
Specifies the widget ID for the work window to be associated with the
MainWindow widget. Set this ID only after creating an instance of the
MainWindow widget. The attribute name associated with this argument
is XmNworkWindow .

For a complete definition of MainWindow and its associated resources, see
XmMainWindow (3).

Related Information

XmMainWindow (3).

1133

Motif 2.1—Programmer’s Reference

XmMapSegmentEncoding(library call)

XmMapSegmentEncoding

Purpose A compound string function that returns the compound text encoding format associated
with the specified font list tag

Synopsis #include <Xm/Xm.h>

char * XmMapSegmentEncoding(
char * fontlist_tag);

Description

XmMapSegmentEncodingsearches the segment encoding registry for an entry that
matches the specified font list tag and returns a copy of the associated compound text
encoding format. The application is responsible for freeing the storage associated with
the returned data by callingXtFree.

fontlist_tag Specifies the compound string font list tag

Return Values

Returns a copy of the associated compound text encoding format if the font list tag
is found in the registry; otherwise, returns NULL.

Related Information

XmCvtXmStringToCT (3), XmFontList (3), XmRegisterSegmentEncoding(3), and
XmString (3).

1134

Xm Functions

XmMenuPosition(library call)

XmMenuPosition

Purpose A RowColumn function that positions a Popup menu pane

Synopsis #include <Xm/RowColumn.h>

void XmMenuPosition(
Widget menu,
XButtonPressedEvent* event);

Description

XmMenuPosition positions a Popup menu pane using the information in the specified
event. Unless an application is positioning the menu pane itself, it must first invoke
this function before managing the PopupMenu. Thex_root and y_root fields in the
specified X event are used to determine the menu position.

menu Specifies the PopupMenu to be positioned

event Specifies the event passed to the action procedure which manages the
PopupMenu

Which corner of the PopupMenu is positioned at thex_root and y_root depends on
the XmNlayoutDirection resource of the widget from which popup occurs.

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Related Information

XmRowColumn(3).

1135

Motif 2.1—Programmer’s Reference

XmMessageBoxGetChild(library call)

XmMessageBoxGetChild

Purpose A MessageBox function that is used to access a component

Synopsis #include <Xm/MessageB.h>

Widget XmMessageBoxGetChild(
Widget widget,
unsigned charchild);

Description

XmMessageBoxGetChildis used to access a component within a MessageBox. The
parameters given to the function are the MessageBox widget and a value indicating
which component to access.

NOTE: This routine is obsolete and exists for compatibility with previous releases.
Instead of callingXmMessageBoxGetChild, you should callXtNameToWidget as
described in theXmMessageBox(3) reference page.

widget Specifies the MessageBox widget ID.

child Specifies a component within the MessageBox. The following are legal
values for this parameter:

• XmDIALOG_CANCEL_BUTTON

• XmDIALOG_DEFAULT_BUTTON

• XmDIALOG_HELP_BUTTON

• XmDIALOG_MESSAGE_LABEL

• XmDIALOG_OK_BUTTON

• XmDIALOG_SEPARATOR

• XmDIALOG_SYMBOL_LABEL

1136

Xm Functions

XmMessageBoxGetChild(library call)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3).

Return Values

Returns the widget ID of the specified MessageBox component. An application should
not assume that the returned widget will be of any particular class.

Related Information

XmMessageBox(3).

1137

Motif 2.1—Programmer’s Reference

XmNotebookGetPageInfo(library call)

XmNotebookGetPageInfo

Purpose A Notebook function that returns page information

Synopsis #include <Xm/Notebook.h>

XmNotebookPageStatus XmNotebookGetPageInfo(
Widget notebook,
int page_number,
XmNotebookPageInfo*page_info);

Description

XmNotebookGetPageInforeturns status information for the specified Notebook page.

notebook Specifies the Notebook widget.

page_number
Specifies the page number to be queried.

page_info Points to the structure containing the page information. The structure
has the following form:
typedef struct
{

int page_number;
Widget page_widget;
Widget status_area_widget;
Widget major_tab_widget;
Widget minor_tab_widget;

} XmNotebookPageInfo;

page_number
Specifies thepage_numberpassed to the function.

page_widget
Specifies a child widget of the Notebook with a
XmNchildType of XmPAGE and aXmNpageNumber

1138

Xm Functions

XmNotebookGetPageInfo(library call)

equal to page_numberif one exists; otherwise set to
NULL.

status_area_widget
Specifies a child widget of the Notebook with
a XmNchildType of XmSTATUS_AREA and a
XmNpageNumber equal topage_numberif one exists;
otherwise set to NULL.

major_tab_widget
Specifies a child widget of the Notebook with a
XmNchildType of XmMAJOR_TAB and the nearest
XmNpageNumber equal to or less thanpage_numberif
one exists; otherwise set to NULL.

minor_tab_widget
Specifies a child widget of the Notebook with a
XmNchildType of XmMINOR_TAB and the nearest
XmNpageNumber equal to or less thanpage_numberif
one exists; otherwise set to NULL.

For a complete definition of Notebook and its associated resources, see
XmNotebook(3).

Return Values

Returns one of the following page status values:

XmPAGE_FOUND
The specified page was found.

XmPAGE_INVALID
The specified page number is out of the page number range.

XmPAGE_EMPTY
The specified page does not have a page widget.

XmPAGE_DUPLICATED
There is more than one page widget with the specified page number. The
more recently managed page widget is used for the page information
structure.

1139

Motif 2.1—Programmer’s Reference

XmNotebookGetPageInfo(library call)

Related Information

XmNotebook(3).

1140

Xm Functions

XmObjectAtPoint(library call)

XmObjectAtPoint

Purpose A toolkit function that determines which child intersects or comes closest to a specified
point

Synopsis #include <Xm/Xm.h>

Widget XmObjectAtPoint(
Widget widget,
Position x,
Position y);

Description

XmObjectAtPoint searches the child list of the specified managerwidgetand returns
the child most closely associated with the specifiedx,y coordinate pair.

For the typical Motif managerwidget, XmObjectAtPoint uses the following rules to
determine the returned object:

• If one child intersectsx,y, XmObjectAtPoint returns the widget ID of that child.

• If more than one child intersectsx,y, XmObjectAtPoint returns the widget ID of
the visible child.

• If no child intersectsx,y, XmObjectAtPoint returns NULL.

The preceding rules are only general. In fact, each managerwidget is free to define
"most closely associated" as it desires. For example, if no child intersectsx,y, a
manager might return the child closest tox,y.

widget Specifies a manager widget.

x Specifies the x-coordinate about which you are seeking child
information. The x-coordinate must be specified in pixels, relative to
the left side ofmanager.

1141

Motif 2.1—Programmer’s Reference

XmObjectAtPoint(library call)

y Specifies the y-coordinate about which you are seeking child
information. The y-coordinate must be specified in pixels, relative to
the top side ofmanager.

Return Values

Returns the child ofmanagermost closely associated withx,y. If none of its children
are sufficiently associated withx,y, returns NULL.

Related Information

XmManager(3).

1142

Xm Functions

XmOptionButtonGadget(library call)

XmOptionButtonGadget

Purpose A RowColumn function that obtains the widget ID for the CascadeButtonGadget in
an OptionMenu

Synopsis #include <Xm/RowColumn.h>

Widget XmOptionButtonGadget(
Widget option_menu);

Description

XmOptionButtonGadget provides the application with the means for obtaining the
widget ID for the internally created CascadeButtonGadget. Once the application has
obtained the widget ID, it can adjust the visuals for the CascadeButtonGadget, if
desired.

When an application creates an instance of the OptionMenu widget, the widget creates
two internal gadgets. One is a LabelGadget that is used to display RowColumn’s
XmNlabelString resource. The other is a CascadeButtonGadget that displays the
current selection and provides the means for posting the OptionMenu’s submenu.

The user can specify resources in a resource file for the automatically created widgets
and gadgets of an OptionMenu. The following list identifies the names of these widgets
(or gadgets) and the associated OptionMenu areas.

Option Menu Label Gadget
OptionLabel

Option Menu Cascade Button
OptionButton

option_menuSpecifies the OptionMenu widget ID

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

1143

Motif 2.1—Programmer’s Reference

XmOptionButtonGadget(library call)

Return Values

Returns the widget ID for the internal button.

Related Information

XmCreateOptionMenu(3), XmCascadeButtonGadget(3),
XmOptionLabelGadget(3), andXmRowColumn(3).

1144

Xm Functions

XmOptionLabelGadget(library call)

XmOptionLabelGadget

Purpose A RowColumn function that obtains the widget ID for the LabelGadget in an
OptionMenu

Synopsis #include <Xm/RowColumn.h>

Widget XmOptionLabelGadget(
Widget option_menu);

Description

XmOptionLabelGadget provides the application with the means for obtaining the
widget ID for the internally created LabelGadget. Once the application has obtained
the widget ID, it can adjust the visuals for the LabelGadget, if desired.

option_menuSpecifies the OptionMenu widget ID

When an application creates an instance of the OptionMenu widget, the widget creates
two internal gadgets. One is a LabelGadget that is used to display RowColumn’s
XmNlabelString resource. The other is a CascadeButtonGadget that displays the
current selection and provides the means for posting the OptionMenu’s submenu.

The user can specify resources in a resource file for the automatically created widgets
and gadgets of an OptionMenu. The following list identifies the names of these widgets
(or gadgets) and the associated OptionMenu areas.

Option Menu Label Gadget
OptionLabel

Option Menu Cascade Button
OptionButton

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

1145

Motif 2.1—Programmer’s Reference

XmOptionLabelGadget(library call)

Return Values

Returns the widget ID for the internal label.

Related Information

XmCreateOptionMenu(3), XmLabelGadget(3), XmOptionButtonGadget(3), and
XmRowColumn(3).

1146

Xm Functions

XmParseMappingCreate(library call)

XmParseMappingCreate

Purpose A compound string function to create a parse mapping

Synopsis #include <Xm/Xm.h>

XmParseMapping XmParseMappingCreate(
ArgList arglist,
Cardinal argcount);

Description

XmParseMappingCreate creates a parse mapping for use in a parse table. This
function allows the application to specify values for components of the parse mapping
using a resource-style argument list.

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition ofXmParseMapping and its associated resources, see
XmParseMapping(3).

Return Values

Returns theXmParseMapping object. The function allocates space to hold the
returned XmParseMapping object. The application is responsible for managing
the allocated space. The application can recover the allocated space by calling
XmParseMappingFree.

Related Information

XmParseMapping(3), XmParseMappingFree(3), XmParseMappingGetValues(3),
XmParseMappingSetValues(3), XmParseTable(3), andXmString (3).

1147

Motif 2.1—Programmer’s Reference

XmParseMappingFree(library call)

XmParseMappingFree

Purpose A compound string function to free a parse mapping

Synopsis #include <Xm/Xm.h>

void XmParseMappingFree(
XmParseMapping parse_mapping);

Description

XmParseMappingFree recovers memory used by anXmParseMapping.

parse_mapping
Specifies the parse mapping to be freed

Related Information

XmParseMapping(3), XmParseMappingCreate(3),
XmParseMappingGetValues(3), XmParseMappingSetValues(3),
XmParseTable(3), andXmString (3).

1148

Xm Functions

XmParseMappingGetValues(library call)

XmParseMappingGetValues

Purpose A compound string function to retrieve attributes of a parse mapping

Synopsis #include <Xm/Xm.h>

void XmParseMappingGetValues(
XmParseMapping parse_mapping,
ArgList arglist,
Cardinal argcount);

Description

XmParseMappingGetValues retrieves attributes of anXmParseMapping object,
using a resource-style argument list. If theXmNsubstitute resource is in thearglist,
the function will allocate space to hold the returnedXmString value. The application
is responsible for managing this allocated space. The application can recover the
allocated space by callingXmStringFree.

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition ofXmParseMapping and its associated resources, see
XmParseMapping(3).

Related Information

XmParseMapping(3), XmParseMappingCreate(3), XmParseMappingFree(3),
XmParseMappingSetValues(3), XmParseTable(3), andXmString (3).

1149

Motif 2.1—Programmer’s Reference

XmParseMappingSetValues(library call)

XmParseMappingSetValues

Purpose A compound string function to set attributes of a parse mapping

Synopsis #include <Xm/Xm.h>

void XmParseMappingSetValues(
XmParseMapping parse_mapping,
ArgList arglist,
Cardinal argcount);

Description

XmParseMappingSetValuesspecifies attributes of anXmParseMapping object,
using a resource-style argument list.

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list (arglist)

For a complete definition ofXmParseMapping and its associated resources, see
XmParseMapping(3).

Related Information

XmParseMapping(3), XmParseMappingCreate(3), XmParseMappingFree(3),
XmParseMappingGetValues(3), XmParseTable(3), andXmString (3).

1150

Xm Functions

XmParseTableFree(library call)

XmParseTableFree

Purpose A compound string function that recovers memory

Synopsis #include <Xm/Xm.h>

void XmParseTableFree(
XmParseTableparse_table,
Cardinal count);

Description

XmParseTableFreerecovers memory used by anXmParseTableand its constituent
XmParseMappings.

parse_table Specifies the parse table to be freed

count Specifies the number of parse mappings in the parse table

Related Information

XmParseTable(3) andXmString (3).

1151

Motif 2.1—Programmer’s Reference

XmGetScaledPixmap(library call)

XmGetScaledPixmap

Purpose read a pixmap file and scale it according to pixmap and print resolution

Synopsis #include <Xm/Xm.h>

XtEnum XmGetScaledPixmap(
Widget widget,
String image_name,
Pixel foreground,
Pixel background,
int depth,
Double scaling_ratio);

Description

XmGetScaledPixmapuses itsWidgetargument to look up for a Print Shell ancestor
to get the pixmap resolution and the default printer resolution information to be used
if scaling_ratio==0.

If scaling is 0, and a valid PrintShell is presentXmGetScaledPixmapapplies a ratio
equals to (printer resolution / default pixmap resolution) before creating the Pixmap on
the widget’s Screen. Otherwise, thescaling_ratio is used in scaling both dimensions
of the image being converted as a Pixmap.

XmGetScaledPixmap completes theXmGetPixmapByDepth existing API by
making use of theXmNdefaultPixmapResolutionof the rootingXmPrintShell . Refer
to theXmGetPixmapByDepth documentation for details.

widget Widget used to determine the default pixmap resolution (of the print
shell ancestor).

image_nameSee XmGetPixmapByDepth for description.

foreground See XmGetPixmapByDepth for description.

background See XmGetPixmapByDepth for description.

1152

Xm Functions

XmGetScaledPixmap(library call)

depth See XmGetPixmapByDepth for description.

scaling_ratio
Indicate the scaling ratio to be applied, or 0.

Return Values

Returns Pixmap or NULL if failed.

Errors/Warnings

Same as forXmGetPixmapByDepth.

Related Information

XmPrintSetup(3), XmPrintShell (3), XmRedisplayWidget(3)

1153

Motif 2.1—Programmer’s Reference

XmPrintPopupPDM(library call)

XmPrintPopupPDM

Purpose Send a notification for the PDM to be popped up

Synopsis #include <Xm/Print.h>

XtEnum XmPrintPopupPDM(
Widgetprint_shell,
Widgetvideo_transient_for);

Description

A convenience function that sends a notification to start a Print Dialog Manager on
behalf of the application,XmPrintPopupPDM hides the details of the X selection
mechanism used to notify the PDM that a new dialog must be popped up for this
application.

XmPrintPopupPDM sends a selection request to either the print display of the
print shell, or the video display of the transient_for video widget (depending on
the environment variableXPDMDISPLAY, which can only takes the value "print"
or "video"), asking for the PDM windows to be popped up on behalf of the app.

Return right away with status ofXmPDM_NOTIFY_FAIL(e.g. if the function couldn’t
malloc memory for the selection value, or ifXPDMDISPLAYis not "print" or "video")
or with XmPDM_NOTIFY_SUCCESS, which only means a "message" was sent out
to the PDM specified byXPDMSELECTION, not that it’s already up on the screen
yet.

In order to know if the PDM is up, or not running, the application must register a
XmNpdmNotificationCallback with the Print Shell.

XmPrintPopupPDM puts up anInputOnly window on top of the dialog, so that the
end user doesn’t use the print setup dialog while the PDM is trying to come up. This
window is automatically removed when the shell is about to call the callback for the
first time.

print_shell The Print Shell used for this print job and context.

1154

Xm Functions

XmPrintPopupPDM(library call)

video_transient_for
The video widget dealing with application print setup.

Return Values

ReturnsXmPDM_NOTIFY_SUCCESSif the function was able to send the notification
out to the PDM process,XmPDM_NOTIFY_FAILotherwise.

Errors/Warnings

Not applicable.

Examples

Example of callback from a Print set up dialog box "Setup..." button:

PrintSetupCallback(print_dialog...)

/*-------------*/

{

if (XmPrintPopupPDM (pshell, XtParent(print_dialog)) !=

XmPDM_NOTIFY_SUCCESS) {

/* some error dialog */

}

}

Example ofXmNpdmNotificationCallback from a Print Shell:

pdmNotifyCB(print_shell...)

{

XmPrintShellCallBackStruct * pr_cb = ...

switch (pr_cb->reason) {

case XmCR_PDM_NONE:

/* no PDM available */

PostErrorDialog(...);

break;

case XmCR_PDM_VXAUTH:

1155

Motif 2.1—Programmer’s Reference

XmPrintPopupPDM(library call)

/* PDM is not authorized ... */

PostErrorDialog(...);

break;

case XmCR_PDM_UP: the PDM is up and running

/* everything is fine */

break;

default: /* other cases */

}

}

Related Information

XmPrintSetup(3), XmPrintShell (3), XmRedisplayWidget(3), XmPrintToFile (3)

1156

Xm Functions

XmPrintSetup(library call)

XmPrintSetup

Purpose setup and create a Print Shell widget

Synopsis #include <Xm/Print.h>

Widget XmPrintSetup(
Widget video_widget,
Screen*print_screen,
String print_shell_name,
ArgList args,
Cardinal num_args);

Description

A function that does the appropriate setting and creates a realizedXmPrintShellthat
it returns to the caller. This function hides the details of theXt to set up a valid print
shell heirarchy for the application. It is also meant to encourage consistency in the
way applications root their print widget hierarchy.

print_screenmust belong to a Display connection that has already been initialized
with Xt .

The video_widgetis used to get at the application context, application name and
class, andargc/argv stored on theapplicationShell that roots this widget. If no
applicationShell is found,NULL argv/argc are used.

XmPrintSetup then creates an unrealizedApplicationShell with the same name and
class as the one given by the video display, on the print display and on the print screen
specified.

An XmPrintShell is then created as a child of this toplevel shell, using
XtCreatePopupShell, with the nameprint_shell_name, and using theargs provided.
It then realizes and maps the print shell, usingXtPopupwith XtGrabNone.

This way, application resource files and users can specify print specific attributes using
the following syntax (ifprint_shell_name is "Print"):

1157

Motif 2.1—Programmer’s Reference

XmPrintSetup(library call)

Dtpad.Print*textFontList: somefont

*Print*background:white

*Print*highlightThickness:0

video_widget
A video widget to fetch app video data from.

print_screen A print screen on the print display - specifies the screen onto which the
new shell is created.

print_shell_name
Specifies the name of the XmPrintShell created on the X Print server.

args Specifies the argument list from which to get the resources for the
XmPrintShell.

num_args Specifies the number of arguments in the argument list.

Return Values

The id theXmPrintShellwidget created on the X Print Server connection, or NULL
if an error has occured.

Errors/Warnings

None.

Examples

From theOK callback and theSetUp callback of the primary print dialog widget:

static void

printOKCB(Widget, XtPointer call_data, XtPointer client_data)

{

AppPrint *p = (AppPrint *) client_data;

DtPrintSetupCallbackStruct *pbs =

(XmPrintCallbackStruct *) call_data;

/* connect if not already done.

1158

Xm Functions

XmPrintSetup(library call)

the print dialog callback always provides valid

printer name, print display and screen

already initialized: XpInitContext called */

*/

p->print_shell = XmPrintSetup (widget, pbs->print_screen,

"Print", NULL, 0);

...

}

Related Information

XmPrintShell (3), XmRedisplayWidget(3), XmPrintToFile (3),
XmPrintPopupPDM (3)

1159

Motif 2.1—Programmer’s Reference

XmPrintShell(library call)

XmPrintShell

Purpose a shell widget class used for printing in Motif

Synopsis #include <Xm/Print.h>

Boolean XmIsPrintShell(
Widget);

Description

The XmPrintShell provides the Motif application programmer with an Xt widget
oriented API to some of the X Print resources and a callback to drive the pagination.

The XmPrintShell provides a simple callback to handle the pagination logic, and a
set of resources to get and set common printer attributes.

If not created on anXPrint connection, XmPrintShell behaves as a regular
applicationShell.

The XmPrintShell also initializes theXp extension event handling mechanism, by
registering an extension selector that callsXpSelectInput and event dispatcher for
print and attributesXp events, so applications can useXtInsertEventTypeHandler
to register their own handler with theXp events.

Arguments

No XmCreate function is provided, since this is a toplevel shell, most likely created
thru someXt shell creation routine orXmPrintSetup.

Classes

XmPrintShell is a subclass ofApplicationShell; it inherits behavior, resources and
traits from all its superclasses. The class pointer isXmPrintShellWidgetClass.

1160

Xm Functions

XmPrintShell(library call)

New Resources

XmPrintShell Resource Set

Name Class Type Default Access

XmNstartJobCallback XmCCallback XtCallbackList NULL CSG

XmNendJobCallback XmCCallback XtCallbackList NULL CSG

XmNpageSetupCallback XmCCallback XtCallbackList NULL CSG

XmNminX XmCMinX Dimension dynamic G

XmNminY XmCMinY Dimension dynamic G

XmNmaxX XmCMaxX Dimension dynamic G

XmNmaxY XmCMaxY Dimension dynamic G

XmNdefaultPixmap-

Resolution

XmCDefaultPixmap-

Resolution

unsigned short 100 CSG

XmNpdmNotification-

Callback

XmCCallback XtCallbackList NULL CSG

XmNstartJobCallback
Specifies the callback driving the beginning of rendering. It is safe for
an application to start rendering after this callback has been activated.
XpStartJob must be called to trigger this callback.

XmNendJobCallback
Specifies the callback driving the end of rendering. Notify the client
that all rendering has been processed (whether on print-to-file or regular
spool).XpEndJob is called by the print shell to trigger this callback.

XmNpageSetupCallback
Specifies the callback driving the page layout. It is safe for an app to
start rendering from this callback even if theXmNstartJobCallback is
not used.

XmNminX, XmNminY, XmNmaxX, XmNmaxY
Specify the imageable area of the page in the current print context.
XmPrintShell also maintains a proper size at all times by updating
its own widget dimension whenever an attribute, such as resolution
or orientation, changes. It is sized in itsInitialize routine so that the
application can rely on a proper size before the firstStartPagecall is
issued.

1161

Motif 2.1—Programmer’s Reference

XmPrintShell(library call)

XmNdefaultPixmapResolution
Indicates the resolution in dpi (dot per inch) of the image files read and
converted by Motif for the widget descendants of this shell. It is used
to determine a scaling ratio to be applied to pixmap created thru regular
pixmap/icon conversion of the following Widget resources:

• XmLabel.label*Pixmap, XmIconG.*IconPixmap
XmToggleB.selectPixmap, XmPushBG.armPixmap,
XmIconG.*IconMask, XmMessageBox.symbolPixmap,
XmContainer.*StatePixmap, ...

• Leaving out the pixmap resources being used for
tiling (XmNhighlightPixmap, XmNtopShadowPixmap,
XmNbottomShadowPixmap, XmNbackgroundPixmap, ...)

XmNpdmNotificationCallback
A callback notifying the application about the status of the PDM
(see XmPrintPopupPDM). A XmPrintShellCallbackStruct is used, with
reason:

• XmCR_PDM_NONE: no PDM available on this display for the
named selection (provided in detail)

• XmCR_PDM_START_VXAUTH: the PDM is not authorized to
connect to the video display.

• XmCR_PDM_START_PXAUTH: the PDM is not authorized to
connect to the print display.

• XmCR_PDM_UP: the PDM is up and running

• XmCR_PDM_OK: the PDM has exited with OK status

• XmCR_PDM_CANCEL: the PDM has exited with CANCEL

• XmCR_PDM_START_ERROR: the PDM cannot start due to some
error (usually logged)

• XmCR_PDM_EXIT_ERROR: the PDM has exited with an error

Callback Information

The XmNstartJobCallback, XmNendJobCallback, XmNpageSetupCallbackand
XmNpdmNotificationCallback operate on aXmPrintShellCallbackStruct, which is
defined as follow:

1162

Xm Functions

XmPrintShell(library call)

typedef struct

{

int reason; /* XmCR_START_JOB, XmCR_END_JOB,

XmCR_PAGE_SETUP, XmCR_PDM_* */

XEvent *event;

XPContext print_context;

Boolean last_page; /* in_out */

XtPointer detail;

} XmPrintShellCallbackStruct;

Additional Behavior

The last_pagefield is only meaningful when the reason isXmCR_PAGE_SETUP.

The page setup callback is called withlast_pageFalse to notify the application that
it has to get its internal layout state ready for the next page. Typically, a widget based
application will change the content of aLabel showing the page number, or scroll the
content of theText widget.

When the application has processed its last page, it should set thelast_pagefield in
the callback struct toTrue. The callback will be called a last time after that with
last_pageFalse to notify the application that it can safely clean-up its internal state
(e.g., destroy widgets).

No drawing should occur from within the callback function in the application, this is
an Exposure event-driven programming model where widgets render themselves from
their expose methods.

The print shell callsXpStartPage after the pageSetupCallback returns, and
XpEndPageupon reception ofStartPageNotify.

Errors/Warnings

XmPrintShellcan generate the following warnings:

• Not connected to a valid X Print Server: behavior undefined.

• Attempt to set an invalid resolution on a printer: %s

• Attempt to set an invalid orientation on a printer: %s

1163

Motif 2.1—Programmer’s Reference

XmPrintShell(library call)

Return Values

Not applicable

Examples

PrintOnePageCB(Widget pshell, XtPointer npages,

/*----------*/ XmPrintSetPageCBStruct psp)

{

static int cur_page = 0;

cur_page++;

if (! psp->last_page

&& curPage > 1) /* no need to scroll for the first page */

{

XmTextScroll(ptext, prows); /* get ready for next page */

} else { /**** I’m done */

XtDestroyWidget(pshell);

XtCloseDisplay(XtDisplay(pshell));

}

if (cur_page == (int) n_pages) psp->last_page = True;

}

PrintOKCallback(...)

/*-------------*/

{

pshell = XmPrintSetup (widget, pbs->print_screen,

"Print", NULL, 0);

XpStartJob(XtDisplay(pshell), XPSpool);

/**** here I get the size of the shell, create my widget

hierarchy: a bulleting board, and then a text widget,

that I stuff with the video text widget buffer */

1164

Xm Functions

XmPrintShell(library call)

/* get the total number of pages to print */

/* same code as previous example to get n_pages */

/**** set up my print callback */

XtAddCallback(pshell, XmNpageSetUpCallback,

PrintOnePageCB, n_pages);

}

Examples ofXmNdefaultPixmapResolution usage:

• An application reuses the same image sources it uses for the video interface, in
XBM or XPM, to layout on its printed pages. In this case, scaling is seamless.

! icon.xpm is 30x30 pixels

app*dialog.pushb.labelPixmap:icon.xpm

! print is 400dpi

app.print*form.lab.labelPixmap:icon.xpm

! 120x120 pixels on the paper (auto scaling)

• An application provides a new set of image files, for a given printer resolution
(say 300). It doesn’t want automatic scaling by the toolkit for that resolution,
it wants scaling based on these 300dpi images for higher resolution. It creates
its print shell inside using the name "printHiRes" and adds the following in its
resource file:

app.printHiRes.defaultPixmapResolution:300

! icon300.xpm is 120x120 pixels

app.printHiRes*form.lab.labelPixmap:icon300.xpm

! 120x120 pixels on the paper (no scaling)

This way a printer resolution of 600 will result in a scale of a 300 dpi image by 2
(dpi=600 divided by base=300), while a printer resolution of 150 (using default print
shell name "print") will use the 100 dpi icon scaled by 1.5 (dpi=150 divided by default
base=100).

Related Information

XmPrintSetup(3), XmRedisplayWidget(3), XmPrintToFile (3),
XmPrintPopupPDM (3)

1165

Motif 2.1—Programmer’s Reference

XmPrintToFile(library call)

XmPrintToFile

Purpose Retrieves and saves data that would normally be printed by the X Print Server.

Synopsis #include <Xm/Print.h>

XtEnumXmPrintToFile(
Display*dpy,
Stringfilename,
XPFinishProcfinish_proc,
XtPointerclient_data);

Description

XmPrintToFile hides the details of X display connection andXpGetDocumentData
to the Motif application programmer.

This function is a convenience routine that hides the details of the X and Xp internals
to the application programmer by calling theXpGetDocumentData function with
appropriate save and finish callbacks.

This is used in the context of X Printing when the user has specified the "print-to-file"
option from a regular Print Setup Dialog box.

XmPrintToFile first tries to open the given filename for writing and returnsFalse
if it can’t. Else, it usesXpGetDocumentData, giving it a save proc that writes the
data received in the file and a finish proc that closes the file or removes it on an
unsuccessful termination. It callsfinish_proc at that point, passing it the argument
received from the Xp layer (status == XPGetDocFinishedmeans the file is valid and
was closed, otherwise the file was removed).

XmPrintToFile is non-blocking; if it returns successfully, it just means the file was
opened successfully, not that all the data was received.

dpy Print display connection.

filename Name of the file to put the print data in.

1166

Xm Functions

XmPrintToFile(library call)

finish_proc Called when all the data has been received.

client_data Passed with thefinish_proc.

Return Values

ReturnsFalse if the filename could not be created or opened for writing,True
otherwise.

Errors/Warnings

Not applicable

Examples

A typical OK callback from aDtPrintSetupBox:

PrintOKCallback(widget...)

/*-------------*/

{ int save_data = XPSpool;

pshell = XmPrintSetup (widget, pbs->print_screen,

"Print", NULL, 0);

XtAddCallback(pshell, XmNstartJobCallback, startJobCB, data);

if (pbs->destination == DtPRINT_TO_FILE)

save_data = XPGetData;

/* start job must precede XpGetDocumentData in XmPrintToFile */

XpStartJob(XtDisplay(pshell), save_data);

XFlush(XtDisplay(pshell)); /* maintain the sequence

between startjob and getdocument */

/* setup print to file */

if (pbs->destination == DtPRINT_TO_FILE)

XmPrintToFile(XtDisplay(pshell),

pbs->dest_info, FinishPrintToFile, NULL);

1167

Motif 2.1—Programmer’s Reference

XmPrintToFile(library call)

}

}

static void

startJobCB(Widget, XtPointer call_data, XtPointer client_data)

{

print(p); /* rendering happens here */

XpEndJob(XtDisplay(p->print_shell));

/* clean up */

XtDestroyWidget(p->print_shell);

XtCloseDisplay(XtDisplay(p->print_shell));

}

Related Information

XmPrintSetup(3), XmPrintShell (3), XmRedisplayWidget(3),
XmPrintPopupPDM (3)

1168

Xm Functions

XmProcessTraversal(library call)

XmProcessTraversal

Purpose A function that determines which component receives keyboard events when a widget
has the focus

Synopsis #include <Xm/Xm.h>

Boolean XmProcessTraversal(
Widget widget,
XmTraversalDirection direction);

Description

XmProcessTraversaldetermines which component of a hierarchy receives keyboard
events when the hierarchy that contains the given widget has keyboard focus.

XmProcessTraversal changes focus only when the keyboard focus policy of the
widget hierarchy is explicit. If theXmNkeyboardFocusPolicy of the nearest shell
ancestor of the given widget is notXmEXPLICIT , XmProcessTraversal returns
False without making any focus changes.

widget Specifies the widget ID of the widget whose hierarchy is to be traversed

direction Specifies the direction of traversal

DEFINITIONS

In order to be eligible to receive keyboard focus when the shell’s
XmNkeyboardFocusPolicy is XmEXPLICIT , a widget or gadget must meet
the following conditions:

• The widget and its ancestors are not in the process of being destroyed.

• The widget and its ancestors aresensitive. A widget is sensitive when its
XmNsensitiveandXmNancestorSensitiveresources are both True.

• The XmNtraversalOn resource for the widget and its ancestors is True.

1169

Motif 2.1—Programmer’s Reference

XmProcessTraversal(library call)

• The widget is viewable. This means that the widget and its ancestors are managed,
realized, and (except for gadgets) mapped. Furthermore, in general, some part of
the widget’s rectangular area must be unobscured by the widget’s ancestors. If an
application unmaps a widget that has itsXmNmappedWhenManagedresource
set to True, the result is undefined.

In a ScrolledWindow with anXmNscrollingPolicy of XmAUTOMATIC , a
widget that is obscured because it is not within the clip window may be able
to receive focus if some part of the widget is within the work area and if an
XmNtraverseObscuredCallback routine can make the widget at least partially
visible by scrolling the window.

In general only primitives, gadgets, and Drawing Area are eligible to receive focus.
Most managers cannot receive focus even if they meet all these conditions.

Thedirection argument identifies the kind of traversal action to take. The descriptions
of these actions below refer to traversable non-tab-group widgets and traversable tab
groups.

• A traversable non-tab-group widget is a widget that is not a tab group and that
meets all the conditions for receiving focus described above.

• A traversable tab group widget is a tab group widget that meets the same
conditions, except that a manager that is a tab group and meets the other conditions
is also eligible for traversal as long as it contains a descendant that can receive
focus.

A tab group is a widget whoseXmNnavigationType is:

• XmTAB_GROUP or XmSTICKY_TAB_GROUP , if the hierarchy (up to
the nearest shell ancestor) that contains the widget has no widget whose
XmNnavigationType is XmEXCLUSIVE_TAB_GROUP

• XmEXCLUSIVE_TAB_GROUP or XmSTICKY_TAB_GROUP , if the
hierarchy (up to the nearest shell ancestor) that contains the widget has any
widget whoseXmNnavigationType is XmEXCLUSIVE_TAB_GROUP

Traversal Actions

The hierarchy to be traversed is that containing thewidgetargument. This hierarchy
is traversed only up to the nearest shell;XmProcessTraversaldoes not move focus
from one shell to another. If the shell containingwidgetdoes not currently have the
focus, any change thatXmProcessTraversalmakes to the element with focus within
that shell does not take effect until the next time the shell receives focus.

1170

Xm Functions

XmProcessTraversal(library call)

XmProcessTraversalbegins the traversal action from the widget in the hierarchy that
currently has keyboard focus or that last had focus when the user traversed away from
the shell hierarchy.

The value of thedirectionargument determines which of three kinds of traversal action
to take:

• Traversal to a non-tab-group widget. This kind of traversal is possible only
when the widget that currently has focus is not a tab group; otherwise,
XmProcessTraversalreturns False for these actions.

These actions do not move focus from one tab group to another. The actions first
determine the containing tab group. This is the tab group containing the widget
that currently has focus. The actions traverse only to a non-tab-group widget
within the containing tab group.

A non-tab-group widget is eligible for this kind of traversal if the widget is
traversable and has no tab group ancestors up to the containing tab group. If the
tab group contains no traversable non-tab-group widgets,XmProcessTraversal
returns False.

Following are the possible values of thedirectionargument. Note that when actions
wrap, wrapping occurs in the traversal direction. The following describes what
happens in a left to right environment:

— XmTRAVERSE_RIGHT —If the XmNnavigationType of the containing
tab group is notXmEXCLUSIVE_TAB_GROUP , focus moves to the next
traversable non-tab-group widget to the right of the widget that currently has
focus. In a left to right environment, at the right side of the tab group this
action wraps to the non-tab-group widget at the left side and next toward the
bottom. At the rightmost widget in the bottom row of the tab group this action
wraps to the non-tab-group widget at the leftmost widget in the upper row.

In a right to left environment, at the right side of the tab group, this action
wraps to the non-tab-group widget at the left side and next toward the top.
At the rightmost widget in the upper row of the tab group this action wraps
to the non-tab-group widget at the leftmost widget in the bottom row.

If the XmNnavigationType of the containing tab group is
XmEXCLUSIVE_TAB_GROUP , focus moves to the next traversable
non-tab-group widget in the tab group, proceeding in the order in which the
widgets appear in their parents’XmNchildren lists. After the last widget in
the tab group, this action wraps to the first non-tab-group widget.

1171

Motif 2.1—Programmer’s Reference

XmProcessTraversal(library call)

— XmTRAVERSE_LEFT —If the XmNnavigationType of the containing tab
group is not XmEXCLUSIVE_TAB_GROUP , focus moves to the next
traversable non-tab-group widget to the left of the widget that currently has
focus. In a left to right environment, at the left side of the tab group this
action wraps to the non-tab-group widget at the right side and next toward
the top. At the leftmost widget in the upper row of the tab group this action
wraps to the non-tab-group widget at the rightmost widget in the bottom row.

In a right to left environment, at the left side of the tab group this action wraps
to the non-tab-group widget at the right side and next toward the bottom. At
the leftmost widget in the bottom row of the tab group this action wraps to
the non-tab-group widget at the rightmost widget in the upper row.

If the XmNnavigationType of the containing tab group is
XmEXCLUSIVE_TAB_GROUP , focus moves to the previous traversable
non-tab-group widget in the tab group, proceeding in the reverse order in
which the widgets appear in their parents’XmNchildren lists. After the first
widget in the tab group, this action wraps to the last non-tab-group widget.

— XmTRAVERSE_DOWN—If the XmNnavigationType of the containing tab
group is not XmEXCLUSIVE_TAB_GROUP , focus moves to the next
traversable non-tab-group widget below the widget that currently has focus.
In a left to right environment, at the bottom of the tab group this action
wraps to the non-tab-group widget at the top and next toward the right. At
the bottom widget in the rightmost column of the tab group this action wraps
to the non-tab-group widget at the top widget in the leftmost column.

In a right to left environment, at the bottom of the tab group this action wraps
to the non-tab-group widget at the top and next toward the left. At the bottom
widget of the leftmost widget of the tab group this action wraps to the non-
tab-group widget at the top widget of the rightmost column.

If the XmNnavigationType of the containing tab group is
XmEXCLUSIVE_TAB_GROUP , focus moves to the next traversable
non-tab-group widget in the tab group, proceeding in the order in which the
widgets appear in their parents’XmNchildren lists. After the last widget in
the tab group, this action wraps to the first non-tab-group widget.

— XmTRAVERSE_UP—If the XmNnavigationType of the containing tab
group is not XmEXCLUSIVE_TAB_GROUP , focus moves to the next
traversable non-tab-group widget above the widget that currently has focus.
In a left to right environment, at the top of the tab group this action wraps
to the non-tab-group widget at the bottom and next toward the left. At the

1172

Xm Functions

XmProcessTraversal(library call)

top widget of the leftmost column of the tab group this action wraps to the
non-tab-group widget at the bottom widget of the rightmost column.

In a right to left environment, at the top of the tab group this action wraps
to the non-tab-group widget at the bottom and next toward the right. At the
top widget of the right most column of the tab group this action wraps to the
non-tab-group widget at the bottom widget of the leftmost column.

If the XmNnavigationType of the containing tab group is
XmEXCLUSIVE_TAB_GROUP , focus moves to the previous traversable
non-tab-group widget in the tab group, proceeding in the reverse order in
which the widgets appear in their parents’XmNchildren lists. After the first
widget in the tab group, this action wraps to the last non-tab-group widget.

— XmTRAVERSE_NEXT —Focus moves to the next traversable non-tab-group
widget in the tab group, proceeding in the order in which the widgets appear
in their parents’XmNchildren lists. After the last widget in the tab group,
this action wraps to the first non-tab-group widget.

— XmTRAVERSE_PREV—Focus moves to the previous traversable non-tab-
group widget in the tab group, proceeding in the reverse order in which the
widgets appear in their parents’XmNchildren lists. After the first widget in
the tab group, this action wraps to the last non-tab-group widget.

— XmTRAVERSE_HOME —If the XmNnavigationType of the containing
tab group is notXmEXCLUSIVE_TAB_GROUP , focus moves to the first
traversable non-tab-group widget at the initial focus of the tab group.

If the XmNnavigationType of the containing tab group is
XmEXCLUSIVE_TAB_GROUP , focus moves to the first traversable
non-tab-group widget in the tab group, according to the order in which the
widgets appear in their parents’XmNchildren lists.

• Traversal to a tab group. These actions first determine the current widget hierarchy
and the containing tab group. The current widget hierarchy is the widget hierarchy
whose root is the nearest shell ancestor of the widget that currently has focus.
The containing tab group is is the tab group containing the widget that currently
has focus. If the current widget hierarchy contains no traversable tab groups,
XmProcessTraversalreturns False.

Following are the possible values of thedirection argument. If any tab
group in the current widget hierarchy has anXmNnavigationType of
XmEXCLUSIVE_TAB_GROUP , traversal of tab groups in the hierarchy
proceeds to widgets in the order in which theirXmNnavigationType

1173

Motif 2.1—Programmer’s Reference

XmProcessTraversal(library call)

resources were specified as XmEXCLUSIVE_TAB_GROUP or
XmSTICKY_TAB_GROUP .:

— XmTRAVERSE_NEXT_TAB_GROUP—Finds the hierarchy that contains
widget, finds the active tab group (if any), and makes the next tab group the
active tab group in the hierarchy.

— XmTRAVERSE_PREV_TAB_GROUP—Finds the hierarchy that contains
widget, finds the active tab group (if any), and makes the previous tab group
the active tab group in the hierarchy.

• Traversal to any widget. In this case thewidget argument is the widget to
which XmProcessTraversaltries to give focus. If the widget is not traversable,
XmProcessTraversalreturns False.

Following are the possible values of thedirection argument:

— XmTRAVERSE_CURRENT—Finds the hierarchy and the tab group that
containwidget. If this tab group is not the active tab group, this action makes
it the active tab group. Ifwidget is an item in the active tab group, this action
makes it the active item. Ifwidget is the active tab group, this action makes
the first traversable item in the tab group the active item.

CAUTIONS

UsingXmProcessTraversalto traverse to MenuBars, Pulldown menu panes, or Popup
menu panes is not supported.

XmProcessTraversal cannot be called recursively. In particular, an application
cannot call this routine from anXmNfocusCallback or XmNlosingFocusCallback
procedure.

Return Values

Returns True if the traversal action succeeded. Returns False if the
XmNkeyboardFocusPolicy of the nearest shell ancestor ofwidget is not
XmEXPLICIT , if the traversal action finds no traversable widget to receive focus,
or if the call to the routine has invalid arguments.

Related Information

XmGetVisibility (3) andXmIsTraversable(3).

1174

Xm Functions

XmRedisplayWidget(library call)

XmRedisplayWidget

Purpose Synchronously activates theexposemethod of a widget to draw its content

Synopsis #include <Xm/Xm.h>

voidXmRedisplayWidget(
Widgetwidget);

Description

This function is a convenience routine that hides the details of the Xt internals to the
application programmer by calling theexposemethod of the given widget with a well
formedExposeevent andRegioncorresponding to the total area of the widget. If the
widget doesn’t have anExposemethod, the function does nothing.

This is primarily used in the context of X Printing if the programming model chosen
by the application issynchronous; that is, it doesn’t rely of X Print events for the
driving of page layout but wants to completely control the sequence of rendering
requests.

XmRedisplayWidget doesn’t clear the widget window prior to calling theexpose
method, since this is handled by calls toXpStartPage .

widget The widget to redisplay.

Return Values

None.

Errors/Warnings

Not applicable

1175

Motif 2.1—Programmer’s Reference

XmRedisplayWidget(library call)

Examples

In the following, a simple application wants to print the content of a multi-page text
widget (similar todtpad).

PrintOKCallback(print_dialog...)

/*-------------*/

{

pshell = XmPrintSetup (print_dialog, pbs->print_screen,

"Print", NULL, 0);

XpStartJob(XtDisplay(pshell), XPSpool);

/**** here I realize the shell, get its size, create my widget

hierarchy: a bulletin board, and then a text widget,

that I stuff with the video text widget buffer */

/* get the total number of pages to print */

XtVaGetValues(ptext, XmNrows, &prows,

XmNtotalLines, n_lines, NULL);

n_pages = n_lines / prows;

/***** now print the pages in a loop */

for (cur_page=0; cur_page != n_pages; cur_page++) {

XpStartPage(XtDisplay(pshell), XtWindow(pshell), False);

XmRedisplayWidget(ptext); /* do the drawing */

XpEndPage(XtDisplay(pshell));

XmTextScroll(ptext, prows); /* get ready for next page */

}

/***** I’m done */

XpEndJob(XtDisplay(pshell));

}

Of course, one could change the above code to include it in afork() branch so that
the main program is not blocked while printing is going on. Another way to achieve

1176

Xm Functions

XmRedisplayWidget(library call)

a "print-in-the-background" effect is to use an Xt workproc. Using the same sample
application, that gives us:

Boolean

PrintOnePageWP(XtPointer npages) /* workproc */

/*-------------*/

{

static int cur_page = 0;

cur_page++;

XpStartPage(XtDisplay(pshell), XtWindow(pshell), False);

XmRedisplayWidget(ptext); /* do the drawing */

XpEndPage(XtDisplay(pshell));

XmTextScroll(ptext, prows); /* get ready for next page */

if (cur_page == n_pages) { /***** I’m done */

XpEndJob(XtDisplay(pshell));

XtDestroyWidget(pshell);

XtCloseDisplay(XtDisplay(pshell));

}

return (cur_page == n_pages);

}

PrintOKCallback(...)

/*-------------*/

{

pshell = XmPrintSetup (widget, pbs->print_screen,

"Print", NULL, 0);

XpStartJob(XtDisplay(pshell), XPSpool);

/**** here I get the size of the shell, create my widget

hierarchy: a bulletin board, and then a text widget,

that I stuff with the video text widget buffer */

/* get the total number of pages to print */

/* ... same code as above example */

1177

Motif 2.1—Programmer’s Reference

XmRedisplayWidget(library call)

/***** print the pages in the background */

XtAppAddWorkProc(app_context, PrintOnePageWP, n_pages);

}

Related Information

XmPrintSetup(3), XmPrintShell (3)

1178

Xm Functions

XmRegisterSegmentEncoding(library call)

XmRegisterSegmentEncoding

Purpose A compound string function that registers a compound text encoding format for a
specified font list element tag

Synopsis #include <Xm/Xm.h>

char * XmRegisterSegmentEncoding(
char * fontlist_tag,
char *ct_encoding);

Description

XmRegisterSegmentEncodingregisters a compound text encoding format with the
specified font list element tag. TheXmCvtXmStringToCT function uses this registry
to map the font list tags of compound string segments to compound text encoding
formats. Registering a font list tag that already exists in the registry overwrites the
original entry. You can unregister a font list tag by passing a NULL value for the
ct_encodingparameter.

fontlist_tag Specifies the font list element tag to be registered. The tag must be a
NULL-terminated ISO8859-1 string.

ct_encoding Specifies the compound text character set to be used for segments with
the font list tag. The value must be a NULL-terminated ISO8859-1
string. A value ofXmFONTLIST_DEFAULT_TAG maps the specified
font list tag to the code set of the locale.

Return Values

Returns NULL for a new font list tag or the oldct_encodingvalue for an already
registered font list tag. The application is responsible for freeing the storage associated
with the returned data (if any) by callingXtFree.

1179

Motif 2.1—Programmer’s Reference

XmRegisterSegmentEncoding(library call)

Related Information

XmCvtXmStringToCT (3), XmFontList (3), XmMapSegmentEncoding(3), and
XmString (3).

1180

Xm Functions

XmRemoveFromPostFromList(library call)

XmRemoveFromPostFromList

Purpose a RowColumn function that disables a menu for a particular widget

Synopsis #include <Xm/RowColumn.h>

void XmRemoveFromPostFromList(
Widget menu,
Widget post_from_widget);

Description

XmRemoveFromPostFromList makes a Popup or Pulldown menu no longer
accessible from a widget. This function does not destroy a menu, or deallocate the
memory associated with it. It simply removes the widget from the menu’s list of
widgets permitted to post that menu.

If the menuargument refers to a Popup menu, the event handlers are removed from the
post_from_widgetwidget. If the argument refers to a Pulldown menu, its ID is removed
from theXmNsubMenuId of the specifiedpost_from_widget. Also, if the menu is a
Pulldown menu, thepost_from_widgetwidget must be either a CascadeButton or a
CascadeButtonGadget.

menu Specifies the widget ID of a the Popup or Pulldown menu to be made
inaccessible from thepost_from_widgetwidget.

post_from_widget
Specifies the widget ID of the widget which can no longer post the
menu referred to by themenuargument..

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

1181

Motif 2.1—Programmer’s Reference

XmRemoveFromPostFromList(library call)

Related Information

XmAddToPostFromList (3), XmGetPostedFromWidget(3), and
XmRowColumn(3).

1182

Xm Functions

XmRemoveProtocolCallback(library call)

XmRemoveProtocolCallback

Purpose A VendorShell function that removes a callback from the internal list

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmRemoveProtocolCallback(
Widget shell,
Atom property,
Atom protocol,
XtCallbackProc callback,
XtPointer closure);

Description

XmRemoveProtocolCallbackremoves a callback from the internal list.

XmRemoveWMProtocolCallback is a convenience interface. It calls
XmRemoveProtocolCallback with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

property Specifies the protocol property

protocol Specifies the protocol atom

callback Specifies the procedure to call when a protocol message is received

closure Specifies the client data to be passed to the callback when it is invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

1183

Motif 2.1—Programmer’s Reference

XmRemoveProtocolCallback(library call)

Related Information

VendorShell(3), XmAddProtocolCallback(3), XmInternAtom (3), and
XmRemoveWMProtocolCallback(3).

1184

Xm Functions

XmRemoveProtocols(library call)

XmRemoveProtocols

Purpose A VendorShell function that removes the protocols from the protocol manager and
deallocates the internal tables

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmRemoveProtocols(
Widget shell,
Atom property,
Atom * protocols,
Cardinal num_protocols);

Description

XmRemoveProtocols removes the protocols from the protocol manager and
deallocates the internal tables. If any of the protocols are active, it will update the
handlers and update the property ifshell is realized.

XmRemoveWMProtocols is a convenience interface. It callsXmRemoveProtocols
with the property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

property Specifies the protocol property

protocols Specifies the protocol atoms

num_protocols
Specifies the number of elements in protocols

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

1185

Motif 2.1—Programmer’s Reference

XmRemoveProtocols(library call)

Related Information

VendorShell(3), XmAddProtocols(3), XmInternAtom (3), and
XmRemoveWMProtocols(3).

1186

Xm Functions

XmRemoveTabGroup(library call)

XmRemoveTabGroup

Purpose A function that removes a tab group

Synopsis #include <Xm/Xm.h>

void XmRemoveTabGroup(
Widget tab_group);

Description

This function is obsolete and its behavior is replaced by settingXmNnavigationType
to XmNONE. XmRemoveTabGroup removes a widget from the list of tab
groups associated with a particular widget hierarchy and sets the widget’s
XmNnavigationType to XmNONE.

tab_group Specifies the widget ID

Related Information

XmAddTabGroup (3), XmManager(3), andXmPrimitive (3).

1187

Motif 2.1—Programmer’s Reference

XmRemoveWMProtocolCallback(library call)

XmRemoveWMProtocolCallback

Purpose A VendorShell convenience interface that removes a callback from the internal list

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmRemoveWMProtocolCallback(
Widget shell,
Atom protocol,
XtCallbackProc callback,
XtPointer closure);

Description

XmRemoveWMProtocolCallback is a convenience interface. It calls
XmRemoveProtocolCallback with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

protocol Specifies the protocol atom

callback Specifies the procedure to call when a protocol message is received

closure Specifies the client data to be passed to the callback when it is invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmAddWMProtocolCallback (3), XmInternAtom (3), and
XmRemoveProtocolCallback(3).

1188

Xm Functions

XmRemoveWMProtocols(library call)

XmRemoveWMProtocols

Purpose A VendorShell convenience interface that removes the protocols from the protocol
manager and deallocates the internal tables

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmRemoveWMProtocols(
Widget shell,
Atom * protocols,
Cardinal num_protocols);

Description

XmRemoveWMProtocols is a convenience interface. It callsXmRemoveProtocols
with the property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

protocols Specifies the protocol atoms

num_protocols
Specifies the number of elements in protocols

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmAddWMProtocols (3), XmInternAtom (3), and
XmRemoveProtocols(3).

1189

Motif 2.1—Programmer’s Reference

XmRenderTableAddRenditions(library call)

XmRenderTableAddRenditions

Purpose Creates a new render table

Synopsis #include <Xm/Xm.h>

XmRenderTable XmRenderTableAddRenditions(
XmRenderTable oldtable,
XmRendition *renditions,
Cardinal rendition_count,
XmMergeMode merge_mode);

Description

XmRenderTableAddRenditions is a function to create a new render table that
includes the renditions listed inoldtable, if there is one. This function also copies
specified renditions (renditions) to the new render table. The firstrendition_count
renditions of therenditionsarray are added to the new table. If a rendition is tagged
with a tag that matches a tag already inoldtable, then the existing rendition using that
tag is either modified or freed and replaced with the new rendition, depending on the
value ofmerge_mode. If oldtable is NULL, XmRenderTableAddRenditions creates
a new render table containing only the specified renditions.

This function deallocates the original render table after extracting the required
information. It is the responsibility of the caller to free the renditions of therenditions
array by calling theXmRenditionFree function.

oldtable Specifies the render table to be added to.

renditions Specifies an array of renditions to be added.

rendition_count
Specifies the number of renditions fromrenditionsto be added.

merge_modeSpecifies what to do if theXmNtag of a rendition matches that of one
that already exists inoldtable. The possible values are as follows:

1190

Xm Functions

XmRenderTableAddRenditions(library call)

XmMERGE_REPLACE
Completely replaces the old rendition with the new one.

XmMERGE_OLD
Replaces any unspecified values of the old rendition with
the corresponding values from the new rendition.

XmMERGE_NEW
Replaces the old rendition with the new rendition,
replacing any unspecified values of the new rendition
with the corresponding values from the old rendition.

XmSKIP Skips over the new rendition, leaving the old rendition
intact.

Return Values

If renditions is NULL or rendition_countis 0 (zero), this function returnsoldtable.
Otherwise, the function returns a newXmRenderTable. The function allocates
space to hold this new render table. The application is responsible for managing
this allocated space. The application can recover the allocated space by calling
XmRenderTableFree.

Related Information

XmRendition(3) andXmRenderTableFree(3).

1191

Motif 2.1—Programmer’s Reference

XmRenderTableCopy(library call)

XmRenderTableCopy

Purpose A render table function that copies renditions

Synopsis #include <Xm/Xm.h>

XmRenderTable XmRenderTableCopy(
XmRenderTable table,
XmStringTag *tags,
int tag_count);

Description

XmRenderTableCopy creates a new render table which will contain the renditions
of the table whose tags match those intags.

table Specifies the table containing the renditions to be copied.

tags Specifies an array of tags, whose corresponding renditions are to be
copied. NULL indicates that the complete table should be copied.

tag_count Specifies the number of tags intags.

Return Values

Returns NULL if table is NULL. Otherwise, this function returns the new render
table. This function allocates space to hold the new render table. The application
is responsible for managing this allocated space. The application can recover this
allocated space by callingXmRenderTableFree.

Related Information

XmRendition(3) andXmRenderTableFree(3).

1192

Xm Functions

XmRenderTableCvtFromProp(library call)

XmRenderTableCvtFromProp

Purpose A render table function that converts from a string representation to a render table

Synopsis #include <Xm/Xm.h>

XmRenderTable XmRenderTableCvtFromProp(
Widget widget,
char *property,
unsigned int length);

Description

XmRenderTableCvtFromProp converts a string of characters representing a render
table to a render table. This routine is typically used by the destination of a data
transfer operation to produce a render table from a transferred representation.

widget Specifies the widget that is the destination for the render table

property Specifies a string of characters representing a render table

length Specifies the number of bytes inproperty

Return Values

Returns a render table. The function allocates space to hold the returned render table.
The application is responsible for managing this allocated space. The application can
recover this allocated space by callingXmRenderTableFree.

Related Information

XmRenderTable(3), XmRenderTableCvtToProp(3), andXmRenderTableFree(3).

1193

Motif 2.1—Programmer’s Reference

XmRenderTableCvtToProp(library call)

XmRenderTableCvtToProp

Purpose A render table function that converts a render table to a string representation

Synopsis #include <Xm/Xm.h>

unsigned int XmRenderTableCvtToProp(
Widget widget,
XmRenderTable table,
char ** prop_return);

Description

XmRenderTableCvtToProp converts a render table to a string of characters
representing the render table. This routine is typically used by the source of a data
transfer operation to produce a representation for transferring a render table to a
destination.

widget Specifies the widget that is the source of the render table

table Specifies a render table to be converted

prop_return Specifies a pointer to a string that is created and returned by this
function. The function allocates space to hold the returned string.
The application is responsible for managing this allocated space. The
application can recover this allocated space by callingXtFree.

Return Values

Returns the number of bytes in the string representation.

Related Information

XmRenderTable(3) andXmRenderTableCvtFromProp(3).

1194

Xm Functions

XmRenderTableFree(library call)

XmRenderTableFree

Purpose A render table function that recovers memory

Synopsis #include <Xm/Xm.h>

void XmRenderTableFree(
XmRenderTable table);

Description

XmRenderTableFree frees the memory associated with the specified rendertable.

table Specifies the table to be freed.

Related Information

XmRendition(3).

1195

Motif 2.1—Programmer’s Reference

XmRenderTableGetRendition(library call)

XmRenderTableGetRendition

Purpose A convenience function that matches a rendition tag

Synopsis #include <Xm/Xm.h>

XmRendition XmRenderTableGetRendition(
XmRenderTable table,
XmStringTag tag);

Description

XmRenderTableGetRendition searchestable and returns a copy of the rendition
whoseXmNtag resource matchestag. If no rendition matches, then NULL is returned.
This function is to be used for just one rendition match.

It is the responsibility of the caller to free the returned rendition with the
XmRenditionFree function.

table Specifies the table containing renditions to be searched.

tag Specifies the tag to search for.

Return Values

Returns NULL if there is no match; otherwise, this function returns a new
XmRendition.

Related Information

XmRenderTableGetRenditions(3), XmRenderTableGetTags(3), and
XmRendition(3).

1196

Xm Functions

XmRenderTableGetRenditions(library call)

XmRenderTableGetRenditions

Purpose A convenience function that matches rendition tags

Synopsis #include <Xm/Xm.h>

XmRendition *XmRenderTableGetRenditions(
XmRenderTable table,
XmStringTag *tags,
Cardinal tag_count);

Description

XmRenderTableGetRenditionssearchestable and returns an array of copies of the
renditions whoseXmNtag resources match a tag intags. If no renditions match, then
NULL is returned. The size of the returned array istag_count. TheXmNtag resource
of each rendition will match the corresponding tag intags. If no match is found for
a particular tag, the corresponding slot in the return value will be NULL.

It is the responsibility of the caller to call theXmRenditionFree function to free the
new renditions, and theXtFree function to free the array.

table Specifies the table containing renditions to be searched.

tags Specifies the tags to search for.

tag_count Specifies the number of tags intags.

Return Values

Returns NULL if there is no match; otherwise, this function returns an array of new
XmRenditions.

1197

Motif 2.1—Programmer’s Reference

XmRenderTableGetRenditions(library call)

Related Information

XmRenderTableGetRendition(3), XmRenderTableGetTags(3), and
XmRendition(3).

1198

Xm Functions

XmRenderTableGetTags(library call)

XmRenderTableGetTags

Purpose A convenience function that gets rendition tags

Synopsis #include <Xm/Xm.h>

int XmRenderTableGetTags(
XmRenderTable table,
XmStringTag **tag_list);

Description

XmRenderTableGetTagssearches the specifiedtable for the XmNtag resources of
all the renditions (XmRenditions) entries. These tag resources are then composed into
an array.

table Specifies the table containing theXmRenditions.

tag_list Is the array ofXmStringTagsgenerated by this function. The function
allocates space to hold the returned tags and to hold thetag_list itself.
The application is responsible for managing this allocated space. This
application can recover this allocated space by callingXtFree once
for each of the returned tags, and then callingXtFree on the returned
tag_list variable itself.

Return Values

Returns the number of tags intag_list.

Related Information

XmRendition(3).

1199

Motif 2.1—Programmer’s Reference

XmRenderTableRemoveRenditions(library call)

XmRenderTableRemoveRenditions

Purpose A convenience function that removes renditions

Synopsis #include <Xm/Xm.h>

XmRenderTable XmRenderTableRemoveRenditions(
XmRenderTable oldtable,
XmStringTag *tags,
int tag_count);

Description

XmRenderTableRemoveRenditionsremoves fromoldtablethe renditions whose tags
match the tags specified intags, then places the remaining renditions in a newly created
render table.

oldtable Specifies the render table from which renditions are to be removed. This
function deallocates the original render table and the matching renditions
after extracting the required information.

tags Specifies an array of tags, whose corresponding renditions are to be
removed fromoldtable.

tag_count Specifies the number of tags intags.

Return Values

If oldtable or tags is NULL, or tag_count is 0 (zero), or no renditions are
removed from oldtable, this function returnsoldtable. Otherwise, it returns a
newly allocatedXmRenderTable. The application is responsible for managing this
allocated render table. The application can recover this allocated space by calling
XmRenderTableFree.

1200

Xm Functions

XmRenderTableRemoveRenditions(library call)

Related Information

XmRendition(3) andXmRenderTableFree(3).

1201

Motif 2.1—Programmer’s Reference

XmRenditionCreate(library call)

XmRenditionCreate

Purpose A convenience function that creates a rendition

Synopsis #include <Xm/Xm.h>

XmRendition XmRenditionCreate(
Widget widget,
XmStringTag tag,
ArgList arglist,
Cardinal argcount);

Description

XmRenditionCreate creates a rendition whose resources are set to the values specified
in arglist. Default values are assigned to resources that are not specified.

widget Specifies the widget used for deriving any necessary information for
creating the rendition. In particular, the X display ofwidget will be
used for loading fonts.

tag Specifies the tag for the rendition. (This will become theXmNtag
resource for the rendition.)

arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argument list (arglist).

Return Values

Returns the created rendition. The function allocates space to hold the returned
rendition. The application is responsible for managing this allocated space. The
application can recover this allocated space by callingXmRenditionFree.

1202

Xm Functions

XmRenditionCreate(library call)

Related Information

XmRendition(3) andXmRenditionFree(3).

1203

Motif 2.1—Programmer’s Reference

XmRenditionFree(library call)

XmRenditionFree

Purpose A convenience function that frees a rendition

Synopsis #include <Xm/Xm.h>

void XmRenditionFree(
XmRendition rendition);

Description

XmRenditionFree recovers memory used byrendition.

rendition Specifies the rendition to be freed.

Related Information

XmRendition(3).

1204

Xm Functions

XmRenditionRetrieve(library call)

XmRenditionRetrieve

Purpose A convenience function that retrieves rendition resources

Synopsis #include <Xm/Xm.h>

void XmRenditionRetrieve(
XmRendition rendition,
ArgList arglist,
Cardinal argcount);

Description

XmRenditionRetrieve extracts values for the given resources (arglist) from the
specified rendition. Note that the function returns the actual values of the resources,
not copies. Therefore it is necessary to copy before modifying any resource whose
value is an address. This will include such resources asXmNfontName, XmNfont ,
andXmNtabList .

rendition Specifies the rendition.

arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argument list (arglist).

Related Information

XmRendition(3) andXmTabListCopy (3).

1205

Motif 2.1—Programmer’s Reference

XmRenditionUpdate(library call)

XmRenditionUpdate

Purpose A convenience function that modifies resources

Synopsis #include <Xm/Xm.h>

void XmRenditionUpdate(
XmRendition rendition,
ArgList arglist,
Cardinal argcount);

Description

XmRenditionUpdate modifies resources in the specified rendition.

rendition Specifies the rendition.

arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argument list (arglist).

Related Information

XmRendition(3).

1206

Xm Functions

XmRepTypeAddReverse(library call)

XmRepTypeAddReverse

Purpose A representation type manager function that installs the reverse converter for a
previously registered representation type

Synopsis #include <Xm/RepType.h>

void XmRepTypeAddReverse(
XmRepTypeId rep_type_id);

Description

XmRepTypeAddReverse installs the reverse converter for a previously registered
representation type. The reverse converter takes a numerical representation type value
and returns its corresponding string value. Certain applications may require this
capability to obtain a string value to display on a screen or to build a resource file.

The valuesargument of theXmRepTypeRegister function can be used to register
representation types with nonconsecutive values or with duplicate names for the same
value. If the list of numerical values for a representation type contains duplicate
values, the reverse converter uses the first name in thevalue_nameslist that matches
the specified numeric value. For example, if avalue_namesarray hascancel, proceed,
andabort, and the correspondingvaluesarray contains 0, 1, and 0, the reverse converter
will return cancelinstead ofabort for an input value of 0.

rep_type_id Specifies the identification number of the representation type

Related Information

XmRepTypeGetId(3) andXmRepTypeRegister(3).

1207

Motif 2.1—Programmer’s Reference

XmRepTypeGetId(library call)

XmRepTypeGetId

Purpose A representation type manager function that retrieves the identification number of a
representation type

Synopsis #include <Xm/RepType.h>

XmRepTypeId XmRepTypeGetId(
String rep_type);

Description

XmRepTypeGetId searches the registration list for the specified representation type
and returns the associated identification number.

rep_type Specifies the representation type for which an identification number is
requested

Return Values

Returns the identification number of the specified representation type. If the
representation type is not registered, the function returnsXmREP_TYPE_INVALID .

Related Information

XmRepTypeGetRegistered(3) andXmRepTypeRegister(3).

1208

Xm Functions

XmRepTypeGetNameList(library call)

XmRepTypeGetNameList

Purpose A representation type manager function that generates a list of values for a
representation type

Synopsis #include <Xm/RepType.h>

String * XmRepTypeGetNameList(
XmRepTypeId rep_type_id,
Booleanuse_uppercase_format);

Description

XmRepTypeGetNameList generates a NULL-terminated list of the value names
associated with the specified representation type. Each value name is a NULL-
terminated string. This routine allocates memory for the returned data. The application
must free this memory usingXtFree.

rep_type_id Specifies the identification number of the representation type.

use_uppercase_format
Specifies a Boolean value that controls the format of the name list. If
the value is True, each value name is in uppercase characters prefixed
by Xm; if it is False, the names are in lowercase characters.

Return Values

Returns a pointer to an array of the value names.

Related Information

XmRepTypeGetId(3), XmRepTypeGetRegistered(3), andXmRepTypeRegister(3).

1209

Motif 2.1—Programmer’s Reference

XmRepTypeGetRecord(library call)

XmRepTypeGetRecord

Purpose A representation type manager function that returns information about a representation
type

Synopsis #include <Xm/RepType.h>

XmRepTypeEntry XmRepTypeGetRecord(
XmRepTypeId rep_type_id);

Description

XmRepTypeGetRecord retrieves information about a particular representation type
that is registered with the representation type manager. This routine allocates memory
for the returned data. The application must free this memory usingXtFree.

rep_type_id The identification number of the representation type

The representation type entry structure contains the following information:
typedef struct
{

String rep_type_name;
String * value_names;
unsigned char *values;
unsigned char num_values;
Boolean reverse_installed;
XmRepTypeId rep_type_id;

} XmRepTypeEntryRec, *XmRepTypeEntry;

rep_type_name
The name of the representation type

value_namesAn array of representation type value names

values An array of representation type numerical values

num_values The number of values associated with the representation type

1210

Xm Functions

XmRepTypeGetRecord(library call)

reverse_installed
A flag that indicates whether or not the reverse converter is installed

rep_type_id The identification number of the representation type

Return Values

Returns a pointer to the representation type entry structure that describes the
representation type.

Related Information

XmRepTypeGetId(3), XmRepTypeGetRegistered(3), andXmRepTypeRegister(3).

1211

Motif 2.1—Programmer’s Reference

XmRepTypeGetRegistered(library call)

XmRepTypeGetRegistered

Purpose A representation type manager function that returns a copy of the registration list

Synopsis #include <Xm/RepType.h>

XmRepTypeList XmRepTypeGetRegistered(
void);

Description

XmRepTypeGetRegisteredretrieves information about all representation types that
are registered with the representation type manager. The registration list is an array of
structures, each of which contains information for a representation type entry. The end
of the registration list is marked with a representation type entry whoserep_type_name
field has a NULL pointer. This routine allocates memory for the returned data. The
application must free this memory usingXtFree.

The representation type entry structure contains the following information:
typedef struct
{

String rep_type_name;
String * value_names;
unsigned char *values;
unsigned char num_values;
Boolean reverse_installed;
XmRepTypeId rep_type_id;

} XmRepTypeEntryRec, *XmRepTypeList;

rep_type_name
The name of the representation type

value_namesAn array of representation type value names

values An array of representation type numerical values

num_values The number of values associated with the representation type

1212

Xm Functions

XmRepTypeGetRegistered(library call)

reverse_installed
A flag that indicates whether or not the reverse converter is installed

rep_type_id The identification number of the representation type

Return Values

Returns a pointer to the registration list of representation types.

Related Information

XmRepTypeRegister(3) andXmRepTypeGetRecord(3).

1213

Motif 2.1—Programmer’s Reference

XmRepTypeInstallTearOffModelConverter(library call)

XmRepTypeInstallTearOffModelConverter

Purpose A representation type manager function that installs the resource converter for
XmNtearOffModel.

Synopsis #include <Xm/RepType.h>

void XmRepTypeInstallTearOffModelConverter(
void);

Description

XmRepTypeInstallTearOffModelConverter installs the resource converter that
allows values for theXmNtearOffModel resource to be specified in resource default
files.

Related Information

XmRowColumn(3).

1214

Xm Functions

XmRepTypeRegister(library call)

XmRepTypeRegister

Purpose A representation type manager function that registers a representation type resource

Synopsis #include <Xm/RepType.h>

XmRepTypeId XmRepTypeRegister(
String rep_type,
String * value_names,
unsigned char *values,
unsigned charnum_values);

Description

XmRepTypeRegisterregisters a representation type resource with the representation
type manager. All features of the representation type management facility become
available for the specified representation type. The function installs a forward type
converter to convert string values to numerical representation type values.

When thevaluesargument is NULL, consecutive numerical values are assumed. The
order of the strings in thevalue_namesarray determines the numerical values for the
resource. For example, the first value name is 0 (zero); the second value name is 1;
and so on.

If it is non-NULL, the valuesargument can be used to assign values to representation
types that have nonconsecutive values or have duplicate names for the same value.
Representation types registered in this manner will consume additional storage and
will be slightly slower than representation types with consecutive values.

A representation type can only be registered once; if the same representation type
name is registered more than once, the behavior is undefined.

The functionXmRepTypeAddReverseinstalls a reverse converter for a registered
representation type. The reverse converter takes a representation type numerical value
and returns the corresponding string value. If the list of numerical values for a
representation type contains duplicate values, the reverse converter uses the first name
in the value_nameslist that matches the specified numeric value. For example, if a

1215

Motif 2.1—Programmer’s Reference

XmRepTypeRegister(library call)

value_namesarray hascancel, proceed, andabort, and the correspondingvaluesarray
contains 0, 1, and 0, the reverse converter will returncancel instead ofabort for an
input value of 0.

rep_type Specifies the representation type name.

value_namesSpecifies a pointer to an array of value names associated with the
representation type. A value name is specified in lowercase characters
without an Xm prefix. Words within a name are separated with
underscores.

values Specifies a pointer to an array of values associated with the
representation type. A value in this array is associated with the value
name in the corresponding position of thevalue_namesarray.

num_values Specifies the number of entries in thevalue_namesandvaluesarrays.

Return Values

Returns the identification number for the specified representation type.

Related Information

XmRepTypeAddReverse(3), XmRepTypeGetId(3), XmRepTypeGetNameList(3),
XmRepTypeGetRecord(3), XmRepTypeGetRegistered(3), and
XmRepTypeValidValue(3).

1216

Xm Functions

XmRepTypeValidValue(library call)

XmRepTypeValidValue

Purpose A representation type manager function that tests the validity of a numerical value of
a representation type resource

Synopsis #include <Xm/RepType.h>

Boolean XmRepTypeValidValue(
XmRepTypeId rep_type_id,
unsigned char test_value,
Widget enable_default_warning);

Description

XmRepTypeValidValue tests the validity of a numerical value for a given
representation type resource. The function generates a default warning message if the
value is invalid and theenable_default_warningargument is non-NULL.

rep_type_id Specifies the identification number of the representation type.

test_value Specifies the numerical value to test.

enable_default_warning
Specifies the ID of the widget that contains a default warning message.
If this parameter is NULL, no default warning message is generated and
the application must provide its own error handling.

Return Values

Returns True if the specified value is valid; otherwise, returns False.

Related Information

XmRepTypeGetId(3) andXmRepTypeRegister(3).

1217

Motif 2.1—Programmer’s Reference

XmResolveAllPartOffsets(library call)

XmResolveAllPartOffsets

Purpose A function that allows writing of upward-compatible applications and widgets

Synopsis #include <Xm/Xm.h>

void XmResolveAllPartOffsets(
WidgetClasswidget_class,
XmOffsetPtr * offset,
XmOffsetPtr * constraint_offset);

Description

Note: This routine is obsolete and exists for compatibility with previous releases.
You should callXmeResolvePartOffsetsinstead.

The use of offset records requires two extra global variables per widget class. The
variables consist of pointers to arrays of offsets into the widget record and constraint
record for each part of the widget structure. TheXmResolveAllPartOffsetsfunction
allocates the offset records needed by an application to guarantee upward-compatible
access to widget instance and constraint records by applications and widgets. These
offset records are used by the widget to access all of the widget’s variables. A widget
needs to take the steps described in the following paragraphs.

Instead of creating a resource list, the widget creates an offset resource list. To
accomplish this, use theXmPartResource structure and theXmPartOffset macro.
The XmPartResource data structure looks just like a resource list, but instead of
having one integer for its offset, it has two shorts. This structure is put into the class
record as if it were a normal resource list. Instead of usingXtOffset for the offset,
the widget usesXmPartOffset.

If the widget is a subclass of the Constraint class and it defines additional constraint
resources, create an offset resource list for the constraint part as well. Instead of using
XtOffset for the offset, the widget usesXmConstraintPartOffset in the constraint
resource list.

1218

Xm Functions

XmResolveAllPartOffsets(library call)

XmPartResource resources[] = {

{ BarNxyz, BarCXyz, XmRBoolean, sizeof(Boolean),

XmPartOffset(Bar,xyz), XmRImmediate, (XtPointer)False } };

XmPartResource constraints[] = {

{ BarNmaxWidth, BarNMaxWidth,

XmRDimension, sizeof(Dimension),

XmConstraintPartOffset(Bar,max_width),

XmRImmediate, (XtPointer)100 } };

Instead of putting the widget size in the class record, the widget puts the widget part
size in the same field. If the widget is a subclass of the Constraint class, instead of
putting the widget constraint record size in the class record, the widget puts the widget
constraint part size in the same field.

Instead of puttingXtVersion in the class record, the widget putsXtVersionDontCheck
in the class record.

Define a variable, of typeXmOffsetPtr , to point to the offset record. If the widget is
a subclass of the Constraint class, define a variable of typeXmOffsetPtr to point to
the constraint offset record. These can be part of the widget’s class record or separate
global variables.

In class initialization, the widget callsXmResolveAllPartOffsets, passing it pointers
to the class record, the address of the offset record, and the address of the constraint
offset record. If the widget not is a subclass of the Constraint class, it should pass
NULL as the address of the constraint offset record. This does several things:

• Adds the superclass (which, by definition, has already been initialized) size field
to the part size field

• If the widget is a subclass of the Constraint class, adds the superclass constraint
size field to the constraint size field

• Allocates an array based upon the number of superclasses

• If the widget is a subclass of the constraint class, allocates an array for the
constraint offset record

• Fills in the offsets of all the widget parts and constraint parts with the appropriate
values, determined by examining the size fields of all superclass records

• Uses the part offset array to modify the offset entries in the resource list to be
real offsets, in place

1219

Motif 2.1—Programmer’s Reference

XmResolveAllPartOffsets(library call)

The widget defines a constant that will be the index to its part structure in the
offsets array. The value should be 1 greater than the index of the widget’s superclass.
Constants defined for allXm widgets can be found inXmP.h.

#define BarIndex (XmBulletinBIndex + 1)

Instead of accessing fields directly, the widget must always go through the offset table.
The XmField andXmConstraintField macros help you access these fields. Because
the XmPartOffset, XmConstraintPartOffset , XmField, and XmConstraintField
macros concatenate things, you must ensure that there is no space after the part
argument. For example, the following macros do not work because of the space after
the part (Label) argument:

XmField(w, offset, Label, text, char *)

XmPartOffset(Label, text).

Therefore, you must not have any spaces after the part (Label) argument, as illustrated
here:

XmField(w, offset, Label, text, char *)

You can define macros for each field to make this easier. Assume an integer fieldxyz:

#define BarXyz(w) (*(int *)(((char *) w) + \

offset[BarIndex] + XtOffset(BarPart,xyz)))

For constraint fieldmax_width:

#define BarMaxWidth(w) \

XmConstraintField(w,constraint_offsets,Bar,max_width,Dimension)

The parameters forXmResolveAllPartOffsetsare

widget_classSpecifies the widget class pointer for the created widget

offset Returns the offset record

constraint_offset
Returns the constraint offset record

1220

Xm Functions

XmResolveAllPartOffsets(library call)

Related Information

XmResolvePartOffsets(3).

1221

Motif 2.1—Programmer’s Reference

XmResolvePartOffsets(library call)

XmResolvePartOffsets

Purpose A function that allows writing of upward-compatible applications and widgets

Synopsis #include <Xm/Xm.h>

void XmResolvePartOffsets(
WidgetClasswidget_class,
XmOffsetPtr * offset);

Description

The use of offset records requires one extra global variable per widget class. The
variable consists of a pointer to an array of offsets into the widget record for each
part of the widget structure. TheXmResolvePartOffsetsfunction allocates the offset
records needed by an application to guarantee upward-compatible access to widget
instance records by applications and widgets. These offset records are used by the
widget to access all of the widget’s variables. A widget needs to take the steps
described in the following paragraphs.

Instead of creating a resource list, the widget creates an offset resource list. To
accomplish this, use theXmPartResource structure and theXmPartOffset macro.
The XmPartResource data structure looks just like a resource list, but instead of
having one integer for its offset, it has two shorts. This structure is put into the class
record as if it were a normal resource list. Instead of usingXtOffset for the offset,
the widget usesXmPartOffset.

XmPartResource resources[] = {

{ BarNxyz, BarCXyz, XmRBoolean,

sizeof(Boolean), XmPartOffset(Bar,xyz),

XmRImmediate, (XtPointer)False }

};

Instead of putting the widget size in the class record, the widget puts the widget part
size in the same field.

1222

Xm Functions

XmResolvePartOffsets(library call)

Instead of puttingXtVersion in the class record, the widget putsXtVersionDontCheck
in the class record.

The widget defines a variable, of typeXmOffsetPtr , to point to the offset record. This
can be part of the widget’s class record or a separate global variable.

In class initialization, the widget callsXmResolvePartOffsets, passing it a pointer to
contain the address of the offset record and the class record. This does several things:

• Adds the superclass (which, by definition, has already been initialized) size field
to the part size field

• Allocates an array based upon the number of superclasses

• Fills in the offsets of all the widget parts with the appropriate values, determined
by examining the size fields of all superclass records

• Uses the part offset array to modify the offset entries in the resource list to be
real offsets, in place

The widget defines a constant that will be the index to its part structure in the
offsets array. The value should be 1 greater than the index of the widget’s superclass.
Constants defined for allXm widgets can be found inXmP.h.

#define BarIndex (XmBulletinBIndex + 1)

Instead of accessing fields directly, the widget must always go through the offset table.
The XmField macro helps you access these fields. Because theXmPartOffset and
XmField macros concatenate things together, you must ensure that there is no space
after the part argument. For example, the following macros do not work because of
the space after the part (Label) argument:

XmField(w, offset, Label, text, char *)

XmPartOffset(Label, text)

Therefore, you must not have any spaces after the part (Label) argument, as illustrated
here:

XmField(w, offset, Label, text, char *)

You can define macros for each field to make this easier. Assume an integer fieldxyz:

1223

Motif 2.1—Programmer’s Reference

XmResolvePartOffsets(library call)

#define BarXyz(w) (*(int *)(((char *) w) + \

offset[BarIndex] + XtOffset(BarPart,xyz)))

The parameters forXmResolvePartOffsetsare

widget_classSpecifies the widget class pointer for the created widget

offset Returns the offset record

Related Information

XmResolveAllPartOffsets(3).

1224

Xm Functions

XmScaleGetValue(library call)

XmScaleGetValue

Purpose A Scale function that returns the current slider position

Synopsis #include <Xm/Scale.h>

void XmScaleGetValue(
Widget widget,
int * value_return);

Description

XmScaleGetValuereturns the current slider position value displayed in the scale.

widget Specifies the Scale widget ID

value_return Returns the current slider position value

For a complete definition of Scale and its associated resources, seeXmScale(3).

Related Information

XmScale(3).

1225

Motif 2.1—Programmer’s Reference

XmScaleSetTicks(library call)

XmScaleSetTicks

Purpose A Scale function that controls tick marks

Synopsis #include <Xm/Scale.h>

void XmScaleSetTicks(
Widget scale,
int big_every,
Cardinal num_medium,
Cardinal num_small,
Dimension size_big,
Dimension size_medium,
Dimension size_small);

Description

XmScaleSetTickscontrols the number, location, and size of the tick marks on a Scale.
Each tick mark is a SeparatorGadget oriented perpendicular to the Scale’s orientation.
For example, if the Scale is oriented horizontally, the tick marks will be oriented
vertically.

If you specify tick marks for a Scale and then change the Scale’s orientation, you will
have to do the following:

• Remove all the tick marks. To remove tick marks from a Scale, you must destroy
(with XtDestroyChildren) the SeparatorGadget tick marks. The first two children
of a Scale are its title and scroll bar, and all additional children are tick marks.

• Recreate the tick marks by callingXmScaleSetTicks.

scale Specifies the Scale widget ID that is getting the tick marks.

big_every Specifies the number of scale values between big ticks.

num_medium
Specifies the number of medium ticks between big values.

1226

Xm Functions

XmScaleSetTicks(library call)

num_small Specifies the number of small ticks between medium values.

size_big Specifies the size (either width or height) of the big ticks.

size_mediumSpecifies the size (either width or height) of the medium ticks.

size_small Specifies the size (either width or height) of the small ticks.

For a complete definition of Scale and its associated resources, seeXmScale(3).

Related Information

XmScale(3).

1227

Motif 2.1—Programmer’s Reference

XmScaleSetValue(library call)

XmScaleSetValue

Purpose A Scale function that sets a slider value

Synopsis #include <Xm/Scale.h>

void XmScaleSetValue(
Widget widget,
int value);

Description

XmScaleSetValuesets the slidervaluewithin the Scale widget.

widget Specifies the Scale widget ID.

value Specifies the slider position along the scale. This sets theXmNvalue
resource.

For a complete definition of Scale and its associated resources, seeXmScale(3).

Related Information

XmScale(3).

1228

Xm Functions

XmScrollBarGetValues(library call)

XmScrollBarGetValues

Purpose A ScrollBar function that returns the ScrollBar’s increment values

Synopsis #include <Xm/ScrollBar.h>
void XmScrollBarGetValues (widget, value_return, slider_size_return,
increment_return, page_increment_return)

Widget widget;
int * value_return;
int * slider_size_return;
int * increment_return;
int * page_increment_return;

Description

XmScrollBarGetValues returns the the ScrollBar’s increment values. The scroll
region is overlaid with a slider bar that is adjusted in size and position using the
main ScrollBar or set slider function attributes.

widget Specifies the ScrollBar widget ID.

value_return Returns the ScrollBar’s slider position between theXmNminimum and
XmNmaximum resources. Specify NULL to prevent the return of a
particular value.

slider_size_return
Returns the size of the slider as a value between 0 (zero) and the absolute
value ofXmNmaximum minusXmNminimum . The size of the slider
varies, depending on how much of the slider scroll area it represents.

increment_return
Returns the amount of increment and decrement.

page_increment_return
Returns the amount of page increment and decrement.

For a complete definition of ScrollBar and its associated resources, see
XmScrollBar (3).

1229

Motif 2.1—Programmer’s Reference

XmScrollBarGetValues(library call)

Return Values

Returns the ScrollBar’s increment values.

Related Information

XmScrollBar (3).

1230

Xm Functions

XmScrollBarSetValues(library call)

XmScrollBarSetValues

Purpose A ScrollBar function that changes ScrollBar’s increment values and the slider’s size
and position

Synopsis #include <Xm/ScrollBar.h>
void XmScrollBarSetValues (widget, value, slider_size, increment, page_increment,
notify)

Widget widget;
int value;
int slider_size;
int increment;
int page_increment;
Booleannotify;

Description

XmSetScrollBarValueschanges the ScrollBar’s increment values and the slider’s size
and position. The scroll region is overlaid with a slider bar that is adjusted in size and
position using the main ScrollBar or set slider function attributes.

widget Specifies the ScrollBar widget ID.

value Specifies the ScrollBar’s slider position. Refer to theXmNvalue
resource described onXmScrollBar (3).

slider_size Specifies the size of the slider. Refer to theXmNsliderSize resource
described onXmScrollBar (3). This argument sets that resource. Specify
a value of 0 (zero) if you do not want to change the value.

increment Specifies the amount of button increment and decrement. Refer to the
XmNincrement resource described onXmScrollBar (3). This argument
sets that resource. Specify a value of 0 (zero) if you do not want to
change the value.

1231

Motif 2.1—Programmer’s Reference

XmScrollBarSetValues(library call)

page_increment
Specifies the amount of page increment and decrement. Refer to
the XmNpageIncrement resource described onXmScrollBar (3). This
argument sets that resource. Specify a value of 0 (zero) if you do not
want to change the value.

notify Specifies a Boolean value that, when True, indicates a change in
the ScrollBar value and also specifies that the ScrollBar widget
automatically activates the XmNvalueChangedCallback with
the recent change. If it is set to False, it specifies any change
that has occurred in the ScrollBar’s value, but does not activate
XmNvalueChangedCallback.

For a complete definition of ScrollBar and its associated resources, see
XmScrollBar (3).

Related Information

XmScrollBar (3).

1232

Xm Functions

XmScrollVisible(library call)

XmScrollVisible

Purpose A ScrolledWindow function that makes an invisible descendant of a ScrolledWindow
work area visible

Synopsis #include <Xm/ScrolledW.h>

void XmScrollVisible(
Widget scrollw_widget,
Widget widget,
Dimension left_right_margin,
Dimension top_bottom_margin);

Description

XmScrollVisible makes an obscured or partially obscured widget or gadget descendant
of a ScrolledWindow work area visible. The function repositions the work area and
sets the specified margins between the widget and the nearest viewport boundary.
The widget’s location relative to the viewport determines whether one or both of the
margins must be adjusted. This function requires that theXmNscrollingPolicy of the
ScrolledWindow widget be set toXmAUTOMATIC .

scrollw_widget
Specifies the ID of the ScrolledWindow widget whose work area window
contains an obscured descendant.

widget Specifies the ID of the widget to be made visible.

left_right_margin
Specifies the margin to establish between the left or right edge of
the widget and the associated edge of the viewport. This margin is
established only if the widget must be moved horizontally to make it
visible.

top_bottom_margin
Specifies the margin to establish between the top or bottom edge of
the widget and the associated edge of the viewport. This margin is

1233

Motif 2.1—Programmer’s Reference

XmScrollVisible(library call)

established only if the widget must be moved vertically to make it
visible.

For a complete definition of ScrolledWindow and its associated resources, see
XmScrolledWindow(3)

Related Information

XmScrolledWindow(3).

1234

Xm Functions

XmScrolledWindowSetAreas(library call)

XmScrolledWindowSetAreas

Purpose A ScrolledWindow function that adds or changes a window work region and a
horizontal or vertical ScrollBar widget to the ScrolledWindow widget

Synopsis #include <Xm/ScrolledW.h>

void XmScrolledWindowSetAreas(
Widget widget,
Widget horizontal_scrollbar,
Widget vertical_scrollbar,
Widget work_region);

Description

XmScrolledWindowSetAreasadds or changes a window work region and a horizontal
or vertical ScrollBar widget to the ScrolledWindow widget for the application. Each
widget is optional and may be passed as NULL. This function is obsolete and exists for
compatibility with other releases. Use theXmNscrolledWindowChildType resource
of XmScrolledWindow instead.

widget Specifies the ScrolledWindow widget ID.

horizontal_scrollbar
Specifies the ScrollBar widget ID for the horizontal ScrollBar to be
associated with the ScrolledWindow widget. Set this ID only after
creating an instance of the ScrolledWindow widget. The resource name
associated with this argument isXmNhorizontalScrollBar .

vertical_scrollbar
Specifies the ScrollBar widget ID for the vertical ScrollBar to be
associated with the ScrolledWindow widget. Set this ID only after
creating an instance of the ScrolledWindow widget. The resource name
associated with this argument isXmNverticalScrollBar .

work_region Specifies the widget ID for the work window to be associated with
the ScrolledWindow widget. Set this ID only after creating an instance

1235

Motif 2.1—Programmer’s Reference

XmScrolledWindowSetAreas(library call)

of the ScrolledWindow widget. The attribute name associated with this
argument isXmNworkWindow .

For a complete definition of ScrolledWindow and its associated resources, see
XmScrolledWindow(3).

Related Information

XmScrolledWindow(3).

1236

Xm Functions

XmSelectionBoxGetChild(library call)

XmSelectionBoxGetChild

Purpose A SelectionBox function that is used to access a component

Synopsis #include <Xm/SelectioB.h>

Widget XmSelectionBoxGetChild(
Widget widget,
unsigned charchild);

Description

XmSelectionBoxGetChild is used to access a component within a SelectionBox. The
parameters given to the function are the SelectionBox widget and a value indicating
which component to access.

NOTE: This routine is obsolete and exists for compatibility with previous releases.
Instead of callingXmSelectionBoxGetChild, you should callXtNameToWidget as
described in theXmSelectionBox(3) reference page.

widget Specifies the SelectionBox widget ID.

child Specifies a component within the SelectionBox. The following values
are legal for this parameter:

• XmDIALOG_APPLY_BUTTON

• XmDIALOG_CANCEL_BUTTON

• XmDIALOG_DEFAULT_BUTTON

• XmDIALOG_HELP_BUTTON

• XmDIALOG_LIST

• XmDIALOG_LIST_LABEL

• XmDIALOG_OK_BUTTON

• XmDIALOG_SELECTION_LABEL

1237

Motif 2.1—Programmer’s Reference

XmSelectionBoxGetChild(library call)

• XmDIALOG_SEPARATOR

• XmDIALOG_TEXT

• XmDIALOG_WORK_AREA

For a complete definition of SelectionBox and its associated resources, see
XmSelectionBox(3).

Return Values

Returns the widget ID of the specified SelectionBox component. An application should
not assume that the returned widget will be of any particular class.

Related Information

XmSelectionBox(3).

1238

Xm Functions

XmSetColorCalculation(library call)

XmSetColorCalculation

Purpose A function to set the procedure used for default color calculation

Synopsis #include <Xm/Xm.h>

XmColorProc XmSetColorCalculation(
XmColorProc color_proc);

Description

XmSetColorCalculation sets the procedure to calculate default colors. This procedure
is used to calculate the foreground, top shadow, bottom shadow, and select colors on
the basis of a given background color. If called with an argument of NULL, it restores
the default procedure used to calculate colors.

color_proc Specifies the procedure to use for color calculation.

Following is a description of the XmColorProc type used by
XmSetColorCalculation:

void (*color_proc) (background_color, foreground_color, select_color, top_shadow_color,
bottom_shadow_color)

XColor *background_color;
XColor *foreground_color;
XColor *select_color;
XColor *top_shadow_color;
XColor *bottom_shadow_color;

color_proc Specifies the procedure used to calculate default colors.

The procedure is passed a pointer to anXColor structure representing the background
color. Thepixel, red, green, and blue members of this structure are filled in with
values that are valid for the current colormap.

The procedure is passed pointers toXColor structures representing the foreground,
select, top shadow, and bottom shadow colors to be calculated. The procedure

1239

Motif 2.1—Programmer’s Reference

XmSetColorCalculation(library call)

calculates and fills in thered, green, and blue members of these structures. The
procedure should not allocate color cells for any of these colors.

background_color
Specifies the background color.

foreground_color
Specifies the foreground color to be calculated.

select_color Specifies the select color to be calculated.

top_shadow_color
Specifies the top shadow color to be calculated.

bottom_shadow_color
Specifies the bottom shadow color to be calculated.

Return Values

Returns the color calculation procedure that was used at the time this routine was
called.

Related Information

XmChangeColor(3), XmGetColors(3), andXmGetColorCalculation(3).

1240

Xm Functions

XmSetFontUnit(library call)

XmSetFontUnit

Purpose A function that sets the font unit value for a display

Synopsis #include <Xm/Xm.h>

void XmSetFontUnit(
Display * display,
int font_unit_value);

Description

XmSetFontUnit provides an external function to initialize font unit values.
Applications may want to specify resolution-independent data based on a global
font size. See theXmNunitType resource description in the reference pages for
XmGadget, XmManager, and XmPrimitive for more information on resolution
independence.

This function sets the font units for all screens on the display.

NOTE: XmSetFontUnit is obsolete and exists for compatibility with previous
releases. Instead of using this function, provide initial values or callXtSetValues
for the XmScreen resourcesXmNhorizontalFontUnit andXmNverticalFontUnit .

display Defines the display for which this font unit value is to be applied.

font_unit_value
Specifies the value to be used for both horizontal and vertical font units
in the conversion calculations.

Related Information

XmConvertUnits(3), XmSetFontUnits(3), XmGadget(3), XmManager(3),
XmPrimitive (3), andXmScreen(3).

1241

Motif 2.1—Programmer’s Reference

XmSetFontUnits(library call)

XmSetFontUnits

Purpose A function that sets the font unit value for a display

Synopsis #include <Xm/Xm.h>

void XmSetFontUnits(
Display * display,
int h_value,
int v_value);

Description

XmSetFontUnits provides an external function to initialize font unit values.
Applications may want to specify resolution-independent data based on a global font
size. This function must be called before any widgets with resolution-independent
data are created. See theXmNunitType resource description in the reference pages
for XmGadget, XmManager, andXmPrimitive for more information on resolution
independence.

This function sets the font units for all screens on the display.

NOTE: XmSetFontUnits is obsolete and exists for compatibility with previous
releases. Instead of using this function, provide initial values or callXtSetValues
for the XmScreen resourcesXmNhorizontalFontUnit andXmNverticalFontUnit .

display Defines the display for which this font unit value is to be applied.

h_value Specifies the value to be used for horizontal units in the conversion
calculations.

h_value Specifies the value to be used for vertical units in the conversion
calculations.

1242

Xm Functions

XmSetFontUnits(library call)

Related Information

XmConvertUnits(3), XmSetFontUnit(3), XmGadget(3), XmManager(3),
XmPrimitive (3), andXmScreen(3).

1243

Motif 2.1—Programmer’s Reference

XmSetMenuCursor(library call)

XmSetMenuCursor

Purpose A function that modifies the menu cursor for a client

Synopsis #include <Xm/Xm.h>

void XmSetMenuCursor(
Display * display,
Cursor cursorId);

Description

XmSetMenuCursor programmatically modifies the menu cursor for a client; after
the cursor has been created by the client, this function registers the cursor with the
menu system. After calling this function, the specified cursor is displayed whenever
this client displays a Motif menu on the indicated display. The client can then specify
different cursors on different displays.

This function sets the menu cursor for all screens on the display.XmSetMenuCursor
is obsolete and exists for compatibility with previous releases. Instead of using
this function, provide initial values or callXtSetValues for the XmScreen resource
XmNmenuCursor.

display Specifies the display to which the cursor is to be associated

cursorId Specifies theX cursor ID

Related Information

XmScreen(3).

1244

Xm Functions

XmSetProtocolHooks(library call)

XmSetProtocolHooks

Purpose A VendorShell function that allows preactions and postactions to be executed when a
protocol message is received from MWM

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmSetProtocolHooks(
Widget shell,
Atom property,
Atom protocol,
XtCallbackProc prehook,
XtPointer pre_closure,
XtCallbackProc posthook,
XtPointer post_closure);

Description

XmSetProtocolHooksis used by shells that want to have preactions and postactions
executed when a protocol message is received from MWM. Since there is no
guaranteed ordering in execution of event handlers or callback lists, this allows the
shell to control the flow while leaving the protocol manager structures opaque.

XmSetWMProtocolHooks is a convenience interface. It callsXmSetProtocolHooks
with the property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

property Specifies the protocol property

protocol Specifies the protocol atom

prehook Specifies the procedure to call before calling entries on the client
callback list

pre_closure Specifies the client data to be passed to the prehook when it is invoked

1245

Motif 2.1—Programmer’s Reference

XmSetProtocolHooks(library call)

posthook Specifies the procedure to call after calling entries on the client callback
list

post_closureSpecifies the client data to be passed to the posthook when it is invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmInternAtom (3), andXmSetWMProtocolHooks(3).

1246

Xm Functions

XmSetWMProtocolHooks(library call)

XmSetWMProtocolHooks

Purpose A VendorShell convenience interface that allows preactions and postactions to be
executed when a protocol message is received from the window manager

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmSetWMProtocolHooks(
Widget shell,
Atom protocol,
XtCallbackProc prehook,
XtPointer pre_closure,
XtCallbackProc posthook,
XtPointer post_closure);

Description

XmSetWMProtocolHooks is a convenience interface. It callsXmSetProtocolHooks
with the property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

protocol Specifies the protocol atom (or anint cast toAtom)

prehook Specifies the procedure to call before calling entries on the client
callback list

pre_closure Specifies the client data to be passed to the prehook when it is invoked

posthook Specifies the procedure to call after calling entries on the client callback
list

post_closureSpecifies the client data to be passed to the posthook when it is invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

1247

Motif 2.1—Programmer’s Reference

XmSetWMProtocolHooks(library call)

Related Information

VendorShell(3), XmInternAtom (3), andXmSetProtocolHooks(3).

1248

Xm Functions

XmSpinBox(library call)

XmSpinBox

Purpose The SpinBox widget class

Synopsis #include <Xm/SpinB.h>

Description

SpinBox allows the user to select a value from a ring of related but mutually exclusive
choices which are displayed in sequence. The SpinBox always has an increment arrow,
a decrement arrow, and one or more other children. The choices are displayed, one at
a time, in a traversable text child (XmText or XmTextField. The user clicks Btn1
on an arrow to display the next (or previous) item in the ring of choices. By pressing
and holding Btn1 on an arrow, the user continuously cycles through the choices.

The traversable children in a SpinBox can be of typeXmNUMERIC or XmSTRING ,
as defined by theXmNspinBoxChildType constraint resource. The ring of choices for
numeric children is defined by minimum, maximum, incremental, and decimal point
values. The ring of choices for string children is defined in an array of compound
strings.

The application programmer can include multiple traversable children in the SpinBox.
For example, a SpinBox might consist of a pair of arrows and month, day, and year
text fields. The arrows only spin the child that currently has focus.

Arrow size is specified by the SpinBox resourceXmNarrowSize. This value sets both
width and height of each arrow in pixels.

The programmer can display SpinBox arrows in one of several layouts, as specified
by theXmNarrowLayout resource:

XmARROWS_BEGINNING
Places a pair of left and right arrows before the children.

XmARROWS_END
Places a pair of left and right arrows after the children.

1249

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

XmARROWS_SPLIT
Places one arrow on each side of the children.

XmARROWS_FLAT_BEGINNING
Places a pair of arrows side by side before theXmSpinBoxchildren.

XmARROWS_FLAT_BEGINNING
Places a pair of arrows side by side after theXmSpinBoxchildren.

Positions forXmARROWS_BEGINNING and XmARROWS_END are dependent
on theVendorShell resourceXmNlayoutDirection . When layout direction is left-to-
right, beginning arrows are positioned to the left of the children. When layout direction
is right-to-left, beginning arrows are positioned to the right.

The actions of the arrows are determined by theVendorShell resource
XmNlayoutDirection . For left-to-right layouts, the right arrow is the increment
arrow and the left arrow is the decrement arrow. For right-to-left layouts, the right
arrow is the decrement arrow and the left arrow is the increment arrow.

For a numeric type child, the increment arrow increases the displayed value by the
incremental value up to the maximum. The decrement arrow decreases the displayed
value by the given incremental value down to the minimum.

The increment arrow for a string type child moves toward the last entry of the array
of compound strings (by increasing the SpinBox constraint resourceXmNposition).
The decrement arrow moves toward the first entry of the compound string array.

The programmer can also control the sensitivity of each arrow in the SpinBox.
Sensitive arrows spin choices; insensitive arrows do not spin choices. Arrow sensitivity
is set for the SpinBox widget by using theXmNdefaultArrowSensitivity resource, but
it can be modified on a per child basis by using theXmNarrowSensitivity constraint
resource.

SpinBox provides two callbacks to application programmers. (In addition, the callbacks
of the SpinBox’s children may be invoked.) Each of these callbacks receives a
pointer toXmSpinBoxCallbackStruct. TheXmNmodifyVerifyCallback procedures
are called before a new choice is displayed. TheXmNvalueChangedCallback
procedures are calledafter a new choice is displayed.

XmNmodifyVerifyCallback tells the application what the new position will be in the
ring of choices. This callback can be used to make the SpinBox stop at the upper and
lower limits or go to a different, nonconsecutive choice. The application allows the
change in position by leaving thedoit member set to True. The application can spin
to a position other than the next consecutive position by leavingdoit set to True and

1250

Xm Functions

XmSpinBox(library call)

by changing thepositionmember to the desired position. Whendoit is set to False by
an application, there is no change in the choice displayed.

After a new choice is displayed, theXmNvalueChangedCallbackprocedure is called.
The application can use this procedure to perform tasks when specific values are
reached or when boundaries are crossed. For example, if the user spins from January
back to December, the application could change to the previous year. If the user spins
from December to January, the application could change to the next year.

SpinBox dimensions can be set using the Core resourcesXmNheight andXmNwidth .
If dimensions are not specified, the SpinBox size is determined by the sizes of its
arrows and children. The SpinBox will attempt to grow so that the arrows and all
children are visible.

SpinBox uses theXmQTaccessTextualtrait and holds theXmQTnavigatortrait.

Classes

SpinBox inherits behavior, resources, and traits from theCore, Composite,
Constraint, andXmManager classes.

The class pointer isxmSpinBoxWidgetClass.

The class name isXmSpinBox.

New Resources

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited classes
to set attributes for this widget. To reference a resource by name or by class in a
.Xdefaults file, remove theXmN or XmC prefix and use the remaining letters. To
specify one of the defined values for a resource in a.Xdefaults file, remove theXm
prefix and use the remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate whether the
given resource can be set at creation time (C), set by usingXtSetValues(S), retrieved
by usingXtGetValues (G), or is not applicable (N/A).

XmSpinBox Resource Set

Name Class Type Default Access

XmNarrowLayout XmCArrowLayout unsigned char XmARROWS_-

BEGINNING

CSG

XmNarrowOrientation XmCArrowOrientation unsigned char XmARROWS_-

VERTICAL

CSG

1251

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

XmNarrowSize XmCArrowSize Dimension 16 CSG

XmNdefaultArrow-

Sensitivity

XmCDefaultArrow-

Sensitivity

unsigned char XmARROWS_-

SENSITIVE

CSG

XmNdetailShadow-

Thickness

XmCDetailShadow-

Thickness

Dimension 2 CSG

XmNinitialDelay XmCInitialDelay unsigned int 250 ms CSG

XmNmarginHeight XmCMarginHeight Dimension dynamic CSG

XmNmarginWidth XmCMarginWidth Dimension dynamic CSG

XmNmodifyVerify-

Callback

XmCCallback XtCallbackList NULL C

XmNrepeatDelay XmCRepeatDelay unsigned int 200 ms CSG

XmNspacing XmCSpacing Dimension dynamic CSG

XmNvalueChanged-

Callback

XmCCallback XtCallbackList NULL C

XmNarrowLayout
Specifies placement of the two arrows in the widget. Possible layouts
are as follows:

XmARROWS_BEGINNING
Places left and right arrows beside each other, before the
child(ren). Positioning for this layout is dependent on the
VendorShell resourceXmNlayoutDirection.

XmARROWS_END
Places left and right arrows beside each other, after the
child(ren). Positioning for this layout is dependent on the
VendorShell resourceXmNlayoutDirection .

XmARROWS_FLAT_BEGINNING
Places a pair of arrows side by side before theXmSpinBox
children. Positioning for this layout is dependent on the
VendorShell resourceXmNlayoutDirection.

XmARROWS_FLAT_END
Places a pair of arrows side by side after theXmSpinBox
children. Positioning for this layout is dependent on the
VendorShell resourceXmNlayoutDirection.

1252

Xm Functions

XmSpinBox(library call)

XmARROWS_SPLIT
Places a left arrow on the left side and a right arrow on
the right side of the child(ren).

XmNarrowSize
Specifies both the width and height of the arrow in pixels.

XmNdefaultArrowSensitivity
Specifies the default sensitivity of the arrows in the widget. Insensitive
arrows change color, cannot be depressed, and perform no action.
(This resource may be overridden by the constraint resource
XmNarrowSensitivity for individual traversable text children of the
SpinBox.) Possible default sensitivity values are as follows:

XmARROWS_SENSITIVE
Both arrows are sensitive.

XmARROWS_DECREMENT_SENSITIVE
Only the decrement arrow (as determined by
XmNlayoutDirection) is sensitive. The increment arrow
is insensitive.

XmARROWS_INCREMENT_SENSITIVE
Only the increment arrow (as determined by
XmNlayoutDirection) is sensitive. The decrement arrow
is insensitive.

XmARROWS_INSENSITIVE
Both arrows are insensitive.

XmNdetailShadowThickness
Specifies the thickness of the inside arrow shadows. The default
thickness is 2 pixels.

XmNinitialDelay
Specifies how long, in milliseconds, the mouse button must be held
down before automatic spinning begins. In other words, when the user
selects the increment or decrement arrow and keeps it depressed, this
delay occurs before the choices start spinning. IfXmNinitialDelay is
0, thenXmNrepeatDelay is used as the initial delay.

1253

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

XmNmarginHeight
Specifies the amount of blank space between the top edge of the SpinBox
widget and the first item in each column, and the bottom edge of the
SpinBox widget and the last item in each column.

XmNmarginWidth
Specifies the amount of blank space between the left edge of the SpinBox
widget and the first item in each row, and the right edge of the SpinBox
widget and the last item in each row.

XmNmodifyVerifyCallback
This callback is called before the SpinBox position changes (see the
Constraint resourceXmNposition). The application can use this callback
to set the next position, change SpinBox resources, or cancel the
impending action. For example, this callback can be used to stop
the spinning just before wrapping at the upper and lower position
boundaries. If thedoit member is set to False, nothing happens.
Otherwise the position changes. Reasons sent by the callback are
XmCR_SPIN_NEXT, XmCR_SPIN_PRIOR, XmCR_SPIN_FIRST,
or XmCR_SPIN_LAST.

XmNrepeatDelay
When the user selects and keeps an arrow button depressed by
pressing and holding Btn1, spinning begins. After the time specified in
XmNinitialDelay elapses, the SpinBox position changes automatically
until the arrow button is released. TheXmNrepeatDelay resource
specifies the delay in milliseconds between each automatic change. If
XmNrepeatDelay is set to 0 (zero), automatic spinning is turned off
andXmNinitialDelay is ignored.

XmNspacing
Specifies the horizontal and vertical spacing between items contained
within the SpinBox widget.

XmNvalueChangedCallback
This is called n+1 times for n SpinBox position changes (see the
Constraint resourceXmNposition). Reasons sent by the callback
are XmCR_OK , XmCR_SPIN_NEXT, XmCR_SPIN_PRIOR,
XmCR_SPIN_FIRST, or XmCR_SPIN_LAST. Other members are
detailed in the callback structure description.

1254

Xm Functions

XmSpinBox(library call)

XmSpinBox Constraint Resource Set

Name Class Type Default Access

XmNarrowSensitivity XmCArrowSensitivity unsigned char XmARROWS_DEFAULT_-

SENSITIVITY

CSG

XmNdecimalPoints XmCDecimalPoints short 0 CSG

XmNincrementValue XmCIncrementValue int 1 CSG

XmNmaximumValue XmCMaximumValue int 10 CSG

XmNminimumValue XmCMinimumValue int 0 CSG

XmNnumValues XmCNumValues int 0 CSG

XmNposition XmCPosition int 0 CSG

XmNpositionType XmCPositionType char XmPOSITION_- VALUE CG

XmNspinBoxChildType XmSpinBoxChildType unsigned char XmSTRING CG

XmNvalues XmCValues XmStringTable NULL CSG

XmNarrowSensitivity
Specifies the sensitivity of the arrows for a SpinBox child. By using
this resource in the definition of a SpinBox child, the application
programmer can override the default SpinBox sensitivity (set by
XmNdefaultArrowSensitivity) for a particular child. This allows each
traversable child to have a different arrow sensitivity. The arrow
sensitivity values are as follows:

XmARROWS_SENSITIVE
Both arrows are sensitive.

XmARROWS_DECREMENT_SENSITIVE
Only the decrement arrow (as determined by
XmNlayoutDirection) is sensitive.

XmARROWS_INCREMENT_SENSITIVE
Only the increment arrow (as determined by
XmNlayoutDirection) is sensitive.

XmARROWS_INSENSITIVE
Both arrows are insensitive.

XmARROWS_DEFAULT_SENSITIVITY
Use the sensitivity specified in the
XmNdefaultArrowSensitivity resource.

1255

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

XmNdecimalPoints
Specifies the number of decimal places used when displaying the value
of a SpinBox numeric type child. If the number of decimal places
specified is greater than the number of digits in a displayed value, the
value is padded with 0 (zeros). For example, whenXmNinitialValueis
1 andXmNmaximumValue is 1000 andXmNdecimalPoints is 3, the
range of values displayed in the SpinBox is 0.001 to 1.000. This is used
only whenXmNspinBoxChildType is XmNUMERIC .

XmNincrementValue
Specifies the amount by which to increment or decrement a SpinBox
numeric type child. This is used only whenXmNspinBoxChildType is
XmNUMERIC .

XmNmaximumValue
Specifies the highest possible value for a numeric SpinBox. This is used
only whenXmNspinBoxChildType is XmNUMERIC .

XmNminimumValue
Specifies the lowest possible value for a numeric SpinBox. This is used
only whenXmNspinBoxChildType is XmNUMERIC .

XmNnumValues
Specifies the number of strings inXmNvalues. The application must
change this value when strings are added or removed fromXmNvalues.
This is used only whenXmNspinBoxChildType is XmSTRING .

XmNposition
Specifies the position of the currently displayed item. The interpritation
of XmNpositionis dependent upon the value of theXmNpositionType
resource.

When XmNpositionTypeis XmPOSITION_INDEXthe XmNposition
value is interpreted as follows: ForXmSpinBox children of
type XmNUMERIC, the XmNposition resource is interpreted
as an index into an array of items. The minimum allowable
value for XmNposition is 0. The maximum allowable value for
XmNposition is (XmNmaximumValue-XmNminimumValue)/
XmNincrementValue. The value display by theXmSpinBoxchild
is XmNminimumValue+(XmNposition*XmNincrementValue) . For
XmSpinBoxchildren of type XmSTRING, the XmNposition resource
is interpreted as an index into an array ofXmNnumValuesitems.
The minimum allowable value forXmNpositionis 0. The maximum

1256

Xm Functions

XmSpinBox(library call)

allowable value forXmNpositionis XmNnumValues - 1. The value
displayed by theXmSpinBox is the XmNposition’th value in the
XmNvaluesarray.

When XmNpositionTypeis XmPOSITION_VALUEthe XmNposition
value is interpreted as follows:

For XmSpinBoxchildren of type XmNUMERIC, the XmNposition
resource is interpreted as the actual value to be displayed. The
minimum allowable value forXmNpositionis XmNminimumValue. The
maximum allowable value forXmNposition is XmNmaximumValue.
The value displayed by theXmSpinBoxchild is XmNposition. For
XmSpinBoxchildren of typeXmSTRING, the interpretation is the same
for XmPOSITION_VALUEas forXmPOSITION_INDEX.

Position values falling outside the specified range are invalid. When
an application assigns a value toXmNpositionwhich is less than the
minimum,XmNpositionis set to the minimum and an error message is
displayed. When an application assigns a value toXmNpositionwhich
is greater than the maximum,XmNpositionis set to the maximum and
an error message is displayed.

XmNpositionType
Specifies how values theXmNpositionresource are to be interpreted.
Valid values includeXmPOSITION_INDEXandXmPOSITION_VALUE.

XmNspinBoxChildType
Specifies the type of data displayed in the child:

XmNUMERIC
The SpinBox choice range is defined by numeric
minimum, maximum, and incremental values.

XmSTRING
The SpinBox choices are alphanumeric.

XmNvalues Specifies the array ofXmStrings to be displayed in a SpinBox string
type child. The application must changeXmNnumValues when strings
are added to or removed fromXmNvalues. This is used only when
XmNspinBoxChildType is XmSTRING .

1257

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

Inherited Resources

SpinBox inherits behavior and resources from the superclasses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superclass.

XmManager Resource Set

Name Class Type Default Access

XmNbottomShadow-

Color

XmCBottomShadow-

Color

Pixel dynamic CSG

XmNbottomShadow-

Pixmap

XmCBottomShadow-

Pixmap

Pixmap XmUNSPECIFIED_-

PIXMAP

CSG

XmNforeground XmCForeground Pixel dynamic CSG

XmNhelpCallback XmCCallback XtCallbackList NULL C

XmNhighlightColor XmCHighlightColor Pixel dynamic CSG

XmNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG

XmNinitialFocus XmCInitialFocus Widget dynamic CSG

XmNlayoutDirection XmCLayoutDirection XmDirection dynamic CG

XmNnavigationType XmCNavigationType XmNavigationType XmTAB_GROUP CSG

XmNpopupHandler-

Callback

XmCCallback XtCallbackList NULL C

XmNshadowThickness XmCShadowThickness Dimension 0 CSG

XmNstringDirection XmCStringDirection XmStringDirection dynamic CG

XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG

XmNtopShadow- Pixmap XmCTopShadowPixmap Pixmap dynamic CSG

XmNtraversalOn XmCTraversalOn Boolean True CSG

XmNunitType XmCUnitType unsigned char dynamic CSG

XmNuserData XmCUserData XtPointer NULL CSG

Composite Resource Set

Name Class Type Default Access

XmNchildren XmCReadOnly WidgetList NULL G

XmNinsertPosition XmCInsertPosition XtOrderProc NULL CSG

XmNnumChildren XmCReadOnly Cardinal 0 G

1258

Xm Functions

XmSpinBox(library call)

Core Resource Set

Name Class Type Default Access

XmNaccelerators XmCAccelerators XtAccelerators dynamic CSG

XmNancestorSensitive XmCSensitive Boolean dynamic G

XmNbackground XmCBackground Pixel dynamic CSG

XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED_-

PIXMAP

CSG

XmNborderColor XmCBorderColor Pixel XtDefaultForeground CSG

XmNborderPixmap XmCPixmap Pixmap XmUNSPECIFIED_-

PIXMAP

CSG

XmNborderWidth XmCBorderWidth Dimension 0 CSG

XmNcolormap XmCColormap Colormap dynamic CG

XmNdepth XmCDepth int dynamic CG

XmNdestroyCallback XmCCallback XtCallbackList NULL C

XmNheight XmCHeight Dimension dynamic CSG

XmNinitialResources-

Persistent

XmCInitialResources-

Persistent

Boolean True C

XmNmappedWhen-

Managed

XmCMappedWhen-

Managed

Boolean True CSG

XmNscreen XmCScreen Screen * dynamic CG

XmNsensitive XmCSensitive Boolean True CSG

XmNtranslations XmCTranslations XtTranslations dynamic CSG

XmNwidth XmCWidth Dimension dynamic CSG

XmNx XmCPosition Position 0 CSG

XmNy XmCPosition Position 0 CSG

Callback

A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;
Widget widget;

1259

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

Booleandoit;
int position;
XmString value;
Booleancrossed_boundary;

} XmSpinBoxCallbackStruct;

reason Indicates why the callback was invoked. Reasons may be the following:

XmCR_OK Spinning has stopped because the SpinBox arrow has been
disarmed.XmCR_OK is either the last or only call.

XmCR_SPIN_NEXT
The increment arrow has been armed and position is
increasing. Further callbacks will come. For a numeric
type child, the values displayed are approaching the
maximum. For a string SpinBox, the values displayed are
approaching the last entry in the array ofXmString s.

XmCR_SPIN_PRIOR
The decrement arrow has been armed and position is
decreasing. Further callbacks will come. For a numeric
type child, the values displayed are approaching the
minimum. For a string type child, the values displayed
are approaching the first entry in the array ofXmStrings.

XmCR_SPIN_FIRST
The begin data (osfBeginData) key sequence has been
pressed. The SpinBox is at its first position, displaying the
lowest value or the first entry in the array ofXmStrings.

XmCR_SPIN_LAST
The end data (osfEndData) key sequence has been pressed.
The SpinBox is at its last position, displaying the highest
value or the last entry in the array ofXmStrings.

event Points to theXEventthat triggered this callback.

widget Specifies the child widget affected by this callback.

doit When the callback isXmNmodifyVerifyCallback , doit indicates
whether or not an action will be performed before the SpinBox
position changes. If the callback leavesdoit set to True (the default),
the spinning action is performed. If the callback setsdoit to

1260

Xm Functions

XmSpinBox(library call)

False, the spinning action is not performed. When the callback is
XmNvalueChangedCallback, doit is ignored.

position Specifies the next value of the SpinBox position (same
as XmNposition). This is an output field for the
XmNmodifyVerifyCallback , which may change the next position as
dictated by the needs of an application.

value Specifies the newXmString value in the text child widget. The user
program must copy this string if it is to be used outside the callback
routine.

crossed_boundary
Specifies whether or not the SpinBox has crossed the upper or lower
boundary (the last or first compound string, or the maximum or
minimum value). Thecrossed_boundaryvalue is True if the SpinBox
has just crossed a boundary, and False if it has not.

Translations

The XmSpinBox translations are as follows:

The following key names are listed in the X standard key event translation table syntax.
This format is the one used by Motif to specify the widget actions corresponding to
a given key. A brief overview of the format is provided underVirtualBindings (3).
For a complete description of the format, please refer to the X Toolkit Instrinsics
Documentation.

<Btn1Down>:
SpinBArm()

<Btn1Up>:
SpinBDisarm()

:<Key>osfUp :
SpinBPrior()

:<Key>osfDown :
SpinBNext()

:<Key>osfLeft :
SpinBLeft()

:<Key>osfRight :
SpinBRight()

1261

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

:<Key>osfBeginData:
SpinBFirst()

:<Key>osfEndData :
SpinBLast()

Accelerators

TheXmNacceleratorsresource of a SpinBox are added to each traversable text child.
The defaultXmNaccelerators are defined in the following list. The bindings for
<Key>osfUp and<Key>osfDowncannot be changed.

<Key> osfUp:
SpinBPrior()

<Key> osfDown:
SpinBNext()

KeyUp osfUp:
SpinBDisarm()

KeyUp osfDown:
SpinBDisarm()

<Key> osfLeft:
SpinBLeft()

<Key> osfRight:
SpinBRight()

KeyUp osfLeft:
SpinBDisarm()

KeyUp osfRight:
SpinBDisarm()

<Key> osfBeginData:
SpinBFirst()

<Key> osfEndData:
SpinBLast()

Action Routines

The XmSpinBox action routines are as follows:

SpinBArm(): Visually arms the SpinBox by drawing the armed arrow so that it appears
to be depressed. This action is initiated when the user presses Btn1

1262

Xm Functions

XmSpinBox(library call)

while the pointer is within the boundaries of either the increment or
decrement arrow. The arrow remains visually armed as long as Btn1
remains depressed.

If the time period specified byXmNrepeatDelay is not greater than
zero milliseconds, nothing else happens while Btn1 remains depressed.

If the time period specified byXmNrepeatDelay is greater than zero
milliseconds, and the arrow is disarmed before the time period specified
by XmNinitialDelay has elapsed, nothing else happens in this action.

If the time period specified byXmNrepeatDelay is greater than zero
milliseconds, and the arrow is still armed after the time period specified
by XmNinitialDelay has elapsed, the following occurs:

• The reason member of the SpinBox callback structure,
XmSpinBoxCallbackStruct, is set to XmCR_SPIN_NEXT if
the increment arrow is armed, or toXmCR_SPIN_PRIOR if the
decrement arrow is armed.

• The positionmember is set to the next position.

• The doit member is set to True.

• XmNmodifyVerifyCallback , if it exists, is invoked. The application
may change the value ofpositionanddoit. If the application setsdoit
to False, nothing else happens until theXmNrepeatDelay period
has elapsed, or until Btn1 is released.

If doit remains set to True, the following occurs:

• The value ofXmNposition is changed to the value ofposition in
the SpinBox callback structure.

• The text corresponding to the new position is displayed in the
traversable text child that currently has focus.

• The reason member of the SpinBox callback structure is set
to XmCR_SPIN_NEXT if the increment arrow is armed, or
XmCR_SPIN_PRIOR if the decrement arrow is armed.

• The position member is set to the current (new) value of
XmNposition.

1263

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

• XmNvalueChangedCallback, if it exists, is called. SpinBox
ignores any changes toposition or doit members made by
XmNvalueChangedCallback.

These events are repeated each time theXmNrepeatDelay period
elapses and the arrow remains armed.

SpinBDisarm():
Visually disarms the SpinBox by drawing the previously armed arrow
so that it no longer appears to be depressed.

If the time period specified byXmNrepeatDelay is not greater than
zero milliseconds, or the time period specified byXmNinitialDelay has
not elapsed, the following then occurs:

• The reason member of the SpinBox callback structure,
XmSpinBoxCallbackStruct, is set to XmCR_SPIN_NEXT if
the increment arrow is armed, or toXmCR_SPIN_PRIOR if the
decrement arrow is armed.

• The positionmember is set to the next position.

• The doit member is set to True.

• The XmNmodifyVerifyCallback , if there is one, is invoked. The
application may change the value ofposition and doit. If the
application setsdoit to False, nothing else happens until the
XmNrepeatDelay period has elapsed, or until Btn1 is released.

If doit remains set to True, the following occurs:

• The value ofXmNposition is changed to the value ofposition in
the SpinBox callback structure.

• The text corresponding to the new position is displayed in the
traversable text child that currently has focus.

• The reason member of the SpinBox callback structure is set
to XmCR_SPIN_NEXT if the increment arrow is armed, or
XmCR_SPIN_PRIOR if the decrement arrow is armed.

• The position member is set to the current (new) value of
XmNposition.

1264

Xm Functions

XmSpinBox(library call)

• XmNvalueChangedCallback, if it exists, is called. SpinBox
ignores any changes toposition or doit members made by an
XmNvalueChangedCallback.

If an XmNvalueChangedCallbackprocedure is issued after the button
has been armed, regardless of the value ofXmNrepeatDelayor whether
the XmNinitialDelay has expired:

• The reason member of the SpinBox callback structure is set to
XmCR_OK .

• The positionmember is set to the current value ofXmNposition.

• XmNvalueChangedCallback, if it exists, is called.

SpinBFirst():
The following occurs:

• The reason member of the SpinBox callback structure,
XmSpinBoxCallbackStruct, is set toXmCR_SPIN_FIRST.

• The positionmember is set to the first (0) position.

• The doit member is set to True.

• XmNmodifyVerifyCallback , if it exists, is invoked. The application
may change the value ofpositionanddoit. If the application setsdoit
to False, nothing else happens until theXmNrepeatDelay period
has elapsed, or until Btn1 is released.

If doit remains set to True, the following occurs:

• The value ofXmNposition is changed to the value ofposition in
the SpinBox callback structure.

• The text corresponding to the new position is displayed in the
traversable text child that currently has focus.

• The reason member of the SpinBox callback structure is set to
XmCR_SPIN_FIRST.

• The position member is set to the current (new) value of
XmNposition.

• XmNvalueChangedCallback, if it exists, is called.

• The reason member of the SpinBox callback structure is set to
XmCR_OK .

1265

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

• Thepositionmember is set to the current (new)XmNposition value.

• The XmNvalueChangedCallback is called again. SpinBox
ignores any changes toposition or doit members made by
XmNvalueChangedCallback.

SpinBLast(): The following occurs:

• The reason member of the SpinBox callback structure,
XmSpinBoxCallbackStruct, is set toXmCR_SPIN_LAST.

• The positionmember is set to the last position.

• The doit member is set to True.

• XmNmodifyVerifyCallback , if it exists, is invoked. The application
may change the value ofpositionanddoit. If the application setsdoit
to False, nothing else happens until theXmNrepeatDelay period
has elapsed, or until Btn1 is released.

If doit remains set to True, the following occurs:

• The value ofXmNposition is changed to the value ofposition in
the SpinBox callback structure.

• The text corresponding to the new position is displayed in the
traversable text child that currently has focus.

• The reason member of the SpinBox callback structure is set to
XmCR_SPIN_LAST.

• Thepositionmember is set to the current (new) valueXmNposition.

• XmNvalueChangedCallback, if it exists, is called.

• The reason member of the SpinBox callback structure is set to
XmCR_OK .

• The positionmember is set to the current (new) ofXmNposition.

• XmNvalueChangedCallback is called again. SpinBox ignores
any changes to theposition or doit members made by
XmNvalueChangedCallback.

SpinBLeft(): If the VendorShell resourceXmNlayoutDirection is left-to-right, the
SpinBPrior action is invoked. Otherwise, theSpinBNext action is
invoked.

1266

Xm Functions

XmSpinBox(library call)

SpinBNext():
Visually arms the SpinBox by drawing the increment arrow so that it
appears to be depressed. The following occurs:

• The reason member of the SpinBox callback structure,
XmSpinBoxCallbackStruct, is set toXmCR_SPIN_NEXT.

• The positionmember is set to the next position.

• The doit member is set to True.

• XmNmodifyVerifyCallback , if it exists, is invoked. The application
may change the value ofpositionanddoit. If the application setsdoit
to False, nothing else happens until theXmNrepeatDelay period
has elapsed, or until Btn1 is released.

If doit remains set to True, the following occurs:

• The value ofXmNposition is changed to the value ofposition in
the SpinBox callback structure.

• The text corresponding to the new position is displayed in the
traversable text child that currently has focus.

• The reason member of the SpinBox callback structure is set to
XmCR_SPIN_NEXT.

• The position member is set to the current (new) value of
XmNposition.

• XmNvalueChangedCallback, if it exists, is called.

• The reason member of the SpinBox callback structure is set to
XmCR_OK .

• The positionmember is set to the current (new)XmNposition.

• The XmNvalueChangedCallback is called again. SpinBox
ignores any changes toposition or doit members made by
XmNvalueChangedCallback.

SpinBPrior():
Visually arms the SpinBox by drawing the decrement arrow so that it
appears to be depressed. The following occurs:

• The reason member of the SpinBox callback structure,
XmSpinBoxCallbackStruct, is set toXmCR_SPIN_PRIOR.

1267

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

• The positionmember is set to the next position.

• The doit member is set to True.

• XmNmodifyVerifyCallback , if it exists, is invoked. The application
may change the value ofpositionanddoit. If the application setsdoit
to False, nothing else happens until theXmNrepeatDelay period
has elapsed, or until Btn1 is released.

If doit remains set to True, the following occurs:

• The value ofXmNposition is changed to the value ofposition in
the SpinBox callback structure.

• The text corresponding to the new position is displayed in the
traversable text child that currently has focus.

• The reason member of the SpinBox callback structure is set to
XmCR_SPIN_PRIOR.

• The position member is set to the current (new) value of
XmNposition.

• XmNvalueChangedCallback, if it exists, is called.

• The reason member of the SpinBox callback structure is set to
XmCR_OK .

• The position member is set to the current (new) value of
XmNposition.

• XmNvalueChangedCallback is called again. SpinBox
ignores any changes toposition or doit members made by
XmNvalueChangedCallback.

SpinBRight():
If the VendorShell resourceXmNlayoutDirection is left-to-right, the
SpinBNext action is invoked. Otherwise, theSpinBPrior action is
invoked.

Related Information

Composite(3), Constraint(3), Core(3), XmCreateSpinBox(3), XmManager(3),
andXmString (3).

1268

Xm Functions

XmSimpleSpinBoxAddItem(library call)

XmSimpleSpinBoxAddItem

Purpose add an item to the XmSimpleSpinBox

Synopsis #include <Xm/SSpinB.h>

void XmSimpleSpinBoxAddItem(
Widget w,
XmString item,
int pos);

Description

The XmSimpleSpinBoxAddItem function adds the given item to the
XmSimpleSpinBox at the given position.

The w argument specifies the widget ID.

The item argument specifies theXmString for the new item.

The posargument specifies the position of the new item.

Return Values

The XmSimpleSpinBoxAddItem function returns no value.

Related Information

XmSimpleSpinBox(3),

XmSimpleSpinBoxDeletePos(3), XmSimpleSpinBoxSetItem(3).

1269

Motif 2.1—Programmer’s Reference

XmSimpleSpinBoxDeletePos(library call)

XmSimpleSpinBoxDeletePos

Purpose delete a XmSimpleSpinBox item

Synopsis #include <Xm/SpinB.h>

void XmSimpleSpinBoxDeletePos(
Widget w,
int pos);

Description

The XmSimpleSpinBoxDeletePos function deletes a specified item from a
XmSimpleSpinBox widget.

The w argument specifies the widget ID.

Theposargument specifies the position of the item to be deleted. A value of 1 means
the first item in the list; zero means the last item.

Return Values

The XmSimpleSpinBoxDeletePosfunction returns no value.

Related Information

XmSimpleSpinBox(3),

XmSimpleSpinBoxAddItem(3), XmSimpleSpinBoxSetItem(3).

1270

Xm Functions

XmSimpleSpinBoxSetItem(library call)

XmSimpleSpinBoxSetItem

Purpose set an item in the XmSimpleSpinBox list

Synopsis #include <Xm/SpinB.h>

void XmSimpleSpinBoxSetItem(
Widget w,
XmString item);

Description

The XmSimpleSpinBoxSetItem function selects an item in the list of the given
XmSimpleSpinBox widget and makes it the current value.

The w argument specifies the widget ID.

The item argument specifies theXmString for the item to be set in the
XmSimpleSpinBox. If theitem is not found on the list,XmSimpleSpinBoxSetItem
notifies the user via theXtWarning function.

Return Values

The XmSimpleSpinBoxSetItemfunction returns no value.

Related Information

XmSimpleSpinBox(3),

XmSimpleSpinBoxAddItem(3), XmSimpleSpinBoxDeletePos(3); XtWarning (3).
in the CAE Specification, Window Management: X Toolkit Intrinsics.

1271

Motif 2.1—Programmer’s Reference

XmSpinBoxValidatePosition(library call)

XmSpinBoxValidatePosition

Purpose translate the current value of the specified XmSpinBox child into a valid position

Synopsis #include <Xm/SpinBox.h>

int XmSpinBoxValidatePosition(
Widget textfield,
int *position);

Description

TheXmSpinBoxValidatePosition function is a utility that can be used by applications
wanting to implement a policy for tracking user modifications to editableXmSpinBox
children of typeXmNUMERIC. The specifics of when and how the user’s modifications
take effect is left up to the application.

text_field The text_field argument specifies the widget ID of the child of the
XmSpinBox that is being modified. The requirement ontext_field is
that it holds theaccessTextualtrait (already a requirement for children
of XmSpinBox). This way,XmSpinBox can extract the string out of
the text_fieldwidget (even if it is not anXmTextField).

position The location pointed to by the position argument is assigned the
result of the translation done byXmSpinBoxValidatePosition.
XmSpinBoxValidatePosition first checks to make sure
this is an XmNUMERIC XmSpinBox child. If it is not,
XSmpinBoxValidatePosition sets position to the current position and
returnsXmCURRENT_VALUE.

XmSpinBoxValidatePosition attempts to translate the input string to a floating point
number. If this translation fails,XmSpinBoxValidatePosition sets position to the
current position and returnsXmCURRENT_VALUE.

XmSpinBoxValidatePosition converts the floating point number to an integer using
the XmNdecimalPointsresource. Extra decimal places are truncated. The resulting
integer is range checked to make sure it falls within the valid range defined by

1272

Xm Functions

XmSpinBoxValidatePosition(library call)

XmNminimumValueand XmNmaximumValueinclusive. If the input falls outside this
range,XmSpinBoxValidatePositionsets position to the nearest limit and returns either
XmMINIMUM_VALUEor XmMAXIMUM_VALUE.

Finally, XmSpinBoxValidatePosition checks the integer to make sure it belongs
to the series defined byXmNminimumValue ... XmNminumumValue + ((n
- 1) * XmNincrementlValue). If the integer does not belong to this series,
XmSpinBoxValidatePosition sets position to the nearest element which is less than
or equal to the integer and returnsXmINCREMENT_VALUE.

Otherwise,XmSpinBoxValidatePosition assigns the integer to position and returns
XmVALID_VALUE.

Return Values

The XmSpinBoxValidatePosition function returns the status of the validation. The
set of possible values returned is as follows:

XmCURRENT_VALUE
Cannot convert, returning current position_value.

XmMINIMUM_VALUE
Less than min.

XmMAXIMUM_VALUE
More than max.

XmINCREMENT_VALUE
Not on increment.

XmVALID_VALUE
Okay.

Examples

This first example demonstrates how theXmSpinBoxValidatePosition function
could be used from inside anXmNmodifyVerifyCallback callback installed on the
XmSpinBox or theXmSimpleSpinBox:

/*

* Install a callback on a spin box arrow press.

*/

1273

Motif 2.1—Programmer’s Reference

XmSpinBoxValidatePosition(library call)

XtAddCallback(sb, XmNmodifyVerifyCallback, ModifyVerifyCB, NULL);

XtAddCallback(simple_sb, XmNmodifyVerifyCallback, ModifyVerifyCB, NULL);

with the callback doing:

void ModifyVerifyCB(widget, call_data, client_data) {

XmSpinBoxCallbackStruct *cbs = (XmSpinBoxCallbackStruct*) call_data;

int position;

Widget textual = NULL;

if (XtIsSubclass(w, xmSimpleSpinBoxWidgetClass))

{

Arg args[1];

XtSetArg(args[0], XmNtextField, &textual);

XtGetValues(w, args, 1);

}

else if (XtIsSubclass(w, xmSpinBoxWidgetClass))

textual = cbs->widget;

else

textual = (Widget) NULL;

...

if (XmSpinBoxValidatePosition(textual, &position) == XmCURRENT_VALUE)

XBell(XtDisplay(w), 0);

else

cbs->position = position;

}

This second example demonstrates how theXmSpinBoxValidatePosition function
could be used from inside anXmNactivateCallback callback installed on the
TextField child of theXmSpinBox:

/*

* Install a callback on a spin box arrow press.

*/

XtAddCallback(tf, XmNactivateCallback, ModifyVerifyChildCB, NULL);

with the callback doing:

1274

Xm Functions

XmSpinBoxValidatePosition(library call)

void ModifyVerifyChildCB(widget, call_data, client_data) {

int position;

Widget textual = widget;

Arg args[1];

if (XmSpinBoxValidatePosition (textual, &position) == XmCURRENT_VALUE)

XBell(XtDisplay(widget), 0);

/* Set the position constraint resource of the textfield */

XtSetArg(args[0], XmNposition, position);

XtSetValues(textual, args, 1);

}

Related Information

XmSpinBox(3), XmCreateSpinBox(3)

1275

Motif 2.1—Programmer’s Reference

XmSimpleSpinBox(library call)

XmSimpleSpinBox

Purpose a simple SpinBox widget class

Synopsis #include <Xm/SSpinB.h>

Description

The XmSimpleSpinBox widget is a user interface control to increment and decrement
an arbitrary TextField. For example, it can be used to cycle through the months of the
year or days of the month.

Widget subclassing is not supported for the XmSimpleSpinBox widget class.

Classes

The XmSimpleSpinBox widget inherits behavior and resources from theCore,
CompositeandXmManager classes.

The class pointer isXmSimpleSpinBoxWidgetClass.

The class name isXmSimpleSpinBoxWidget.

New Resources

The following table defines a set of widget resources used by the application to specify
data. The application can also set the resource values for the inherited classes to set
attributes for this widget. To reference a resource by name or by class in a.Xdefaults
file, the application must remove theXmNor XmCprefix and use the remaining letters.
To specify one of the defined values for a resource in a.Xdefaults file, the application
must remove theXm prefix and use the remaining letters (in either lower case or upper
case, but including any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by usingXtSetValues
(S), retrieved by usingXtGetValues (G), or is not applicable (N/A).

1276

Xm Functions

XmSimpleSpinBox(library call)

XmSimpleSpinBox Resource Set

Name Class Type Default Access

XmNarrowLayout XmCArrowLayout unsigned char XmARROWS_-

END

CSG

XmNarrowSensitivity XmCArrow- Sensitivity unsigned char XmARROWS_-

SENSITIVE

CSG

XmNcolumns XmCColumn short 20 CSG

XmNdecimalPoints XmCDecimalPoints short 0 CSG

XmNeditable XmCEditable Boolean True CSG

XmNincrementValue XmCIncrementValue int 1 CSG

XmNinitialDelay XmCInitialDelay unsigned int 250 CSG

XmNmaximumValue XmCMaximumValue int 10 CSG

XmNminimumValue XmCMinimumValue int 0 CSG

XmNmodifyVerify-

Callback

XmCCallback XtCallbackList NULL C

XmNnumValues XmCNumValues int 0 CSG

XmNposition XmCPosition int 0 CSG

XmNrepeatDelay XmCRepeatDelay unsigned int 200 CSG

XmNspinBoxChildType XmCSpinBox-

ChildType

unsigned char XmSTRING CG

XmNtextField XmCTextField Widget dynamic G

XmNvalueChanged-

Callback

XmCCallback XtCallbackList NULL C

XmNvalues XmCValues XmStringTable NULL CSG

XmNarrowLayout
Specifies the style and position of the SpinBox arrows. The following
values are supported:

XmARROWS_FLAT_BEGINNING
The arrows are placed side by side to the right of the
TextField.

XmARROWS_FLAT_END
The arrows are placed side by side to the left of the
TextField.

1277

Motif 2.1—Programmer’s Reference

XmSimpleSpinBox(library call)

XmARROWS_SPLIT
The down arrow is on the left and the up arrow is on the
right of the TextField.

XmARROWS_BEGINNING
The arrows are stacked and placed on the left of the
TextField.

XmARROWS_END
The arrows are stacked and placed on the right of the
TextField.

XmNarrowSensitivity
Specifies the sensitivity of the arrows in the XmSimpleSpinBox. The
following values are supported:

XmARROWS_SENSITIVE
Both arrows are active to user selection.

XmARROWS_DECREMENT_SENSITIVE
The down arrow is active and the up arrow is inactive to
user selection.

XmARROWS_INCREMENT_SENSITIVE
The up arrow is active and the down arrow is inactive to
user selection.

XmARROWS_INSENSITIVE
Both arrows are inactive to user selection.

XmNcolumns
Specifies the number of columns of the text field.

XmNdecimalPoints
Specifies the position of the radix character within the numeric value
whenXmNspinBoxChildType is XmNUMERIC . This resource is used
to allow for floating point values in the XmSimpleSpinBox widget.

XmNeditable
Specifies whether the text field can take input.

When XmNeditable is used on a widget it sets the dropsite to
XmDROP_SITE_ACTIVE .

1278

Xm Functions

XmSimpleSpinBox(library call)

XmNincrementValue
Specifies the amount to increment or decrement theXmNposition
when the XmNspinBoxChildType is XmNUMERIC . When the
Up action is activated, theXmNincrementValue is added to
the XmNposition value; when the Down action is activated, the
XmNincrementValue is subtracted from theXmNposition value.
When XmNspinBoxChildType is XmSTRING , this resource is
ignored.

XmNinitialDelay
Specifies the amount of time in milliseconds before the Arrow buttons
will begin to spin continuously.

XmNnumValues
Specifies the number of items in theXmNvalues list when the
XmNspinBoxChildType resource isXmSTRING . The value of this
resource must be a positive integer. TheXmNnumValues is maintained
by the XmSimpleSpinBox widget when items are added or deleted
from the XmNvalues list. When XmNspinBoxChildType is not
XmSTRING , this resource is ignored.

XmNvalues Supplies the list of strings to cycle through when the
XmNspinButtonChildType resource is XmSTRING . When
XmNspinBoxChildType is not XmSTRING , this resource is
ignored.

XmNmaximumValue
Specifies the upper bound on the XmSimpleSpinBox’s range when
XmNspinBoxChildType is XmNUMERIC .

XmNminimumValue
Specifies the lower bound on the XmSimpleSpinBox’s range when
XmNspinBoxChildType is XmNUMERIC .

XmNmodifyVerifyCallback
Specifies the callback to be invoked just before the XmSimpleSpinBox
position changes. The application can use this callback to implement
new application-related logic (including setting new position spinning
to, or canceling the impending action). For example, this callback can
be used to stop the spinning just before wrapping at the upper and
lower position boundaries. If the application sets thedoit member
of the XmSimpleSpinBoxCallbackStruct to False, nothing happens.

1279

Motif 2.1—Programmer’s Reference

XmSimpleSpinBox(library call)

Otherwise, the position changes. Reasons sent by the callback are
XmCR_SPIN_NEXT, or XmCR_SPIN_PRIOR.

XmNposition
The XmNposition resource has a different value based on the
XmNspinBoxChildType resource. When XmNspinBoxChildType
is XmSTRING , the XmNposition is the index into theXmNvalues
list for the current item. When theXmNspinBoxChildType resource
is XmNUMERIC , the XmNposition is the integer value of the
XmSimpleSpinBox that falls within the range ofXmNmaximumValue
andXmNminimumValue .

XmNrepeatDelay
Specifies the number of milliseconds between repeated calls to
the XmNvalueChangedCallback while the user is spinning the
XmSimpleSpinBox.

XmNspinBoxChildType
Specifies the style of the XmSimpleSpinBox. The following values are
supported:

XmSTRING
The child is a string value that is specified through the
XmNvalues resource and incremented and decremented
by changing theXmNposition resource.

XmNUMERIC
The child is a numeric value that is specified through the
XmNposition resource and incremented according to the
XmNincrementValue resource.

XmtextField
Specifies the textfield widget.

XmNvalueChangedCallback
Specifies the callback to be invoked whenever the value of
the XmNposition resource is changed through the use of the
spinner arrows. The XmNvalueChangedCallback passes the
XmSimpleSpinBoxCallbackStruct call_datastructure.

Inherited Resources

The XmSimpleSpinBox widget inherits behavior and resources from the following
named superclasses. For a complete description of each resource, see the man page
for that superclass.

1280

Xm Functions

XmSimpleSpinBox(library call)

XmManager Resource Set

Name Class Type Default Access

XmNbottomShadow-

Color

XmCBottomShadow-

Color

Pixel dynamic CSG

XmNbottomShadow-

Pixmap

XmCBottomShadow-

Pixmap

Pixmap XmUNSPECIFIED_-

PIXMAP

CSG

XmNforeground XmCForeground Pixel dynamic CSG

XmNhelpCallback XmCCallback XtCallbackList NULL C

XmNhighlightColor XmCHighlightColor Pixel dynamic CSG

XmNhighlightPixmap XmCHighlight-

Pixmap

Pixmap dynamic CSG

XmNinitialFocus XmCInitialFocus Widget NULL CSG

XmNnavigationType XmCNavigation- Type XmNavigation-

Type

dynamic CSG

XmNshadowThickness XmCShadow-

Thickness

Dimension dynamic CSG

XmNstringDirection XmCStringDirection XmString-

Direction

dynamic CG

XmNtopShadowColor XmCTopShadow-

Color

Pixel dynamic CSG

XmNtopShadowPixmap XmCTopShadow-

Pixmap

Pixmap dynamic CSG

XmNtraversalOn XmCTraversalOn Boolean dynamic CSG

XmNunitType XmCUnitType unsigned char dynamic CSG

XmNuserData XmCUserData XtPointer NULL CSG

Composite Resource Set

Name Class Type Default Access

XmNchildren XmCReadOnly WidgetList NULL G

XmNinsertPosition XmCInsertPosition XtOrderProc default procedure CSG

XmNnumChildren XmCReadOnly Cardinal 0 G

1281

Motif 2.1—Programmer’s Reference

XmSimpleSpinBox(library call)

Core Resource Set

Name Class Type Default Access

XmNaccelerators XmCAccelerators XtAccelerators dynamic CSG

XmNancestorSensitive XmCSensitive Boolean dynamic G

XmNbackground XmCBackground Pixel dynamic CSG

XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED_-

PIXMAP

CSG

XmNborderColor XmCBorderColor Pixel XtDefaultForeground CSG

XmNborderPixmap XmCPixmap Pixmap XmUNSPECIFIED_-

PIXMAP

CSG

XmNborderWidth XmCBorderWidth Dimension 0 CSG

XmNcolormap XmCColormap Colormap dynamic CG

XmNdepth XmCDepth int dynamic CG

XmNdestroyCallback XmCCallback XtCallbackList NULL C

XmNheight XmCHeight Dimension dynamic CSG

XmNinitialResources-

Persistent

XmCInitialResources-

Persistent

Boolean True C

XmNmapped-

WhenManaged

XmCMappedWhen-

Managed

Boolean True CSG

XmNscreen XmCScreen Screen * dynamic CG

XmNsensitive XmCSensitive Boolean True CSG

XmNtranslations XmCTranslations XtTranslations dynamic CSG

XmNwidth XmCWidth Dimension dynamic CSG

XmNx XmCPosition Position 0 CSG

XmNy XmCPosition Position 0 CSG

Callback Information

A pointer to the following structure is passed to each XmSimpleSpinBox callback:

typedef struct {

int reason ;

XEvent * event ;

Widget widget ;

Boolean doit ;

1282

Xm Functions

XmSimpleSpinBox(library call)

int position ;

XmString value ;

Boolean crossed_boundary ;

} XmSimpleSpinBoxCallbackStruct;

The reasonargument indicates why the callback was invoked. There are three possible
reasons for this callback to be issued. The reason isXmCR_OK when this is the first
call to the callback at the beginning of a spin or if it is a single activation of the spin
arrows. If the XmSimpleSpinBox is in the process of being continuously spun, then
the reason will beXmCR_SPIN_NEXT or XmCR_SPIN_PRIOR, depending on the
arrow that is spinning.

Theeventargument points to theXEvent that triggered the callback. It can beNULL
when the XmSimpleSpinBox is continuously spinning.

The widgetargument is the widget identifier for the simple spin box widget that has
been affected by this callback.

The doit argument is set only when thecall_data comes from the
XmNmodifyVerifyCallback . It indicates that the action that caused the callback to
be called should be performed. The action is not performed ifdoit is set to False.

The position argument is the new value of theXmNposition resource as a result of
the spin.

The value argument is the newXmString value displayed in the Text widget as a
result of the spin. The application must copy this string if it is used beyond the scope
of the call_datastructure.

The crossed_boundaryargument is True when the spinbox cycles. This is the case
when aXmNspinBoxChildType of XmSTRING wraps from the first item to the
last or the last item to the first. In the case of theXmNspinBoxChildType of
XmNUMERIC , the boundary is crossed when the XmSimpleSpinBox cycles from
the maximum value to the minimum or vice versa.

Errors/Warnings

The toolkit will display a warning if the application tries to set the value of the
XmNtextField resource, which is read-only (marked G in the resource table).

1283

Motif 2.1—Programmer’s Reference

XmSimpleSpinBox(library call)

Related Information

XmSpinBox(3), XmCreateSpinBox(3), XmSimpleSpinBoxAddItem(3),
XmSimpleSpinBoxDeletePos(3), XmSimpleSpinBoxSetItem(3), Composite(3),
Core(3), XmManager(3), XmText(3), XmTextField(3), XtGetValues(3),
XtSetValues(3)

1284

Xm Functions

XmStringBaseline(library call)

XmStringBaseline

Purpose A compound string function that returns the number of pixels between the top of the
character box and the baseline of the first line of text

Synopsis #include <Xm/Xm.h>

Dimension XmStringBaseline(
XmRenderTable rendertable,
XmString string);

Description

XmStringBaseline returns the number of pixels between the top of the character box
and the baseline of the first line of text in the provided compound string.

rendertable Specifies the render table

string Specifies the string

Return Values

Returns the number of pixels between the top of the character box and the baseline
of the first line of text.

Related Information

XmStringCreate(3).

1285

Motif 2.1—Programmer’s Reference

XmStringByteCompare(library call)

XmStringByteCompare

Purpose A compound string function that indicates the results of a byte-by-byte comparison

Synopsis #include <Xm/Xm.h>

Boolean XmStringByteCompare(
XmString s1,
XmString s2);

Description

This function is obsolete and exists for compatibility with previous releases.
XmStringByteCompare returns a Boolean indicating the results of a byte-by-byte
comparison of two compound strings.

In general, if two compound strings are created with the same (char *) string using
XmStringCreateLocalized in the same language environment, the compound strings
compare as equal. If two compound strings are created with the same (char *) string
and the same font list element tag set other thanXmFONTLIST_DEFAULT_TAG
usingXmStringCreate, the strings compare as equal.

In some cases, once a compound string is put into a widget, that string is converted into
an internal form to allow faster processing. Part of the conversion process strips out
unnecessary or redundant information. If an application then does anXtGetValues to
retrieve a compound string from a widget (specifically, Label and all of its subclasses),
it is not guaranteed that the compound string returned is byte-for-byte the same as the
string given to the widget originally.

s1 Specifies a compound string to be compared withs2

s2 Specifies a compound string to be compared withs1

Return Values

Returns True if two compound strings are identical byte-by-byte.

1286

Xm Functions

XmStringByteCompare(library call)

Related Information

XmStringCreate(3) andXmStringCreateLocalized(3).

1287

Motif 2.1—Programmer’s Reference

XmStringByteStreamLength(library call)

XmStringByteStreamLength

Purpose A function that returns the size of a string

Synopsis #include <Xm/Xm.h>
unsigned int XmStringByteStreamLength (string)

unsigned char *string;

Description

XmStringByteStreamLength receives a byte stream format string and returns the size,
in bytes, of that stream, including the header. Because of this header information, even
a NULL string will causeXmStringByteStreamLength to return a non-zero value.

string Specifies the byte stream format string.

Return Values

Returns the size ofstring, including the header.

1288

Xm Functions

XmStringCompare(library call)

XmStringCompare

Purpose A compound string function that compares two strings

Synopsis #include <Xm/Xm.h>

Boolean XmStringCompare(
XmString s1,
XmString s2);

Description

XmStringCompare returns a Boolean value indicating the results of a semantically
equivalent comparison of two compound strings.

Semantically equivalent means that the strings have the same text components, font
list element tags, directions, and separators. In general, if two compound strings are
created with the same (char *) string usingXmStringCreateLocalized in the same
language environment, the compound strings compare as equal. If two compound
strings are created with the same text and tag argument usingXmStringCreate, the
strings compare as equal.

s1 Specifies a compound string to be compared withs2

s2 Specifies a compound string to be compared withs1

Return Values

Returns True if two compound strings are equivalent.

Related Information

XmStringCreate(3) andXmStringCreateLocalized(3).

1289

Motif 2.1—Programmer’s Reference

XmStringComponentCreate(library call)

XmStringComponentCreate

Purpose A compound string function that creates arbitrary components

Synopsis #include <Xm/Xm.h>

XmString XmStringComponentCreate(
XmStringComponentType c_type,
unsigned int length,
XtPointer value);

Description

XmStringComponentCreate creates a newXmString component of typec_type,
containingvalue. If value is invalid for the particular component type, this function
fails and returns NULL.

c_type Specifies the type of component to be created.

length Specifies the length in bytes ofvalue. Note that this must be precisely
the length of thevaluestring,not including any trailing null characters.

value Specifies the value to be used in the creation of the component.

Refer to theXmStringComponentType(3) reference page for a list of the possible
XmString component types.

Return Values

If valueis invalid for c_type, fails and returns NULL. Otherwise, this function returns
a new compound string. When the application no longer needs the returned compound
string, the application should callXmStringFree.

1290

Xm Functions

XmStringComponentCreate(library call)

Related Information

XmString (3), XmStringGetNextTriple , XmStringComponentType, and
XmStringFree(3).

1291

Motif 2.1—Programmer’s Reference

XmStringComponentType(library call)

XmStringComponentType

Purpose Data type for compound string components

Synopsis #include <Xm/Xm.h>

Description

XmStringComponentType is the data type specifying compound string component
types. A compound string component identifies some part of a compound string, and
can have a value and length. A compound string component can be one of the following
types. These component types are grouped according to their length and value types.

The following components have values of NULL and lengths of 0 (zero).

XmSTRING_COMPONENT_SEPARATOR
This component usually maps to a newline or carriage return in displayed
text.

XmSTRING_COMPONENT_TAB
This component may be thought of as a text component containing only
a single tab.

XmSTRING_COMPONENT_LAYOUT_POP
The layout direction is kept on a stack, with the current direction kept
on top of the stack. When this component is read, the most recently read
layout direction is popped off the stack and replaced by the direction
immediately before it.

XmSTRING_COMPONENT_END
This component marks the end of a compound string. No other
components should follow. If an application does not place an
XmSTRING_COMPONENT_END component at the end of an
XmString , Motif automatically does it for the application.

The following component has a value ofXmDirection and the length of that direction.

1292

Xm Functions

XmStringComponentType(library call)

XmSTRING_COMPONENT_LAYOUT_PUSH
The layout direction is kept on a stack, with the current direction kept on
top of the stack. This component replaces the current layout direction,
and causes another to be pushed onto the top of this stack.

The following component has a value ofXmStringDirection and the length of that
direction.

XmSTRING_COMPONENT_DIRECTION
This component sets the string direction by overriding the previous string
direction.

The following components have values of typechar * or some equivalent type, and
the lengths of these types.

XmSTRING_COMPONENT_LOCALE_TEXT
This component contains the multibyte text of a compound string.

XmSTRING_COMPONENT_WIDECHAR_TEXT
This component contains the widechar text of a compound string.

XmSTRING_COMPONENT_TEXT
This component contains the charset text of a compound string. Note
that a compound string cannot contain both charset and locale (multibyte
or widechar) text.

XmSTRING_COMPONENT_RENDITION_BEGIN
This component marks the beginning of a new rendition. All text
following this component will be rendered using this rendition
as the primary one. If there is already a rendition in effect, it
is kept in memory and used to fill in any unspecified values in
the primary rendition. Renditions are kept until a corresponding
XmSTRING_COMPONENT_RENDITION_END component is
encountered.

XmSTRING_COMPONENT_RENDITION_END
This component signifies that the specified rendition will no longer be
used to render text, and will not be available to fill in unspecified values
of newer renditions.

XmSTRING_COMPONENT_UNKNOWN
This component type signifies that the component contents belong to an
unknown component type.

1293

Motif 2.1—Programmer’s Reference

XmStringComponentType(library call)

XmSTRING_COMPONENT_LOCALE
Use this component to specify the locale in which an internationalized
application is to execute. The only valid character string for this
component is_MOTIF_DEFAULT_LOCALE .

XmSTRING_COMPONENT_TAG
For charset text, this is the tag of the font to be used to display the text.
This tag is sometimes referred to as the charset tag or the fontlist tag.

XmSTRING_COMPONENT_CHARSET
This component is obsolete and remains for compatibility with previous
releases. It has been replaced byXmSTRING_COMPONENT_TAG .

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
This component is obsolete and remains for compatibility with previous
releases. It has been replaced byXmSTRING_COMPONENT_TAG .

Some compound string components depend on values defined in other components.
TheXmSTRING_COMPONENT_TAB component definition, for example, depends
on information in the XmSTRING_COMPONENT_RENDITION_BEGIN . To
account for these dependencies, a typical compound string will have its member
components in the following order:

[
[XmSTRING_COMPONENT_LAYOUT_PUSH]
[XmSTRING_COMPONENT_RENDITION_BEGIN]*
[XmSTRING_COMPONENT_TAG | XmSTRING_COMPONENT_LOCALE]
[XmSTRING_COMPONENT_TAB]*
[XmSTRING_COMPONENT_DIRECTION]
[XmSTRING_COMPONENT_TEXT |

XmSTRING_COMPONENT_LOCALE_TEXT |
XmSTRING_COMPONENT_WIDECHAR_TEXT]

[XmSTRING_COMPONENT_RENDITION_END]*
[XmSTRING_COMPONENT_LAYOUT_POP]
[XmSTRING_COMPONENT_SEPARATOR]

]*
XmSTRING_COMPONENT_END

1294

Xm Functions

XmStringConcat(library call)

XmStringConcat

Purpose A compound string function that appends one string to another

Synopsis #include <Xm/Xm.h>

XmString XmStringConcat(
XmString s1,
XmString s2);

Description

XmStringConcat copies s2 to the end ofs1 and returns a copy of the resulting
compound string. The original strings are preserved. The function will allocate space
to hold the returned compound string. The application is responsible for managing
the allocated space. The application can recover the allocated space by calling
XmStringFree.

s1 Specifies the compound string to which a copy ofs2 is appended

s2 Specifies the compound string that is appended to the end ofs1

Return Values

Returns a new compound string.

Related Information

XmStringCreate(3) andXmStringFree(3).

1295

Motif 2.1—Programmer’s Reference

XmStringConcatAndFree(library call)

XmStringConcatAndFree

Purpose A compound string function that appends one string to another and frees the original
strings

Synopsis #include <Xm/Xm.h>

XmString XmStringConcatAndFree(
XmString s1,
XmString s2);

Description

XmStringConcatAndFree copies s2 to the end ofs1 and returns a copy of the
resulting compound string. The original strings are freed. The function will allocate
space to hold the returned compound string. The application is responsible for
managing the allocated space. The application can recover the allocated space by
calling XmStringFree.

s1 Specifies the compound string to which a copy ofs2 is appended

s2 Specifies the compound string that is appended to the end ofs1

The XmStringConcatAndFree function works like theXmStringConcat function,
except that it frees thes1 ands2 strings, and is therefore more efficient. You should
useXmStringConcatAndFree instead ofXmStringConcat if you wants1 ands2 to
be freed afterwards.

Return Values

Returns a new compound string.

1296

Xm Functions

XmStringConcatAndFree(library call)

Related Information

XmStringConcat(3), XmStringCreate(3), andXmStringFree(3).

1297

Motif 2.1—Programmer’s Reference

XmStringCopy(library call)

XmStringCopy

Purpose A compound string function that makes a copy of a string

Synopsis #include <Xm/Xm.h>

XmString XmStringCopy(
XmString s1);

Description

XmStringCopy makes a copy of an existing compound string. When the application
no longer needs the returned compound string, the application should call
XmStringFree.

s1 Specifies the compound string to be copied

Return Values

Returns a compound string.

Related Information

XmStringCreate(3) andXmStringFree(3).

1298

Xm Functions

XmStringCreate(library call)

XmStringCreate

Purpose A compound string function that creates a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringCreate(
char * text,
char * tag);

Description

XmStringCreate creates a compound string with two components: text and a font list
element tag. The function will allocate space to hold the returned compound string.
When the application no longer needs the returned compound string, the application
should callXmStringFree.

text Specifies a NULL-terminated string to be used as the text component
of the compound string.

tag Specifies the tag component to be associated with the given text.
The value XmFONTLIST_DEFAULT_TAG identifies a locale text
segment.

Return Values

Returns a new compound string.

Related Information

XmFontList (3), XmFontListAdd (3), XmFontListAppendEntry (3),
XmFontListCopy (3), XmFontListCreate(3), XmFontListEntryCreate (3),
XmFontListEntryFree (3), XmFontListEntryGetFont (3),
XmFontListEntryGetTag (3), XmFontListEntryLoad (3), XmFontListFree(3),

1299

Motif 2.1—Programmer’s Reference

XmStringCreate(library call)

XmFontListFreeFontContext(3), XmFontListGetNextFont(3),
XmFontListInitFontContext (3), XmFontListNextEntry (3),
XmFontListRemoveEntry(3), XmString (3), XmStringBaseline(3),
XmStringByteCompare(3), XmStringCompare(3), XmStringConcat(3),
XmStringCopy(3), XmStringCreateLocalized(3), XmStringCreateLtoR (3),
XmStringCreateSimple(3), XmStringDirection (3), XmStringDirectionCreate(3),
XmStringDraw (3), XmStringDrawImage(3), XmStringDrawUnderline (3),
XmStringEmpty (3), XmStringExtent (3), XmStringFree(3),
XmStringFreeContext(3), XmStringGetLtoR (3),
XmStringGetNextComponent(3), XmStringGetNextSegment(3),
XmStringHasSubstring(3), XmStringHeight (3), XmStringInitContext (3),
XmStringLength (3), XmStringLineCount (3), XmStringNConcat(3),
XmStringNCopy(3), XmStringPeekNextComponent(3),
XmStringSegmentCreate(3), XmStringSeparatorCreate(3), XmStringTable(3),
andXmStringWidth (3).

1300

Xm Functions

XmStringCreateLocalized(library call)

XmStringCreateLocalized

Purpose A compound string function that creates a compound string in the current locale

Synopsis #include <Xm/Xm.h>

XmString XmStringCreateLocalized(
char * text);

Description

XmStringCreateLocalized creates a compound string containing the specified text in
the current language environment. An identical compound string would result from the
functionXmStringCreate called withXmFONTLIST_DEFAULT_TAG explicitly as
the tag component.

The function will allocate space to hold the returned compound string. The application
is responsible for managing the allocated space. The application can recover the
allocated space by callingXmStringFree.

text Specifies a NULL-terminated string of text encoded in the current
language environment to be used as the text component of the compound
string

Return Values

Returns a new compound string.

Related Information

XmStringCreate(3).

1301

Motif 2.1—Programmer’s Reference

XmStringCreateLtoR(library call)

XmStringCreateLtoR

Purpose A compound string function that creates a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringCreateLtoR(
char * text,
char * tag);

Description

This function is obsolete and exists for compatibility with previous releases. It is
replaced byXmStringGenerate. XmStringCreateLtoR creates a compound string
with two components: text and a tag component. This function scans for\n characters
in the text. When one is found, the text up to that point is put into a segment followed
by a separator component. No final separator component is appended to the end of
the compound string. The direction component defaults to left-to-right. This function
assumes that the encoding is single byte rather than multibyte.

The function will allocate space to hold the returned compound string. The application
is responsible for managing the allocated space. The application can recover the
allocated space by callingXmStringFree.

text Specifies a NULL-terminated string to be used as the text component
of the compound string.

tag Specifies the tag component to be associated with the given text. The
value XmFONTLIST_DEFAULT_TAG is retained for compatibility
with previous releases.

Return Values

Returns a new compound string.

1302

Xm Functions

XmStringCreateLtoR(library call)

Related Information

XmStringCreate(3) andXmStringGenerate(3).

1303

Motif 2.1—Programmer’s Reference

XmStringCreateSimple(library call)

XmStringCreateSimple

Purpose A compound string function that creates a compound string in the language
environment of a widget

Synopsis #include <Xm/Xm.h>

XmString XmStringCreateSimple(
char * text);

Description

XmStringCreateSimple creates a compound string with a text component and a
charset tag. It derives the character set from the current language environment.

The routine attempts to derive a character set from the value of the LANG environment
variable. If this does not result in a valid character set, the routine uses a vendor-
specific default. If the vendor has not specified a different value, this default is
ISO8859-1.

The function will allocate space to hold the returned compound string. The application
is responsible for managing the allocated space. The application can recover the
allocated space by callingXmStringFree.

NOTE: This routine is obsolete and exists for compatibility with previous releases. It
has been replaced byXmStringCreateLocalized.

text Specifies a NULL-terminated string to be used as the text component
of the compound string.

Return Values

Returns a new compound string.

1304

Xm Functions

XmStringCreateSimple(library call)

Related Information

XmStringCreate(3) andXmStringCreateLocalized(3).

1305

Motif 2.1—Programmer’s Reference

XmStringDirectionCreate(library call)

XmStringDirectionCreate

Purpose A compound string function that creates a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringDirectionCreate(
XmStringDirection direction);

Description

XmStringDirectionCreate creates a compound string with a single component, a
direction with the given value. When the application no longer needs the returned
compound string, the application should callXmStringFree.

direction Specifies the value of the direction component. The possible values are:

XmSTRING_DIRECTION_L_TO_R
Specifies left to right display.

XmSTRING_DIRECTION_R_TO_L
Specifies right to left display.

XmSTRING_DIRECTION_DEFAULT
Specifies that the display direction will be set by the
widget in which the compound string is to be displayed.

Return Values

Returns a new compound string.

Related Information

XmStringCreate(3).

1306

Xm Functions

XmStringDirectionToDirection(library call)

XmStringDirectionToDirection

Purpose A function that converts from XmStringDirection to XmDirection

Synopsis #include <Xm/Xm.h>

XmDirection XmStringDirectionToDirection(
XmStringDirection direction);

Description

XmStringDirectionToDirection converts the specifiedXmStringDirection direction
value to its equivalentXmDirection value. This function provides backward
compatibility with theXmStringDirection data type.

direction Specifies theXmStringDirection value to be converted.

Return Values

Returns the followingXmDirection values:

XmLEFT_TO_RIGHT
If the direction argument isXmSTRING_DIRECTION_L_TO_R .

XmRIGHT_TO_LEFT
If the direction argument isXmSTRING_DIRECTION_R_TO_L .

XmDEFAULT_DIRECTION
If the direction argument was not either of the above.

Related Information

XmStringDirection (3) andXmDirection (3).

1307

Motif 2.1—Programmer’s Reference

XmStringDraw(library call)

XmStringDraw

Purpose A compound string function that draws a compound string in an X window

Synopsis #include <Xm/Xm.h>

void XmStringDraw(
Display * d,
Window w,
XmRenderTable rendertable,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned charalignment,
unsigned char layout_direction,
XRectangle* clip);

Description

XmStringDraw draws a compound string in an X Window. If a compound string
segment uses a rendition that contains a font set, the graphic context passed to this
routine will have the GC font member left in an undefined state. The underlying
XmbStringDraw function called by this routine modifies the font ID field of the GC
passed into it and does not attempt to restore the font ID to the incoming value. If
the compound string segment is not drawn using a font set, the graphic context must
contain a valid font member. Graphic contexts created byXtGetGC are not valid for
this routine; instead, useXtAllocateGC to create a graphic context.

d Specifies the display.

w Specifies the window.

rendertable Specifies the render table.

string Specifies the string.

1308

Xm Functions

XmStringDraw(library call)

gc Specifies the graphics context to use.

x Specifies a coordinate of the rectangle that will contain the displayed
compound string.

y Specifies a coordinate of the rectangle that will contain the displayed
compound string.

width Specifies the width of the rectangle that will contain the displayed
compound string.

alignment Specifies how the string will be aligned within the specified
rectangle. It is either XmALIGNMENT_BEGINNING ,
XmALIGNMENT_CENTER , or XmALIGNMENT_END .

layout_direction
Controls the direction in which the segments of the compound string will
be laid out. It also determines the meaning of thealignmentparameter.

clip Allows the application to restrict the area into which the compound
string will be drawn. If the value is NULL, clipping will be determined
by the GC.

Related Information

XmStringCreate(3).

1309

Motif 2.1—Programmer’s Reference

XmStringDrawImage(library call)

XmStringDrawImage

Purpose A compound string function that draws a compound string in an X Window and creates
an image

Synopsis #include <Xm/Xm.h>

void XmStringDrawImage(
Display * d,
Window w,
XmRenderTable rendertable,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned charalignment,
unsigned char layout_direction,
XRectangle* clip);

Description

XmStringDrawImage draws a compound string in an X Window and paints both the
foreground and background bits of each character. If a compound string segment uses
a rendition that contains a font set, the graphic context passed to this routine will have
the GC font member left in an undefined state. The underlyingXmbStringDraw
function called by this routine modifies the font ID field of the GC passed into it
and does not attempt to restore the font ID to the incoming value. If the compound
string segment is not drawn using a font set, the graphic context must contain a valid
font member. Graphic contexts created byXtGetGC are not accepted by this routine;
instead, useXtAllocateGC to create a graphic context.

d Specifies the display.

w Specifies the window.

1310

Xm Functions

XmStringDrawImage(library call)

rendertable Specifies the render table.

string Specifies the string.

gc Specifies the graphics context to use.

x Specifies a coordinate of the rectangle that will contain the displayed
compound string.

y Specifies a coordinate of the rectangle that will contain the displayed
compound string.

width Specifies the width of the rectangle that will contain the displayed
compound string.

alignment Specifies how the string will be aligned within the specified
rectangle. It is either XmALIGNMENT_BEGINNING ,
XmALIGNMENT_CENTER , or XmALIGNMENT_END .

layout_direction
Controls the direction in which the segments of the compound string will
be laid out. It also determines the meaning of thealignmentparameter.

clip Allows the application to restrict the area into which the compound
string will be drawn. If NULL, clipping will be determined by the GC.

Related Information

XmStringCreate(3).

1311

Motif 2.1—Programmer’s Reference

XmStringDrawUnderline(library call)

XmStringDrawUnderline

Purpose A compound string function that underlines a string drawn in an X Window

Synopsis #include <Xm/Xm.h>

void XmStringDrawUnderline(
Display * d,
Window w,
XmRenderTable rendertable,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned charalignment,
unsigned char layout_direction,
XRectangle* clip ,
XmString underline);

Description

XmStringDrawUnderline draws a compound string in an X Window. If the substring
identified byunderlinecan be matched instring, the substring will be underlined. Once
a match has occurred, no further matches or underlining will be done. Only the first
text component ofunderlineis used for matching.

If a compound string segment uses a rendition that contains a font set, the graphic
context passed to this routine will have the GC font member left in an undefined
state. The underlyingXmbStringDraw function called by this routine modifies the
font ID field of the GC passed into it and does not attempt to restore the font ID to
the incoming value. If the compound string segment is not drawn using a font set,
the graphic context must contain a valid font member. Graphic contexts created by
XtGetGC are not accepted by this routine; instead, useXtAllocateGC to create a
graphic context.

1312

Xm Functions

XmStringDrawUnderline(library call)

d Specifies the display.

w Specifies the window.

rendertable Specifies the render table.

string Specifies the string.

gc Specifies the graphics context to use.

x Specifies a coordinate of the rectangle that will contain the displayed
compound string.

y Specifies a coordinate of the rectangle that will contain the displayed
compound string.

width Specifies the width of the rectangle that will contain the displayed
compound string.

alignment Specifies how the string will be aligned within the specified
rectangle. It is one of XmALIGNMENT_BEGINNING ,
XmALIGNMENT_CENTER , or XmALIGNMENT_END .

layout_direction
Controls the direction in which the segments of the compound string will
be laid out. It also determines the meaning of thealignmentparameter.

clip Allows the application to restrict the area into which the compound
string will be drawn. If it is NULL, clipping will be determined by the
GC.

underline Specifies the substring to be underlined.

Related Information

XmStringCreate(3).

1313

Motif 2.1—Programmer’s Reference

XmStringEmpty(library call)

XmStringEmpty

Purpose A compound string function that provides information on the existence of non-zero-
length text components

Synopsis #include <Xm/Xm.h>

Boolean XmStringEmpty(
XmString s1);

Description

XmStringEmpty returns a Boolean value indicating whether any non-zero-length text
components exist in the provided compound string. It returns True if there are no text
segments in the string. If this routine is passed NULL as the string, it returns True.

s1 Specifies the compound string

Return Values

Returns True if there are no text segments in the string. If this routine is passed NULL
as the string, it returns True.

Related Information

XmStringCreate(3).

1314

Xm Functions

XmStringExtent(library call)

XmStringExtent

Purpose A compound string function that determines the size of the smallest rectangle that
will enclose the compound string

Synopsis #include <Xm/Xm.h>

void XmStringExtent(
XmRenderTable rendertable,
XmString string,
Dimension *width,
Dimension *height);

Description

XmStringExtent determines the width and height, in pixels, of the smallest rectangle
that will enclose the provided compound string.

rendertable Specifies the render table

string Specifies the string

width Specifies a pointer to the width of the rectangle

height Specifies a pointer to the height of the rectangle

Related Information

XmStringCreate(3).

1315

Motif 2.1—Programmer’s Reference

XmStringFree(library call)

XmStringFree

Purpose A compound string function that conditionally deallocates memory

Synopsis #include <Xm/Xm.h>

void XmStringFree(
XmString string);

Description

XmStringFree conditionally recovers memory used by a compound string.
Applications should callXmStringFree when the application no longer needsstring.

string Specifies the compound string to be freed

Related Information

XmStringCreate(3).

1316

Xm Functions

XmStringFreeContext(library call)

XmStringFreeContext

Purpose A compound string function that releases the string scanning context data structure

Synopsis #include <Xm/Xm.h>

void XmStringFreeContext(
XmStringContext context);

Description

XmStringFreeContext releases the string scanning context data structure.

context Specifies the string context structure that was allocated by the
XmStringInitContext function

Related Information

XmStringCreate(3) andXmStringInitContext (3).

1317

Motif 2.1—Programmer’s Reference

XmStringGenerate(library call)

XmStringGenerate

Purpose A convenience function that generates a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringGenerate(
XtPointer text,
XmStringTag tag,
XmTextType type,
XmStringTag rendition);

Description

XmStringGenerate calls theXmStringParseText function with a default parse table
of entries consisting of ’\n’, which maps to Separator, and ’\t’, which maps to
Tab. MatchingRENDITION_BEGINand RENDITION_ENDcomponents containing
rendition are placed around the resultingXmString .

text Specifies a NULL-terminated string containing characters of a type
determined bytype.

tag Specifies the tag to be used in creating the result. The type
of tag created (charset or locale) depends on the text type and
the value given. If specified value is NULL, andtype indicates
that a charset tag should be created, then the tag will have the
value of XmFONTLIST_DEFAULT_TAG . If tag is NULL, and
type indicates a locale tag, then the tag will have the value of
_MOTIF_DEFAULT_LOCALE .

type Specifies the type of text to be passed in, and the tag type. If
a locale tag should be created, thentype has a value of either
XmMULTIBYTE_TEXT or XmWIDECHAR_TEXT . If a charset
should be created,typehas a value ofXmCHARSET_TEXT .

rendition Specifies the rendition tag to be used in an
XmSTRING_COMPONENT_RENDITION_BEGIN

1318

Xm Functions

XmStringGenerate(library call)

component which will begin the returned string and in an
XmSTRING_COMPONENT_RENDITION_END component which
will end it. If rendition is NULL, no rendition tag is placed.

Return Values

Returns a new compound string. The function will allocate space to hold the returned
compound string. When the application no longer needs the returned compound string,
the application should callXmStringFree.

Related Information

XmString (3) andXmStringFree(3).

1319

Motif 2.1—Programmer’s Reference

XmStringGetLtoR(library call)

XmStringGetLtoR

Purpose A compound string function that searches for a text segment in the input compound
string

Synopsis #include <Xm/Xm.h>

Boolean XmStringGetLtoR(
XmString string,
XmStringCharSet tag,
char ** text);

Description

This function is obsolete and exists for compatibility with previous releases. It is
replaced byXmStringUnparse. XmStringGetLtoR returns the first text component
in the input compound string that is tagged with the given tag component. The returned
text is to be a NULL-terminated sequence of single byte characters. If the function
returns True, the function will allocate space to hold the returnedtext. The application
is responsible for managing the allocated space. The application can recover the
allocated space by callingXtFree.

string Specifies the compound string.

tag Specifies the font list element tag associated with the text. A value of
XmFONTLIST_DEFAULT_TAG identifies a locale text segment.

text Specifies a pointer to a NULL terminated string.

Return Values

Returns True if the matching text segment can be found. On return,text will have a
NULL terminated byte sequence containing the matched segment.

1320

Xm Functions

XmStringGetLtoR(library call)

Related Information

XmStringCreate(3).

1321

Motif 2.1—Programmer’s Reference

XmStringGetNextComponent(library call)

XmStringGetNextComponent

Purpose A compound string function that returns the type and value of the next component in
a compound string

Synopsis #include <Xm/Xm.h>

XmStringComponentType XmStringGetNextComponent(
XmStringContext context,
char ** text,
XmStringTag * tag,
XmStringDirection * direction,
XmStringComponentType *unknown_tag,
unsigned short *unknown_length,
unsigned char **unknown_value);

Description

This function is obsolete and exists for compatibility with previous releases. It
is replaced byXmStringGetNextTriple . XmStringGetNextComponent returns the
type and value of the next component in the compound string identified bycontext.
Components are returned one at a time. On return, only some output parameters will
be valid; which ones can be determined by examining the returned component type.
The following table describes the valid returns for each component type.

Valid Fields Component Type

tag XmSTRING_COMPONENT_LOCALE,
XmSTRING_COMPONENT_TAG

text XmSTRING_COMPONENT_LOCALE_TEXT,
XmSTRING_COMPONENT_TEXT,
XmSTRING_COMPONENT_WIDECHAR_TEXT

direction XmSTRING_COMPONENT_DIRECTION

1322

Xm Functions

XmStringGetNextComponent(library call)

unknown_tag,
unknown_length,
unknown_value

XmSTRING_COMPONENT_LAYOUT_POP,
XmSTRING_COMPONENT_LAYOUT_PUSH,
XmSTRING_COMPONENT_TAB,
XmSTRING_COMPONENT_RENDITION_BEGIN,
XmSTRING_COMPONENT_RENDITION_END

no valid field XmSTRING_COMPONENT_SEPARATOR,
XmSTRING_COMPONENT_END,
XmSTRING_COMPONENT_UNKNOWN

Note that several components produce a return value of
XmSTRING_COMPONENT_UNKNOWN . The data returned by these
components is returned in theunknown_tag, unknown_length, and unknown_value
fields. This apparent inconsistency is designed to accomodate older applications that
may not be equipped to handle the newer component types of Motif version 2.0
and beyond. Consequently, the use of this procedure is not recommended. Instead,
use theXmStringGetNextTriple procedure, which provides all the functionality of
XmStringGetNextComponent, and is fully compatible with the newer component
types.

If the function return value isXmSTRING_COMPONENT_LOCALE_TEXT
or XmSTRING_COMPONENT_TEXT , the the function allocates
space to hold the returnedtext. If the function return value is
XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG , or
XmSTRING_COMPONENT_TAG , then the function allocates space to
hold the returnedtag. The application is responsible for managing the allocated
space. The application can recover the allocated space by callingXtFree.

context Specifies the string context structure that was allocated by the
XmStringInitContext function.

text Specifies a pointer to a NULL terminated string.

tag Specifies a pointer to the tag component associated with the text.
The value XmFONTLIST_DEFAULT_TAG identifies a locale text
segment.

direction Specifies a pointer to the direction of the text.

unknown_tag
Specifies a pointer to the tag of an unknown component.

unknown_length
Specifies a pointer to the length of an unknown component.

1323

Motif 2.1—Programmer’s Reference

XmStringGetNextComponent(library call)

unknown_value
Specifies a pointer to the value of an unknown component.

Return Values

Returns the type of component found. Refer to theXmStringComponentType(3)
reference page for a list of component types.

Related Information

XmStringComponentType(3), XmStringCreate(3), andXmStringInitContext (3).

1324

Xm Functions

XmStringGetNextSegment(library call)

XmStringGetNextSegment

Purpose A compound string function that fetches the bytes in the next segment of a compound
string

Synopsis #include <Xm/Xm.h>

Boolean XmStringGetNextSegment(
XmStringContext context,
char ** text,
XmStringTag * tag,
XmStringDirection * direction,
Boolean *separator);

Description

This routine is obsolete and exists for compatibility with previous releases. To
read the contents of a compound string, read each component of the string with
XmStringGetNextTriple . This XmString function returns the type, length, and value
of the next component in the compound string.XmStringGetNextSegmentfetches
the bytes in the next segment; repeated calls fetch sequential segments. Thetext, tag,
and direction of the fetched segment are returned each time. A Boolean status is
returned to indicate whether a valid segment was successfully parsed.

If the function returns True, then the function allocates space to hold the returned
text and tag. The application is responsible for managing the allocated space. The
application can recover the allocated space by callingXtFree.

context Specifies the string context structure which was allocated by the
XmStringInitContext function

text Specifies a pointer to a NULL-terminated string

tag Specifies a pointer to the font list element tag associated with the text

direction Specifies a pointer to the direction of the text

1325

Motif 2.1—Programmer’s Reference

XmStringGetNextSegment(library call)

separator Specifies whether the next component of the compound string is a
separator

Return Values

Returns True if a valid segment is found.

Related Information

XmStringCreate(3) andXmStringInitContext (3).

1326

Xm Functions

XmStringGetNextTriple(library call)

XmStringGetNextTriple

Purpose An XmString function that returns the type, length, and value of the next component
in the compound string

Synopsis #include <Xm/Xm.h>

XmStringComponentType XmStringGetNextTriple(
XmStringContext context,
unsigned int *length,
XtPointer *value);

Description

XmStringGetNextTriple returns the type, length, and value of the next component
in the compound string identified bycontext. This function returns one component at
a time.

context Specifies the string context structure that was allocated by the
XmStringInitContext function.

length Specifies a pointer to the length of the value of the returned component.

value Specifies a pointer to the value of the returned component. If the returned
value is not NULL, the function allocates space to hold the returned
value. When the application no longer needs the returned compound
string, the application should callXtFree.

Return Values

Returns the type of the component found. Refer to theXmStringComponentType(3)
reference page for a list of component types.

1327

Motif 2.1—Programmer’s Reference

XmStringGetNextTriple(library call)

Related Information

XmDirection (3), XmString (3), XmStringComponentType(3),
XmStringGetNextComponent(3), andXmStringPeekNextTriple(3).

1328

Xm Functions

XmStringHasSubstring(library call)

XmStringHasSubstring

Purpose A compound string function that indicates whether one compound string is contained
within another

Synopsis #include <Xm/Xm.h>

Boolean XmStringHasSubstring(
XmString string,
XmString substring);

Description

XmStringHasSubstring indicates whether or not one compound string is contained
within another.

string Specifies the compound string to be searched

substring Specifies the compound string to be searched for

Return Values

Returns True ifsubstringhas a single text component and if its text is completely
contained within any single text component ofstring; otherwise, it returns False.

Related Information

XmStringCreate(3) andXmStringCreateLocalized(3).

1329

Motif 2.1—Programmer’s Reference

XmStringHeight(library call)

XmStringHeight

Purpose A compound string function that returns the line height of the given compound string

Synopsis #include <Xm/Xm.h>

Dimension XmStringHeight(
XmRenderTable rendertable,
XmString string);

Description

XmStringHeight returns the height, in pixels, of the sum of all the line heights of
the given compound string. Separator components delimit lines.

rendertable Specifies the render table

string Specifies the string

Return Values

Returns the height of the specified string.

Related Information

XmStringCreate(3).

1330

Xm Functions

XmStringInitContext(library call)

XmStringInitContext

Purpose A compound string function that creates a data structure for scanning an XmString
component by component

Synopsis #include <Xm/Xm.h>

Boolean XmStringInitContext(
XmStringContext * context,
XmString string);

Description

XmStringInitContext creates a context to allow applications to read out the contents
of a compound string component by component. A Boolean status is returned to
indicate that the context could not be initalized.

If the function returns True, the function will allocate space to hold the returned
context. The application is responsible for managing the allocated space. The memory
can be recovered by callingXmStringFreeContext.

context Specifies a pointer to the allocated context

string Specifies the string

Return Values

Returns True if the context was allocated

Related Information

XmStringCreate(3).

1331

Motif 2.1—Programmer’s Reference

XmStringIsVoid(library call)

XmStringIsVoid

Purpose A compound string function that provides information on the existence of non-zero-
length text components, tab components, or separator components

Synopsis #include <Xm/Xm.h>

Boolean XmStringIsVoid(
XmString s1);

Description

XmStringIsVoid returns a Boolean value indicating whether or not strings1 is void.

s1 Specifies the compound string

Return Values

Returns True if any non-zero-length text components, tab components, or separator
components exist ins1. That is, the function returns True if the string has no text,
tabs, or separators. Ifs1 contains the NULL string, the function returns True.

Related Information

XmStringCreate(3).

1332

Xm Functions

XmStringLength(library call)

XmStringLength

Purpose A compound string function that obtains the length of a compound string

Synopsis #include <Xm/Xm.h>

int XmStringLength(
XmString s1);

Description

This function is obsolete and exists for compatibility with previous releases. It is
replaced byXmStringByteStreamLength. XmStringLength obtains the length of a
compound string. It returns the number of bytes ins1 including all tags, direction
indicators, and separators. If the compound string has an invalid structure, 0 (zero) is
returned.

s1 Specifies the compound string

Return Values

Returns the length of the compound string.

Related Information

XmStringByteStreamLength(3) andXmStringCreate(3).

1333

Motif 2.1—Programmer’s Reference

XmStringLineCount(library call)

XmStringLineCount

Purpose A compound string function that returns the number of separators plus one in the
provided compound string

Synopsis #include <Xm/Xm.h>

int XmStringLineCount(
XmString string);

Description

XmStringLineCount returns the number of separators plus one in the provided
compound string. In effect, it counts the lines of text.

string Specifies the string

Return Values

Returns the number of lines in the compound string. Ifstring is empty, the function
returns 1. If NULL is passed intostring, the function returns 0 (zero).

Related Information

XmStringCreate(3).

1334

Xm Functions

XmStringNConcat(library call)

XmStringNConcat

Purpose A compound string function that appends a specified number of bytes to a compound
string

Synopsis #include <Xm/Xm.h>

XmString XmStringNConcat(
XmString s1,
XmString s2,
int num_bytes);

Description

This function is obsolete and exists for compatibility with previous releases. It is
replaced byXmStringConcat. XmStringNConcat appends a specified number of
bytes froms2 to the end ofs1, including tags, directional indicators, and separators.
It then returns the resulting compound string. The original strings are preserved.
The function allocates space for the resulting compound string. The application is
responsible for managing the allocated space. The application can recover the allocated
space by callingXmStringFree.

s1 Specifies the compound string to which a copy ofs2 is appended.

s2 Specifies the compound string that is appended to the end ofs1.

num_bytes Specifies the number of bytes ofs2 to append tos1. If this value is less
than the length ofs2, as many bytes as possible, but possibly fewer than
this value, will be appended tos1 such that the resulting string is still a
valid compound string.

Return Values

Returns a new compound string.

1335

Motif 2.1—Programmer’s Reference

XmStringNConcat(library call)

Related Information

XmStringCreate(3) andXmStringFree(3).

1336

Xm Functions

XmStringNCopy(library call)

XmStringNCopy

Purpose A compound string function that creates a copy of a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringNCopy(
XmString s1,
int num_bytes);

Description

This function is obsolete and exists for compatibility with previous releases.
XmStringNCopy creates a copy ofs1 that contains a specified number of bytes,
including tags, directional indicators, and separators. It then returns the resulting
compound string. The original strings are preserved. The function allocates space
for the resulting compound string. The application is responsible for managing
the allocated space. The application can recover the allocated space by calling
XmStringFree.

s1 Specifies the compound string.

num_bytes Specifies the number of bytes ofs1 to copy. If this value is less than
the length ofs1, as many bytes as possible, but possibly fewer than this
value, will be appended tos1such that the resulting string is still a valid
compound string.

Return Values

Returns a new compound string.

Related Information

XmStringCreate(3) andXmStringFree(3).

1337

Motif 2.1—Programmer’s Reference

XmStringParseText(library call)

XmStringParseText

Purpose A function that converts a character string to a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringParseText(
XtPointer text,
XtPointer * text_end,
XmStringTag tag,
XmTextType type,
XmParseTableparse_table,
Cardinal parse_count,
XtPointer call_data);

Description

XmStringParseTextconverts characters specified intextto corresponding components
in the returned compound string. The resulting compound string consists of at least one
locale or charset tag component and a series ofXmString text components and other
components. The conversion proceeds according to the parse information contained
in parse_table. See theMotif 2.1—Programmer’s Guidefor more information about
parsing and parse tables.

• If type is XmCHARSET_TEXT , the associatedtag is interpreted as a charset
name. Iftag has a value of NULL, a charset component whose value is the result
of mappingXmFONTLIST_DEFAULT_TAG is created.

• If type is XmMULTIBYTE_TEXT or XmWIDECHAR_TEXT , the associated
tag is interpreted as a language environment name. Iftag has a value of NULL,
a locale component with a value of_MOTIF_DEFAULT_LOCALE is created.
If type is XmMULTIBYTE_TEXT or XmWIDECHAR_TEXT , tag must be
NULL or _MOTIF_DEFAULT_LOCALE .

1338

Xm Functions

XmStringParseText(library call)

XmStringParseText also scans the string for characters that have matches in
parse_table. Whenever a match is found, the text up to that point is concatenated
with the mapped component.

text Specifies the NULL-terminated string containing characters of a type
determined bytype. This is updated to point to after the last character
scanned.

text_end Specifies a pointer intotext. If a NULL is supplied to thetext_end
parameter, thenXmStringParseText parses text until NULL is
encountered, or until it reaches a point intext where it is directed to
stop (for example, by aparse_proc). Otherwise, the value supplied to
the text_endparameter is the pointer intotext where parsing is to stop,
and the returned character is the one where parsing did stop.

tag Specifies the tag to be used in creating the result. The type of string tag
created (charset or locale) depends on the text type and the passed intag
value. If thetag value is NULL and iftypeindicates that a charset string
tag should be created, the string tag has the value that is the result of
mappingXmFONTLIST_DEFAULT_TAG . If type indicates a locale
string tag, the string tag has the value_MOTIF_DEFAULT_LOCALE .

type Specifies the type of text and the tag type. If a locale tag should
be created,type has a value of eitherXmMULTIBYTE_TEXT or
XmWIDECHAR_TEXT . If typehas value ofXmCHARSET_TEXT ,
a charset tag will be created.

parse_table Specifies the parse table to be used in scanning for characters to be
converted to other compound string components.

parse_count Specifies the number of entries inparse_table.

call_data Specifies data to be passed to the parse procedures.

Return Values

Returns a new compound string. The function allocates space to hold the returned
compound string. When the application no longer needs the returned compound string,
the application should callXmStringFree.

1339

Motif 2.1—Programmer’s Reference

XmStringParseText(library call)

Related Information

XmString (3), XmStringFree(3), XmParseTable(3), XmParseMapping(3).

1340

Xm Functions

XmStringPeekNextComponent(library call)

XmStringPeekNextComponent

Purpose A compound string function that returns the component type of the next component
to be fetched

Synopsis #include <Xm/Xm.h>

XmStringComponentType XmStringPeekNextComponent(
XmStringContext context);

Description

This function is obsolete and exists for compatibility with previous releases. It is
replaced byXmStringPeekNextTriple. XmStringPeekNextComponent examines
the next component that would be fetched byXmStringGetNextComponent and
returns the component type.

context Specifies the string context structure that was allocated by the
XmStringInitContext function

Return Values

Returns the type of component found. Refer to theXmStringComponentType(3)
reference page for a list of component types.

Related Information

XmStringComponentType(3), XmStringCreate(3),
XmStringGetNextComponent(3), andXmStringInitContext (3).

1341

Motif 2.1—Programmer’s Reference

XmStringPeekNextTriple(library call)

XmStringPeekNextTriple

Purpose A function that returns the component type of the next component

Synopsis #include <Xm/Xm.h>

XmStringComponentType XmStringPeekNextTriple(
XmStringContext context);

Description

XmStringPeekNextTriple examines the next component that would be fetched by
XmStringGetNextTriple and returns the component type.

context Specifies the string context structure that was allocated by the
XmStringInitContext function.

Return Values

Returns the type of the component found. Refer to theXmStringComponentType(3)
reference page for a list of component types.

Related Information

XmString (3), XmStringComponentType(3), andXmStringGetNextTriple (3).

1342

Xm Functions

XmStringPutRendition(library call)

XmStringPutRendition

Purpose A convenience function that places renditions around strings

Synopsis #include <Xm/Xm.h>

XmString XmStringPutRendition(
XmString string,
XmStringTag rendition);

Description

XmStringPutRendition places matching
Xm_STRING_COMPONENT_RENDITION_BEGIN and
XmSTRING_COMPONENT_RENDITION_END components containing
rendition aroundstring. The original string is preserved.

string Specifies the compound string to which begin and end rendition
components should be added.

rendition Specifies the rendition tag to be used in an
XmSTRING_COMPONENT_RENDITION_BEGIN
component which will begin the returned string and in an
XmSTRING_COMPONENT_RENDITION_END component which
will end it.

Return Values

Returns a new compound string. The function allocates space to hold this returned
compound string. When the application no longer needs the returned compound string,
the application should callXmStringFree.

1343

Motif 2.1—Programmer’s Reference

XmStringPutRendition(library call)

Related Information

XmString (3).

1344

Xm Functions

XmStringSegmentCreate(library call)

XmStringSegmentCreate

Purpose A compound string function that creates a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringSegmentCreate(
char * text,
XmStringTag tag,
XmStringDirection direction,
Booleanseparator);

Description

This function is obsolete and exists for compatibility with previous releases. It
can be replaced by using a combination ofXmStringComponentCreate and
XmStringConcat. XmStringSegmentCreateis a high-level function that assembles
a compound string consisting of a font list element tag, a direction component, a text
component, and an optional separator component.

The function allocates space for the returned compound string. The application is
responsible for managing the allocated space. The application can recover the allocated
space by callingXmStringFree.

text Specifies a NULL-terminated string to be used as the text component
of the compound string.

tag Specifies the tag component to be associated with the text. The value
XmFONTLIST_DEFAULT_TAG is for compatibility with previous
releases.

direction Specifies the direction of the text.

separator A value of False means the compound string does not have a separator
at the end. A value of True, means a separator immediately follows the
text component.

1345

Motif 2.1—Programmer’s Reference

XmStringSegmentCreate(library call)

Return Values

Returns a new compound string.

Related Information

XmStringCreate(3).

1346

Xm Functions

XmStringSeparatorCreate(library call)

XmStringSeparatorCreate

Purpose A compound string function that creates a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringSeparatorCreate(
void

Description

XmStringSeparatorCreate creates a compound string with a single component, a
separator.

Return Values

Returns a new compound string. When the application no longer needs the returned
compound string, the application should callXmStringFree.

Related Information

XmStringCreate(3).

1347

Motif 2.1—Programmer’s Reference

XmStringTableParseStringArray(library call)

XmStringTableParseStringArray

Purpose A convenience function that converts an array of strings to a compound string table

Synopsis #include <Xm/Xm.h>

XmStringTable XmStringTableParseStringArray(
XtPointer *strings,
Cardinal count,
XmStringTag tag,
XmTextType type,
XmParseTableparse,
Cardinal parse_count,
XtPointer call_data);

Description

XmStringTableParseStringArray takes an array of strings, allocates an
XmStringTable with an equal number of slots, callsXmStringParseText on each
string in strings, and inserts the resultingXmString in the corresponding slot in the
XmStringTable.

strings Specifies an array of strings of characters as determined bytype.

count Specifies the number of strings instrings.

tag Specifies the tag to be used in creating the result. The type of tag
created (charset or locale) depends on the type of the text and the
value given. If the value specified is NULL, andtype indicates that
a charset tag should be created, then the tag will have the value of
XmFONTLIST_DEFAULT_TAG . If type indicates a locale tag, then
the tag will have the value ofXmFONTLIST_DEFAULT_TAG .

type Specifies the type of text to be passed in and the type of tag. If the
type is eitherXmMULTIBYTE_TEXT or XmWIDECHAR_TEXT ,
a locale tag should be created. If the type isXmCHARSET_TEXT , a
charset tag will be created.

1348

Xm Functions

XmStringTableParseStringArray(library call)

parse Specifies the parse table to be used.

parse_count Specifies the number of entries in the parse table.

call_data Specifies data to be passed to the parse procedures.

Return Values

Returns a new XmStringTable. The function allocates space to hold the
XmStringTable. When the application no longer needs the returnedXmStringTable,
the application should callXmStringFree count times (that is, one time for each
returned compound string) and then callXtFree to deallocate theXmStringTable
itself.

Related Information

XmStringFree(3) andXmTabList (3).

1349

Motif 2.1—Programmer’s Reference

XmStringTableProposeTablist(library call)

XmStringTableProposeTablist

Purpose A convenience function that returns a tab list

Synopsis #include <Xm/Xm.h>

XmTabList XmStringTableProposeTablist(
XmStringTable strings,
Cardinal num_strings,
Widget widget,
float pad_value,
XmOffsetModel offset_model);

Description

XmStringTableProposeTablist takes an XmStringTable structure containing
tabbed compound strings, information on padding between columns, and rendering
information and returns a tab list that, if used to render the strings in the table, would
cause the strings to line up in columns with no overlap and with the specified amount
of padding between the widest item in each column and the start of the next column.
Each tab in the tablist would have the same unit type asunits, an offset model of
offset_model, and an alignment type ofXmALIGNMENT_BEGINNING .

strings Specifies an array of compound strings.

num_strings Specifies the number of compound strings instrings.

widget Specifies the widget used for deriving any necessary information for
creating the rendition. In particular, theXmNunitType of widget will
be used to specify the unit type to be used in determining the amount
of padding separating columns and for the tabs in the proposed tab list.
Also, widget’s render table will be used in interpreting rendition tags
within the strings.

pad_value Specifies the value of the amount of padding to be used to separate
columns. The units for this parameter are specified as theXmNunitType

1350

Xm Functions

XmStringTableProposeTablist(library call)

set for thewidgetparameter. Refer to theXmNunitType resource of the
XmGadget, XmManager, or XmPrimitive reference page.

offset_modelSpecifies the offset model to be used in creating the tabs. Can be
XmABSOLUTE or XmRELATIVE .

Return Values

Returns a newXmTabList . The function allocates space to hold the returned tab list.
The application is responsible for managing the allocated space. The application can
recover the allocated space by callingXmTabListFree.

Related Information

XmTabList (3) andXmTabListFree(3).

1351

Motif 2.1—Programmer’s Reference

XmStringTableToXmString(library call)

XmStringTableToXmString

Purpose A convenience function that converts a compound string table to a single compound
string

Synopsis #include <Xm/Xm.h>

XmString XmStringTableToXmString(
XmStringTable table,
Cardinal count,
XmString break_component);

Description

XmStringTableToXmString takes as inputtableof compound strings and a specified
string component (such as a tab) and returns a single compound string consisting
of each of the elements oftable concatenated together with a single copy of
break_componentinserted between each element.

table Specifies anXmStringTable containing the compound strings to be
converted.

count Specifies the number of compound strings intable.

break_component
Specifies the XmStringComponentthat will be inserted in the
result to separate the individual elements oftable. The most useful
types will be XmSTRING_COMPONENT_SEPARATOR
and XmSTRING_COMPONENT_TAB . Refer to the
XmStringComponentType(3) reference page for a complete
list of possible component types. Note, however, that the
XmSTRING_COMPONENT_UNKNOWN component is not a
possible type.

1352

Xm Functions

XmStringTableToXmString(library call)

Return Values

Returns a newXmString . The function will allocate space to hold the returned
compound string. When the application no longer needs the returned compound string,
the application should callXmStringFree.

Related Information

XmString (3), XmStringComponentType(3), andXmStringFree(3).

1353

Motif 2.1—Programmer’s Reference

XmStringTableUnparse(library call)

XmStringTableUnparse

Purpose A convenience function that converts a table of compound strings to an array of text

Synopsis #include <Xm/Xm.h>

XtPointer * XmStringTableUnparse(
XmStringTable table,
Cardinal count,
XmStringTag tag,
XmTextType tag_type,
XmTextType output_type,
XmParseTableparse,
Cardinal parse_count,
XmParseModel parse_model);

Description

XmStringTableUnparse takes an array of compound strings, allocates a string array
for the type of characters determined bytype with an equal number of slots, calls
XmStringUnparse on each compound string intable, and inserts the resulting string
in the corresponding slot in the array.

table Specifies anXmStringTable containing the compound string to be
converted.

count Specifies the number of compound strings intable.

tag Specifies the tag to be used in matching with text segments. The
two types of tag types areXmFONTLIST_DEFAULT_TAG and
_MOTIF_DEFAULT_LOCALE . Only segments tagged withtag will
be returned. Iftag is NULL, all segments will be matched.

tag_type Specifies the type of tag to be searched for. These types
include XmMULTIBYTE_TEXT , XmWIDECHAR_TEXT ,
andXmCHARSET_TEXT .

1354

Xm Functions

XmStringTableUnparse(library call)

output_type Specifies the type of text to be generated. These types include
XmMULTIBYTE_TEXT , XmWIDECHAR_TEXT , and
XmCHARSET_TEXT .

parse Specifies the parse table to be used.

parse_count Specifies the number of items inparse.

parse_modelSpecifies which non-text components to be considered in matching in
parse_table. Possible values are:

XmOUTPUT_ALL
Puts out all matching components.

XmOUTPUT_BETWEEN
Puts out only those matching components that are between
two matching text components.

XmOUTPUT_BEGINNING
Puts out only those matching components that are at the
beginning of a matching text component.

XmOUTPUT_END
Puts out only those matching components that are at the
end of a matching text component.

XmOUTPUT_BOTH
Puts out only those matching components that are at the
beginning or end of a matching text component.

Return Values

Returns an allocated array of allocated strings. The application is responsible for
managing the allocated space. The application can recover the allocated strings space
by calling XtFree count times (that is, one time for each allocated string). The
application can then recover the allocated array by callingXtFree on the allocated
array itself.

Related Information

XmStringTab.

1355

Motif 2.1—Programmer’s Reference

XmStringToXmStringTable(library call)

XmStringToXmStringTable

Purpose A convenience function that converts a single compound string to a table of compound
strings

Synopsis #include <Xm/Xm.h>

Cardinal XmStringToXmStringTable(
XmString string,
XmString break_component,
XmStringTable *table);

Description

XmStringToXmStringTable takes as input a single compound string and a specified
string component (such as a tab) and returns a table of compound strings consisting
of portions of string delimited by components matchingbreak_component. The
components marking breaks will not appear in the resulting table.

string Specifies theXmString to be converted.

break_component
Specifies theXmStringComponentthat will be used to indicate where
to split string to form the individual elements oftable. The most useful
types will be XmSTRING_COMPONENT_SEPARATOR
and XmSTRING_COMPONENT_TAB . Refer to the
XmStringComponentType(3) reference page for a complete
list of possible component types. Note, however, that the
XmSTRING_COMPONENT_UNKNOWN component is not a
possible type.

table Returns the equivalentXmStringTable. The function will allocate
space to hold the returnedXmStringTable. When the applicaiton no
longer needs the returnedXmStringTable, the application should call
XmStringFree once for each compound string in the table, and then
calling XtFree to deallocate theXmStringTable itself.

1356

Xm Functions

XmStringToXmStringTable(library call)

Return Values

Returns the number of compound strings intable.

Related Information

XmStringTable(3).

1357

Motif 2.1—Programmer’s Reference

XmStringUnparse(library call)

XmStringUnparse

Purpose A compound string function that unparses text

Synopsis #include <Xm/Xm.h>

XtPointer XmStringUnparse(
XmString string,
XmStringTag tag,
XmTextType tag_type,
XmTextType output_type,
XmParseTableparse_table,
Cardinal parse_count,
XmParseModel parse_model);

Description

XmStringUnparse looks in the inputstring for text segments that are tagged with
locale or charset tags that matchtag. Thetag_typeparameter specifies whether the tag
is a locale or charset type. Iftag has a value of NULL, all the segments are matched.
When a text segment is found with a matching tag, it is added to the end of a resulting
string. The characters in the resulting string are of typeoutput_type.

XmStringUnparse also checksstring for components that match components in
parse_table, and also to see if the component matches the condition specified by
parse_model. If the string component matches in both checks, then the associated
character is added to the end of the resulting string.

string Specifies theXmString to be converted.

tag Specifies the tag to be used in matching with text segments. Only text
segments that matchtag will be included in the resulting string. Iftag
has a value of NULL, all segments are considered as matches, and
tag_typeis ignored.

1358

Xm Functions

XmStringUnparse(library call)

tag_type Specifies the type of tag to be searched for, including
XmMULTIBYTE_TEXT , XmWIDECHAR_TEXT , and
XmCHARSET_TEXT .

output_type Specifies the type of text to be returned in the string, including
XmMULTIBYTE_TEXT , XmWIDECHAR_TEXT , and
XmCHARSET_TEXT .

parse_table Specifies the parse table to be used in scanning for compound string
components to be converted to other characters.

parse_count Specifies how many entries are inparse_table.

parse_modelSpecifies which non-text components to be considered in matching in
parse_table. These include:

XmOUTPUT_ALL
Puts out all matching components.

XmOUTPUT_BETWEEN
Puts out only those matching components that are between
two matching text components.

XmOUTPUT_BEGINNING
Puts out only those matching components that are at the
beginning of a matching text component.

XmOUTPUT_END
Puts out only those matching components that are at the
end of a matching text component.

XmOUTPUT_BOTH
Puts out only those matching components that are at the
beginning or end of a matching text component.

Return Values

Returns a newly allocated string containing characters of a type determined by
output_type. The application is responsible for managing this allocated space. The
application can recover this allocated space by callingXtFree.

1359

Motif 2.1—Programmer’s Reference

XmStringUnparse(library call)

Related Information

XmString (3), XmParseTable(3), XmParseMapping(3).

1360

Xm Functions

XmStringWidth(library call)

XmStringWidth

Purpose A compound string function that returns the width of the widest line in a compound
string

Synopsis #include <Xm/Xm.h>

Dimension XmStringWidth(
XmRenderTable rendertable,
XmString string);

Description

XmStringWidth returns the width, in pixels, of the widest line in the provided
compound string.

rendertable Specifies the render table

string Specifies the string

Return Values

Returns the width of the compound string.

Related Information

XmStringCreate(3).

1361

Motif 2.1—Programmer’s Reference

XmTabCreate(library call)

XmTabCreate

Purpose A convenience function that creates a tab stop

Synopsis #include <Xm/Xm.h>

XmTab XmTabCreate(
float value,
unsigned charunits,
XmOffsetModel offset_model,
unsigned charalignment,
char *decimal);

Description

XmTabCreate creates a tab stop at a position defined by thevalueandunitsarguments.

value Specifies the floating point value to be used in conjunction withunits
to calculate the location of the tab stop. Note that negative values are
not permitted.

units Specifies the unit type (for example,XmMILLIMETERS) to be used
in conjunction with value to calculate the location of the tab stop.
You can specify any unit described by theXmConvertUnits reference
page. For resources of type, dimension, or position, you can specify
units as described in theXmNunitType resource of theXmGadget,
XmManager, or XmPrimitive reference page.

offset_modelSpecifies whether the tab value represents an absolute position or a
relative offset from the previous tab. Valid values areXmABSOLUTE
andXmRELATIVE .

alignment Specifies how the text should be aligned relative to this tab stop. Valid
values areXmALIGNMENT_BEGINNING .

1362

Xm Functions

XmTabCreate(library call)

decimal Specifies the multibyte character in the current language environment
to be used as the decimal point for a decimal aligned tab stop. This is
currently unused.

Return Values

Returns a newly allocatedXmTab. The application is responsible for managing
this allocated space. The application can recover this allocated space by calling
XmTabFree.

Related Information

XmTab(3) andXmTabFree(3).

1363

Motif 2.1—Programmer’s Reference

XmTabFree(library call)

XmTabFree

Purpose A convenience function that frees a tab

Synopsis #include <Xm/Xm.h>

void XmTabFree(
XmTab tab);

Description

XmTabFree frees the memory associated with the specified tab.

tab Specifies the tab to be freed.

Related Information

XmTab(3).

1364

Xm Functions

XmTabGetValues(library call)

XmTabGetValues

Purpose A convenience function that returns tab values

Synopsis #include <Xm/Xm.h>

float XmTabGetValues(
XmTab tab,
unsigned char *units,
XmOffsetModel *offset,
unsigned char *alignment,
char **decimal);

Description

XmTabGetValues takes anXmTab structure, returns the floating point number that
is set as the value of the tab, and then sets values for theunits, offset, alignment,
anddecimalarguments where they are not NULL. The returned floating point number
represents the distance that the rendering of theXmString segment associated with
tab will be offset. The offset is from either the beginning of the rendering or from the
previous tab stop, depending on the setting for theoffsetmodel. The distance will use
the unit type pointed at byunit.

tab Specifies the tab to get the value from.

units Specifies a pointer to the unit type.

offset Specifies a pointer to the offset model.

alignment Specifies a pointer to the alignment type.

decimal Specifies a pointer to the multibyte character used as the decimal point.

Return Values

Returns a floating point number that is set as the value of the tab.

1365

Motif 2.1—Programmer’s Reference

XmTabGetValues(library call)

Related Information

XmTab(3).

1366

Xm Functions

XmTabListCopy(library call)

XmTabListCopy

Purpose A convenience function that creates a new tab list from an existing list

Synopsis #include <Xm/Xm.h>

XmTabList XmTabListCopy(
XmTabList tablist,
int offset,
Cardinal count);

Description

XmTabListCopy creates a new tab list consisting of a copy of a portion of the contents
of the tablist argument. This function starts copying at the specified offset value of
the tab list and copiescountvalues.

tablist Specifies a tab list to be copied.

offset Specifies where to start copying. A value of 0 (zero) indicates begin at
the beginning, a value of 1 indicates to skip the first tab, and so on. A
negative indicates to begin counting backwards from the end. A value
of -1 indicates to start copying from the last tab.

count Specifies the number of tabs to copy. A value of 0 (zero) indicates to
copy all elements from the starting point to the end (beginning ifoffset
is negative) of the tab list.

Return Values

If tablist is NULL, this function returns NULL. Otherwise, this function returns
a newly allocatedXmTabList . If the function does allocate anXmTabList , then
the application is responsible for managing the allocated space. The application can
recover the allocated space by callingXmTabListFree.

1367

Motif 2.1—Programmer’s Reference

XmTabListCopy(library call)

Related Information

XmTabList (3) andXmTabListFree(3).

1368

Xm Functions

XmTabListFree(library call)

XmTabListFree

Purpose A convenience function that frees the memory of a new tab list

Synopsis #include <Xm/Xm.h>

void XmTabListFree(
XmTabList tablist);

Description

XmTabListFree recovers memory used by a tab list. In addition, this function frees
all contained tabs. If thetablist is NULL, the function returns immediately.

tablist Specifies the tab list to be freed.

Related Information

XmTabList (3).

1369

Motif 2.1—Programmer’s Reference

XmTabListGetTab(library call)

XmTabListGetTab

Purpose A convenience function that returns a copy of a tab

Synopsis #include <Xm/Xm.h>

XmTab XmTabListGetTab(
XmTabList tablist,
Cardinal position);

Description

XmTabListGetTab returns a copy of the tab that is located at the specified position
in the tab list.

tablist Specifies the tab list.

position Specifies the position of the tab to be returned. A value of 0 (zero)
returns the first tab in the tab list, a value of 1 returns the second tab,
and so on.

Return Values

Returns a copy of the tab that is located at the specified position in the tab list. If
position is greater than or equal to the number of tabs in the tab list, this function
returns NULL. The application is responsible for managing the space allocted by
the returned tab copy. The application can recover this allocated space by calling
XmTabFree.

Related Information

XmTabFree(3) andXmTabList (3).

1370

Xm Functions

XmTabListInsertTabs(library call)

XmTabListInsertTabs

Purpose A convenience function that inserts tabs into a tab list

Synopsis #include <Xm/Xm.h>

XmTabList XmTabListInsertTabs(
XmTabList oldlist,
XmTab *tabs,
Cardinal tab_count,
int position);

Description

XmTabListInsertTabs creates a new tab list that includes the tabs inoldlist.
This function copies specified tabs to the tab list at the given position. The first
tab_count tabs of the tabs array are added to the tab list. Ifoldlist is NULL,
XmTabListInsertTabs creates a new tab list containing only the tabs specified.

oldlist Specifies the tab list to add the tabs to. The function deallocatesoldlist
after extracting the required information.

tabs Specifies a pointer to the tabs to be added to the tab list. It is the caller’s
responsibility to free the tabs intabsby usingXmTabFree.

tab_count Specifies the number of tabs intabs.

position Specifies the position of the first new tab in the tab list. A value of 0
(zero) makes the first new tab the first tab in the tab list, a value of 1
makes it the second tab, and so on. Ifpositionis greater than the number
of tabs inoldlist, then the tabs will be inserted at the end. Ifposition
is negative, the count will be backwards from the end. A value of -1
makes the first new tab the last tab, and so on.

1371

Motif 2.1—Programmer’s Reference

XmTabListInsertTabs(library call)

Return Values

If tabs is NULL or tab_countis 0 (zero), this function returnsoldlist. Otherwise,
it returns a new tab list. The function allocates space to hold the returned tab list.
The application is responsible for managing the allocated space. The application can
recover the allocated space by callingXmTabListFree.

Related Information

XmTabList (3) andXmTabListFree(3).

1372

Xm Functions

XmTabListRemoveTabs(library call)

XmTabListRemoveTabs

Purpose A convenience function that removes noncontiguous tabs

Synopsis #include <Xm/Xm.h>

XmTabList XmTabListRemoveTabs(
XmTabList oldlist,
Cardinal *position_list,
Cardinal position_count);

Description

XmTabListRemoveTabs removes noncontiguous tabs from a tab list. The function
creates a new tab list by copying the contents ofoldlist and removing all tabs
whose corresponding positions appear in theposition_listarray. A warning message
is displayed if a specified position is invalid; for example, if the value is a number
greater than the number of tabs in the tab list.

tablist Specifies the tab list. The function deallocatesoldlist and the tabs it
contains after extracting the required information.

position_list Specifies an array of the tab positions to be removed. The position of
the first tab in the list is 0 (zero), the position of the second tab is 1,
and so on.

position_count
Specifies the number of elements in theposition_list.

Return Values

If oldlist or position_list is NULL, or position_countis 0 (zero), returnsoldlist.
Otherwise, this function returns the new tab list. The function allocates space to hold
the returned tab list. The application is responsible for managing the allocated space.
The application can recover the allocated space by callingXmTabListFree.

1373

Motif 2.1—Programmer’s Reference

XmTabListRemoveTabs(library call)

Related Information

XmTabList (3) andXmTabListFree(3).

1374

Xm Functions

XmTabListReplacePositions(library call)

XmTabListReplacePositions

Purpose A convenience function that creates a new tab list with replacement tabs

Synopsis #include <Xm/Xm.h>

XmTabList XmTabListReplacePositions(
XmTabList oldlist,
Cardinal *position_list,
XmTab *tabs,
Cardinal tab_count);

Description

XmTabListReplacePositions creates a new tab list that contains the contents of
oldlist, but with the tabs at the positions inposition_listreplaced with copies of the
corresponding tabs intabs. A warning message is displayed if a specified position is
invalid; for example, if the value is a number greater than the number of tabs in the
tab list.

This function deallocates the original tab list after extracting the required information.
It is the caller’s responsibility to free the tabs intabs by using theXmTabFree
function.

oldlist Specifies the tab list. The function deallocates the tab list after extracting
the required information.

position_list Specifies an array of positions of the tabs to be replaced. The position
of the first tab is 0 (zero), the position of the second tab is 1, and so on.

tabs Specifies an array of the replacement tabs.

tab_count Specifies the number of elements inposition_listand tabs.

1375

Motif 2.1—Programmer’s Reference

XmTabListReplacePositions(library call)

Return Values

If tabs, oldlist, or position_list is NULL, or tab_countis 0 (zero), returnsoldlist.
Otherwise, this function returns the new tab list. The function allocates space to hold
the returned tab list. The application is responsible for managing the allocated space.
The application can recover the allocated space by callingXmTabListFree.

Related Information

XmTabList (3).

1376

Xm Functions

XmTabListTabCount(library call)

XmTabListTabCount

Purpose A convenience function that counts the number of tabs

Synopsis #include <Xm/Xm.h>

Cardinal XmTabListTabCount(
XmTabList tablist);

Description

XmTabListTabCount counts the number of tabs in the specifiedtablist.

tablist Specifies the tab list.

Return Values

Returns the number of tabs intablist.

Related Information

XmTabList (3).

1377

Motif 2.1—Programmer’s Reference

XmTabSetValue(library call)

XmTabSetValue

Purpose A convenience function that sets a tab stop

Synopsis #include <Xm/Xm.h>

void XmTabSetValue(
XmTab tab,
float value);

Description

XmTabSetValue sets thevaluefield of theXmTab structure associated withtab.

tab Specifies the tab to set the value of.

value Specifies the floating point number which represents the distance that
the rendering of theXmString segment associated withtab will be
offset. The offset is from either the beginning of the rendering or from
the previous tab stop, depending on the setting for theoffsetmodel. The
distance depends on the tab’s unit type. Note that negative values are
not permitted, and that if a tab stop would cause text to overlap, the x
position for the segment is set immediately after the end of the previous
segment.

Related Information

See also theMotif 2.1—Programmer’s Guidefor more information about tabs and
tab lists.XmTab(3).

1378

Xm Functions

XmTargetsAreCompatible(library call)

XmTargetsAreCompatible

Purpose A function that tests whether the target types match between a drop site and source
object

Synopsis #include <Xm/DragDrop.h>

Boolean XmTargetsAreCompatible(
Display *display,
Atom * export_targets,
Cardinal num_export_targets,
Atom * import_targets,
Cardinal num_import_targets);

Description

XmTargetsAreCompatible determines whether the import targets of the destination
match any of the export targets of a source. If there is at least one target in common,
the function returns True.

display Specifies the display connection.

export_targets
Specifies the list of target atoms associated with the source object. This
resource identifies the selection targets the source can convert to.

num_export_targets
Specifies the number of entries in the list of export targets.

import_targets
Specifies the list of targets to be checked against theXmNexportTargets
of the source associated with the specified DragContext

num_import_targets
Specifies the number of entries in theimport_targetslist.

1379

Motif 2.1—Programmer’s Reference

XmTargetsAreCompatible(library call)

Return Values

Returns a Boolean value that indicates whether the destination targets are compatible
with the source targets. If there is at least one target in common, the routine returns
True; otherwise, returns False.

Related Information

XmDragContext(3) andXmDropSite(3).

1380

Xm Functions

XmTextClearSelection(library call)

XmTextClearSelection

Purpose A Text function that clears the primary selection

Synopsis #include <Xm/Text.h>

void XmTextClearSelection(
Widget widget,
Time time);

Description

XmTextClearSelectionclears the primary selection in the Text widget.

widget Specifies the Text widget ID.

time Specifies the server time at which the selection value is desired. This
should be the time of the event that triggered this request. One source
of a valid time stamp is the functionXtLastTimestampProcessed().

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3).

1381

Motif 2.1—Programmer’s Reference

XmTextCopy(library call)

XmTextCopy

Purpose A Text function that copies the primary selection to the clipboard

Synopsis #include <Xm/Text.h>

Boolean XmTextCopy(
Widget widget,
Time time);

Description

XmTextCopy copies the primary selected text to the clipboard.

This routine calls theXmNconvertCallback procedures, possibly multiple times, with
theselectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with
the parm member set toXmCOPY.

widget Specifies the Text widget ID.

time Specifies the server time at which the selection value is to be
modified. This should be the time of the event which triggered
this request. One source of a valid time stamp is the function
XtLastTimestampProcessed().

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

This function returns False if the primary selection is NULL, if thewidgetdoes not
own the primary selection, if the function is unable to gain ownership of the clipboard
selection, or if no data is placed on the clipboard. Otherwise, it returns True.

1382

Xm Functions

XmTextCopy(library call)

Related Information

XmText(3).

1383

Motif 2.1—Programmer’s Reference

XmTextCopyLink(library call)

XmTextCopyLink

Purpose A Text function that copies a link to the primary selection to the clipboard

Synopsis #include <Xm/Text.h>

Boolean XmTextCopyLink(
Widget widget,
Time time);

Description

XmTextCopyLink copies a link to the primary selected text to the clipboard. This
routine calls theXmNconvertCallback procedures, possibly multiple times, with the
selectionmember of theXmConvertCallbackStruct set to CLIPBOARDand with
the parm member set toXmLINK . The Text widget itself does not copy any links;
XmNconvertCallback procedures are responsible for copying the link to the clipboard
and for taking any related actions.

widget Specifies the Text widget ID.

time Specifies the time of the transfer. This should be the time of the event
which triggered this request. One source of a valid time stamp is the
function XtLastTimestampProcessed.

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

This function returns False if the primary selection is NULL, if thewidgetdoes not
own the primary selection, if the function is unable to gain ownership of the clipboard
selection, or if no data is placed on the clipboard. Otherwise, it returns True.

1384

Xm Functions

XmTextCopyLink(library call)

Related Information

XmText(3).

1385

Motif 2.1—Programmer’s Reference

XmTextCut(library call)

XmTextCut

Purpose A Text function that copies the primary selection to the clipboard and deletes the
selected text

Synopsis #include <Xm/Text.h>

Boolean XmTextCut(
Widget widget,
Time time);

Description

XmTextCut copies the primary selected text to the clipboard and then deletes the
primary selected text. This routine calls the widget’sXmNvalueChangedCallback
and verification callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs , or both. If both verification callback lists
are registered, the procedures of theXmNmodifyVerifyCallback list are executed
first and the resulting data is passed to theXmNmodifyVerifyCallbackWcs
callbacks.

This routine calls theXmNconvertCallback procedures, possibly multiple times, with
theselectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with
theparmmember set toXmMOVE . If the transfer is successful, this routine then calls
theXmNconvertCallback procedures for theCLIPBOARDselection and theDELETE
target.

widget Specifies the Text widget ID.

time Specifies the server time at which the selection value is to be
modified. This should be the time of the event that triggered
this request. One source of a valid time stamp is the function
XtLastTimestampProcessed().

For a complete definition of Text and its associated resources, seeXmText(3).

1386

Xm Functions

XmTextCut(library call)

Return Values

This function returns False if the primary selection is NULL, if thewidgetdoes not
own the primary selection, if the function is unable to gain ownership of the clipboard
selection, or if no data is placed on the clipboard. Otherwise, it returns True.

Related Information

XmText(3).

1387

Motif 2.1—Programmer’s Reference

XmTextDisableRedisplay(library call)

XmTextDisableRedisplay

Purpose A Text function that temporarily prevents visual update of the Text widget

Synopsis #include <Xm/Text.h>

void XmTextDisableRedisplay(
Widget widget);

Description

XmTextDisableRedisplayprevents redisplay of the specified Text widget even though
its visual attributes have been modified. The visual appearance of the widget remains
unchanged untilXmTextEnableRedisplay is called, although the insertion cursor is
not displayed. This allows an application to make multiple changes to the widget
without causing intermediate visual updates.

widget Specifies the Text widget ID

Related Information

XmTextEnableRedisplay(3).

1388

Xm Functions

XmTextEnableRedisplay(library call)

XmTextEnableRedisplay

Purpose A Text function that forces the visual update of a Text widget

Synopsis #include <Xm/Text.h>

void XmTextEnableRedisplay(
Widget widget);

Description

XmTextEnableRedisplay is used in conjunction withXmTextDisableRedisplay,
which suppresses visual update of the Text widget. WhenXmTextEnableRedisplayis
called, it determines if any visual attributes have been set or modified for the specified
widget sinceXmTextDisableRedisplaywas called. If so, it forces the widget to update
its visual display for all of the intervening changes. Any subsequent changes that
affect visual appearance cause the widget to update its visual display. This function
also causes the insertion cursor, which is not shown while redisplay is disabled, to be
restored.

widget Specifies the Text widget ID

Related Information

XmTextDisableRedisplay(3).

1389

Motif 2.1—Programmer’s Reference

XmTextFieldClearSelection(library call)

XmTextFieldClearSelection

Purpose A TextField function that clears the primary selection

Synopsis #include <Xm/TextF.h>

void XmTextFieldClearSelection(
Widget widget,
Time time);

Description

XmTextFieldClearSelectionclears the primary selection in the TextField widget.

widget Specifies the TextField widget ID.

time Specifies the time at which the selection value is desired. This should
be the time of the event that triggered this request.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

XmTextField(3).

1390

Xm Functions

XmTextFieldCopy(library call)

XmTextFieldCopy

Purpose A TextField function that copies the primary selection to the clipboard

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldCopy(
Widget widget,
Time time);

Description

XmTextFieldCopy copies the primary selected text to the clipboard.

This routine calls theXmNconvertCallback procedures, possibly multiple times, with
theselectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with
the parm member set toXmCOPY.

widget Specifies the TextField widget ID.

time Specifies the time at which the selection value is to be modified. This
should be the time of the event that triggered this request.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

This function returns False if the primary selection is NULL, if thewidgetdoes not
own the primary selection, if the function is unable to gain ownership of the clipboard
selection, or if no data is placed on the clipboard. Otherwise, it returns True.

Related Information

XmTextField(3).

1391

Motif 2.1—Programmer’s Reference

XmTextFieldCopyLink(library call)

XmTextFieldCopyLink

Purpose A TextField function that copies a link to the primary selection to the clipboard

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldCopyLink(
Widget widget,
Time time);

Description

XmTextFieldCopyLink copies a link to the primary selected text to the clipboard.
This routine calls theXmNconvertCallback procedures, possibly multiple times, with
theselectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with
the parm member set toXmLINK . The TextField widget itself does not copy any
links; XmNconvertCallback procedures are responsible for copying the link to the
clipboard and for taking any related actions.

widget Specifies the TextField widget ID.

time Specifies the time of the transfer. This should be the time of the event
which triggered this request. One source of a valid time stamp is the
function XtLastTimestampProcessed.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

This function returns False if the primary selection is NULL, if thewidgetdoes not
own the primary selection, if the function is unable to gain ownership of the clipboard
selection, or if no data is placed on the clipboard. Otherwise, it returns True.

1392

Xm Functions

XmTextFieldCopyLink(library call)

Related Information

XmTextField(3).

1393

Motif 2.1—Programmer’s Reference

XmTextFieldCut(library call)

XmTextFieldCut

Purpose A TextField function that copies the primary selection to the clipboard and deletes the
selected text

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldCut(
Widget widget,
Time time);

Description

XmTextFieldCut copies the primary selected text to the clipboard and then deletes the
primary selected text. This routine calls the widget’sXmNvalueChangedCallback
and verification callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs , or both. If both verification callback lists
are registered, the procedures of theXmNmodifyVerifyCallback list are executed
first and the resulting data is passed to theXmNmodifyVerifyCallbackWcs
callbacks.

This routine calls theXmNconvertCallback procedures, possibly multiple times, with
theselectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with
theparmmember set toXmMOVE . If the transfer is successful, this routine then calls
theXmNconvertCallback procedures for theCLIPBOARDselection and theDELETE
target.

widget Specifies the TextField widget ID.

time Specifies the time at which the selection value is to be modified. This
should be the time of the event that triggered this request.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

1394

Xm Functions

XmTextFieldCut(library call)

Return Values

This function returns False if the primary selection is NULL, if thewidgetdoes not
own the primary selection, if the function is unable to gain ownership of the clipboard
selection, or if no data is placed on the clipboard. Otherwise, it returns True.

Related Information

XmTextField(3).

1395

Motif 2.1—Programmer’s Reference

XmTextFieldGetBaseline(library call)

XmTextFieldGetBaseline

Purpose A TextField function that accesses the y position of the baseline

Synopsis #include <Xm/TextF.h>

int XmTextFieldGetBaseline(
Widget widget);

Description

XmTextFieldGetBaseline accesses they position of the baseline in the TextField
widget, relative to they position of the top of the widget.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns an integer value that indicates they position of the baseline in the TextField
widget. The calculation takes into account the margin height, shadow thickness,
highlight thickness, and font ascent of the first font (set) in the fontlist used for
drawing text. In this calculation, they position of the top of the widget is 0 (zero).

Related Information

XmTextField(3).

1396

Xm Functions

XmTextFieldGetEditable(library call)

XmTextFieldGetEditable

Purpose A TextField function that accesses the edit permission state

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldGetEditable(
Widget widget);

Description

XmTextFieldGetEditable accesses the edit permission state of the TextField widget.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns a Boolean value that indicates the state of theXmNeditable resource.

Related Information

XmTextField(3).

1397

Motif 2.1—Programmer’s Reference

XmTextFieldGetInsertionPosition(library call)

XmTextFieldGetInsertionPosition

Purpose A TextField function that accesses the position of the insertion cursor

Synopsis #include <Xm/TextF.h>

XmTextPosition XmTextFieldGetInsertionPosition(
Widget widget);

Description

XmTextFieldGetInsertionPosition accesses the insertion cursor position of the
TextField widget.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns anXmTextPosition value that indicates the state of theXmNcursorPosition
resource. This is an integer number of characters from the beginning of the text buffer.
The first character position is 0 (zero).

Related Information

XmTextField(3).

1398

Xm Functions

XmTextFieldGetLastPosition(library call)

XmTextFieldGetLastPosition

Purpose A TextField function that accesses the position of the last text character

Synopsis #include <Xm/TextF.h>

XmTextPosition XmTextFieldGetLastPosition(
Widget widget);

Description

XmTextFieldGetLastPosition accesses the position of the last character in the text
buffer of the TextField widget.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns anXmTextPosition value that indicates the position of the last character in
the text buffer. This is an integer number of characters from the beginning of the
buffer. The first character position is 0 (zero). The last character position is equal to
the number of characters in the text buffer.

Related Information

XmTextField(3).

1399

Motif 2.1—Programmer’s Reference

XmTextFieldGetMaxLength(library call)

XmTextFieldGetMaxLength

Purpose A TextField function that accesses the value of the current maximum allowable length
of a text string entered from the keyboard

Synopsis #include <Xm/TextF.h>

int XmTextFieldGetMaxLength(
Widget widget);

Description

XmTextFieldGetMaxLength accesses the value of the current maximum allowable
length of the text string in the TextField widget entered from the keyboard. The
maximum allowable length prevents the user from entering a text string larger than
this limit. Note that the maximum allowable length is the same as the value of the
widget’s XmNmaxLength resource.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns the integer value that indicates the string’s maximum allowable length that
can be entered from the keyboard.

Related Information

XmTextField(3).

1400

Xm Functions

XmTextFieldGetSelection(library call)

XmTextFieldGetSelection

Purpose A TextField function that retrieves the value of the primary selection

Synopsis #include <Xm/TextF.h>

char * XmTextFieldGetSelection(
Widget widget);

Description

XmTextFieldGetSelection retrieves the value of the primary selection. It returns a
NULL pointer if no text is selected in the widget. The application is responsible for
freeing the storage associated with the string by callingXtFree.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns a character pointer to the string that is associated with the primary selection.

Related Information

XmTextField(3) andXmTextFieldGetSelectionWcs(3).

1401

Motif 2.1—Programmer’s Reference

XmTextFieldGetSelectionPosition(library call)

XmTextFieldGetSelectionPosition

Purpose A TextField function that accesses the position of the primary selection

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldGetSelectionPosition(
Widget widget,
XmTextPosition *left,
XmTextPosition *right);

Description

XmTextFieldGetSelectionPositionaccesses the left and right position of the primary
selection in the text buffer of the TextField widget.

widget Specifies the TextField widget ID

left Specifies the pointer in which the position of the left boundary of the
primary selection is returned. This is an integer number of characters
from the beginning of the buffer. The first character position is 0 (zero).

right Specifies the pointer in which the position of the right boundary of the
primary selection is returned. This is an integer number of characters
from the beginning of the buffer. The first character position is 0 (zero).

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

This function returns True if the widget owns the primary selection; otherwise, it
returns False.

1402

Xm Functions

XmTextFieldGetSelectionPosition(library call)

Related Information

XmTextField(3).

1403

Motif 2.1—Programmer’s Reference

XmTextFieldGetSelectionWcs(library call)

XmTextFieldGetSelectionWcs

Purpose A TextField function that retrieves the value of a wide character encoded primary
selection

Synopsis #include <Xm/TextF.h>

wchar_t * XmTextFieldGetSelectionWcs(
Widget widget);

Description

XmTextFieldGetSelectionWcsretrieves the value of the primary selection, encoded
in a wide character format. It returns a NULL pointer if no text is selected in the
widget. The application is responsible for freeing the storage associated with the wide
character buffer by callingXtFree.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns the wide character string that is associated with the primary selection in the
TextField widget.

Related Information

XmTextField(3) andXmTextFieldGetSelection(3).

1404

Xm Functions

XmTextFieldGetString(library call)

XmTextFieldGetString

Purpose A TextField function that accesses the string value

Synopsis #include <Xm/TextF.h>

char * XmTextFieldGetString(
Widget widget);

Description

XmTextFieldGetString accesses the string value of the TextField widget. The
application is responsible for freeing the storage associated with the string by calling
XtFree.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns a character pointer to the string value of the TextField widget. This returned
value is a copy of the value of theXmNvalue resource. Returns an empty string if
the length of the TextField widget’s string is 0 (zero).

Related Information

XmTextField(3) andXmTextFieldGetStringWcs(3).

1405

Motif 2.1—Programmer’s Reference

XmTextFieldGetStringWcs(library call)

XmTextFieldGetStringWcs

Purpose A TextField function that retrieves a copy of the wide character string value of a
TextField widget

Synopsis #include <Xm/TextF.h>

wchar_t * XmTextFieldGetStringWcs(
Widget widget);

Description

XmTextFieldGetStringWcs retrieves a copy of the wide character string value of
the TextField widget. The application is responsible for freeing the storage associated
with the string by callingXtFree.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns the wide character string value of the TextField widget. The function returns
an empty string if the length of the TextField widget’s string is 0 (zero).

Related Information

XmTextField(3) andXmTextFieldGetString(3).

1406

Xm Functions

XmTextFieldGetSubstring(library call)

XmTextFieldGetSubstring

Purpose A TextField function that retrieves a copy of a portion of the internal text buffer

Synopsis #include <Xm/TextF.h>

int XmTextFieldGetSubstring(
Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
char *buffer);

Description

XmTextFieldGetSubstring retrieves a copy of a portion of the internal text buffer of
a TextField widget. The function copies a specified number of characters from a given
start position in the internal text buffer into a buffer provided by the application. A
NULL terminator is placed at the end of the copied data.

The size of the required buffer depends on the maximum number of bytes per character
(MB_CUR_MAX) for the current locale.MB_CUR_MAX is a macro defined in
stdlib.h. The buffer should be large enough to contain the substring to be copied and
a NULL terminator. Use the following equation to calculate the size of buffer the
application should provide:

buffer_size= (num_chars* MB_CUR_MAX) + 1

widget Specifies the TextField widget ID.

start Specifies the beginning character position from which the data will be
retrieved. This is an integer number of characters from the beginning of
the text buffer. The first character position is 0 (zero).

num_chars Specifies the number of characters to be copied into the provided buffer.

1407

Motif 2.1—Programmer’s Reference

XmTextFieldGetSubstring(library call)

buffer_size Specifies the size of the supplied buffer in bytes. This size should
account for a NULL terminator.

buffer Specifies the character buffer into which the internal text buffer will be
copied.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

XmCOPY_SUCCEEDED
The function was successful.

XmCOPY_FAILED
The function failed because it was unable to copy the specified
number of characters into the buffer provided. The buffer size may be
insufficient. The contents ofbuffer are undefined.

XmCOPY_TRUNCATED
The requested number of characters extended beyond the internal buffer.
The function copied characters betweenstart and the end of the widget’s
buffer and terminated the string with a NULL terminator; fewer than
num_charscharacters were copied.

Related Information

XmTextField(3) andXmTextFieldGetSubstringWcs(3).

1408

Xm Functions

XmTextFieldGetSubstringWcs(library call)

XmTextFieldGetSubstringWcs

Purpose A TextField function that retrieves a portion of a wide character internal text buffer

Synopsis #include <Xm/TextF.h>

int XmTextFieldGetSubstringWcs(
Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
wchar_t *buffer);

Description

XmTextFieldGetSubstringWcsretrieves a copy of a portion of the internal text buffer
of a TextField widget that is stored in a wide character format. The function copies a
specified number of characters from a given start position in the internal text buffer
into a buffer provided by the application. A NULL terminator is placed at the end of
the copied data.

widget Specifies the TextField widget ID.

start Specifies the beginning character position from which the data will be
retrieved. This is an integer number of characters from the beginning of
the text buffer. The first character position is 0 (zero).

num_chars Specifies the number ofwchar_t characters to be copied into the
provided buffer.

buffer_size Specifies the size of the supplied buffer as a number ofwchar_t storage
locations. The minimum size isnum_chars+ 1.

buffer Specifies the wide character buffer into which the internal text buffer
will be copied.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

1409

Motif 2.1—Programmer’s Reference

XmTextFieldGetSubstringWcs(library call)

Return Values

XmCOPY_SUCCEEDED
The function was successful.

XmCOPY_FAILED
The function failed because it was unable to copy the specified
number of characters into the buffer provided. The buffer size may be
insufficient. The contents ofbuffer are undefined.

XmCOPY_TRUNCATED
The requested number of characters extended beyond the internal buffer.
The function copied characters to the end of the buffer and terminated
the string with a NULL terminator; fewer thannum_charscharacters
were copied.

Related Information

XmTextField(3) andXmTextFieldGetSubstring(3).

1410

Xm Functions

XmTextFieldInsert(library call)

XmTextFieldInsert

Purpose A TextField function that inserts a character string into a text string

Synopsis #include <Xm/TextF.h>

void XmTextFieldInsert(
Widget widget,
XmTextPosition position,
char * value);

Description

XmTextFieldInsert inserts a character string into the text string in the TextField
widget. The character positions begin at 0 (zero) and are numbered sequentially from
the beginning of the text. For example, to insert a string after the fourth character, the
positionparameter must be 4.

This routine calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks. If theXmNcursorPosition resource
is greater than or is the same value asposition, the XmNmotionVerifyCallback is
called.

widget Specifies the TextField widget ID

position Specifies the position in the text string where the character string is to
be inserted

value Specifies the character string value to be added to the text widget

For a complete definition of TextField and its associated resources, see
XmTextField(3).

1411

Motif 2.1—Programmer’s Reference

XmTextFieldInsert(library call)

Related Information

XmTextField(3) andXmTextFieldInsertWcs(3).

1412

Xm Functions

XmTextFieldInsertWcs(library call)

XmTextFieldInsertWcs

Purpose A TextField function that inserts a wide character string into a TextField widget

Synopsis #include <Xm/TextF.h>

void XmTextFieldInsertWcs(
Widget widget,
XmTextPosition position,
wchar_t *wcstring);

Description

XmTextFieldInsertWcs inserts a wide character string into the TextField widget at
a specified location. The character positions begin at 0 (zero) and are numbered
sequentially from the beginning of the text. For example, to insert a string after the
fourth character, thepositionparameter must be 4.

This routine calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks. If theXmNcursorPosition resource
is greater than or is the same value asposition, the XmNmotionVerifyCallback is
called.

widget Specifies the TextField widget ID

position Specifies the position in the text string where the new character string
is to be inserted

wcstring Specifies the wide character string value to be added to the TextField
widget

For a complete definition of TextField and its associated resources, see
XmTextField(3).

1413

Motif 2.1—Programmer’s Reference

XmTextFieldInsertWcs(library call)

Related Information

XmTextField(3) andXmTextFieldInsert (3).

1414

Xm Functions

XmTextFieldPaste(library call)

XmTextFieldPaste

Purpose A TextField function that inserts the clipboard selection

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldPaste(
Widget widget);

Description

XmTextFieldPaste inserts the clipboard selection at the insertion cursor of the
destination widget. IfXmNpendingDelete is True and the insertion cursor is inside
the current selection, the clipboard selection replaces the selected text.

This routine calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks.

This routine calls the widget’sXmNdestinationCallback procedures with the
selectionmember of theXmDestinationCallbackStruct set toCLIPBOARDand with
theoperationmember set toXmCOPY. If the XmNcursorPosition resource is greater
than or is the same value as the position where the selection is to be inserted, the
XmNmotionVerifyCallback is called.

widget Specifies the TextField widget ID.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

This function returns False if no transfers take place. Otherwise, it returns True.

1415

Motif 2.1—Programmer’s Reference

XmTextFieldPaste(library call)

Related Information

XmTextField(3).

1416

Xm Functions

XmTextFieldPasteLink(library call)

XmTextFieldPasteLink

Purpose A TextField function that inserts a link to the clipboard selection

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldPasteLink(
Widget widget);

Description

XmTextFieldPasteLink inserts a link to the clipboard selection at the insertion
cursor. This routine calls the widget’sXmNdestinationCallback procedures with
the selectionmember of theXmDestinationCallbackStruct set toCLIPBOARDand
with the operationmember set toXmLINK . The TextField widget itself performs no
transfers; theXmNdestinationCallback procedures are responsible for inserting the
link to the clipboard selection and for taking any related actions.

widget Specifies the TextField widget ID.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

This function returns False if no transfers take place. Otherwise, it returns True.

Related Information

XmTextField(3).

1417

Motif 2.1—Programmer’s Reference

XmTextFieldPosToXY(library call)

XmTextFieldPosToXY

Purpose A TextField function that accesses the x and y position of a character position

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldPosToXY(
Widget widget,
XmTextPosition position,
Position *x,
Position *y);

Description

XmTextFieldPosToXY accesses thex andy position, relative to the upper left corner
of the TextField widget, of a given character position in the text buffer.

widget Specifies the TextField widget ID

position Specifies the character position in the text for which thex andy position
is accessed. This is an integer number of characters from the beginning
of the buffer. The first character position is 0.

x Specifies the pointer in which thex position is returned. The returned
position is the distance from the left side of the widget to the left border
of the character. This value is meaningful only if the function returns
True.

y Specifies the pointer in which they position is returned. The returned
position is the distance from the top of the widget to the character’s
baseline. This value is meaningful only if the function returns True.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

1418

Xm Functions

XmTextFieldPosToXY(library call)

Return Values

This function returns True if the character position is displayed in the TextField widget;
otherwise, it returns False, and nox or y value is returned.

Related Information

XmTextField(3).

1419

Motif 2.1—Programmer’s Reference

XmTextFieldRemove(library call)

XmTextFieldRemove

Purpose A TextField function that deletes the primary selection

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldRemove(
Widget widget);

Description

XmTextFieldRemove deletes the primary selected text. If there is a selection,
this routine also calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. This function may also call the
XmNmotionVerifyCallback callback.

widget Specifies the TextField widget ID.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

This function returns False if the primary selection is NULL or if thewidgetdoes not
own the primary selection. Otherwise, it returns True.

Related Information

XmTextField(3).

1420

Xm Functions

XmTextFieldReplace(library call)

XmTextFieldReplace

Purpose A TextField function that replaces part of a text string

Synopsis #include <Xm/TextF.h>

void XmTextFieldReplace(
Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
char * value);

Description

XmTextFieldReplace replaces part of the text string in the TextField widget. The
character positions begin at 0 (zero) and are numbered sequentially from the beginning
of the text.

An example text replacement would be to replace the second and third characters
in the text string. To accomplish this, the parameterfrom_posmust be 1 andto_pos
must be 3. To insert a string after the fourth character, both parameters,from_posand
to_pos, must be 4.

This routine calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks. TheXmNmotionVerifyCallback is
generated ifto_posis less than or equal to the cursor position and the length ofvalue
is not the same as the length of the text being replaced, or if the cursor position is
betweenfrom_posand to_pos, and the distance from the cursor position tofrom_pos
is greater than the length ofvalue.

widget Specifies the TextField widget ID

from_pos Specifies the start position of the text to be replaced

1421

Motif 2.1—Programmer’s Reference

XmTextFieldReplace(library call)

to_pos Specifies the end position of the text to be replaced

value Specifies the character string value to be added to the text widget

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

XmTextField(3). XmTextFieldReplaceWcs(3).

1422

Xm Functions

XmTextFieldReplaceWcs(library call)

XmTextFieldReplaceWcs

Purpose A TextField function that replaces part of a wide character string in a TextField widget

Synopsis #include <Xm/TextF.h>

void XmTextFieldReplaceWcs(
Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
wchar_t *wcstring);

Description

XmTextFieldReplaceWcsreplaces part of the wide character string in the TextField
widget. The character positions begin at 0 (zero) and are numbered sequentially from
the beginning of the text.

An example text replacement would be to replace the second and third characters
in the text string. To accomplish this, the parameterfrom_posmust be 1 andto_pos
must be 3. To insert a string after the fourth character, both parameters,from_posand
to_pos, must be 4.

This routine calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks. If theXmNcursorPosition resource
is greater than or is the same value asfrom_pos, the XmNmotionVerifyCallback is
called.

widget Specifies the TextField widget ID

from_pos Specifies the start position of the text to be replaced

to_pos Specifies the end position of the text to be replaced

1423

Motif 2.1—Programmer’s Reference

XmTextFieldReplaceWcs(library call)

wcstring Specifies the wide character string value to be added to the TextField
widget

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

XmTextField(3) andXmTextFieldReplace(3).

1424

Xm Functions

XmTextFieldSetAddMode(library call)

XmTextFieldSetAddMode

Purpose A TextField function that sets the state of Add mode

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetAddMode(
Widget widget,
Booleanstate);

Description

XmTextFieldSetAddMode controls whether or not the TextField widget is in Add
mode. When the widget is in Add mode, the insert cursor can be moved without
disturbing the primary selection.

widget Specifies the TextField widget ID

state Specifies whether or not the widget is in Add mode. A value of True
turns on Add mode; a value of False turns off Add mode.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

XmTextField(3).

1425

Motif 2.1—Programmer’s Reference

XmTextFieldSetEditable(library call)

XmTextFieldSetEditable

Purpose A TextField function that sets the edit permission

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetEditable(
Widget widget,
Booleaneditable);

Description

XmTextFieldSetEditable sets the edit permission state of the TextField widget. When
set to True, the text string can be edited.

widget Specifies the TextField widget ID

editable Specifies a Boolean value that when True allows text string edits

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

XmTextField(3).

1426

Xm Functions

XmTextFieldSetHighlight(library call)

XmTextFieldSetHighlight

Purpose A TextField function that highlights text

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetHighlight(
Widget widget,
XmTextPosition left,
XmTextPosition right,
XmHighlightMode mode);

Description

XmTextFieldSetHighlight highlights text between the two specified character
positions. Themodeparameter determines the type of highlighting. Highlighting text
merely changes the visual appearance of the text; it does not set the selection.

widget Specifies the TextField widget ID

left Specifies the position of the left boundary of text to be highlighted. This
is an integer number of characters from the beginning of the text buffer.
The first character position is 0 (zero).

right Specifies the position of the right boundary of text to be highlighted.
This is an integer number of characters from the beginning of the text
buffer. The first character position is 0 (zero).

mode Specifies the type of highlighting to be done. A value of
XmHIGHLIGHT_NORMAL removes highlighting. A value of
XmHIGHLIGHT_SELECTED highlights the test using reverse
video. A value of XmHIGHLIGHT_SECONDARY_SELECTED
highlights the text using underlining.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

1427

Motif 2.1—Programmer’s Reference

XmTextFieldSetHighlight(library call)

Related Information

XmTextField(3).

1428

Xm Functions

XmTextFieldSetInsertionPosition(library call)

XmTextFieldSetInsertionPosition

Purpose A TextField function that sets the position of the insertion cursor

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetInsertionPosition(
Widget widget,
XmTextPosition position);

Description

XmTextFieldSetInsertionPosition sets the insertion cursor position of the TextField
widget. This routine also calls the widget’sXmNmotionVerifyCallback callbacks if
the insertion cursor position changes.

widget Specifies the TextField widget ID

position Specifies the position of the insert cursor. This is an integer number
of characters from the beginning of the text buffer. The first character
position is 0 (zero).

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

XmTextField(3).

1429

Motif 2.1—Programmer’s Reference

XmTextFieldSetMaxLength(library call)

XmTextFieldSetMaxLength

Purpose A TextField function that sets the value of the current maximum allowable length of
a text string entered from the keyboard

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetMaxLength(
Widget widget,
int max_length);

Description

XmTextFieldSetMaxLength sets the value of the current maximum allowable length
of the text string in the TextField widget. The maximum allowable length prevents
the user from entering a text string from the keyboard that is larger than this limit.
Strings that are entered using theXmNvalue (or XmNvalueWcs) resource, or the
XmTextFieldSetString (or XmTextFieldSetStringWcs) function ignore this resource.

widget Specifies the TextField widget ID

max_length Specifies the maximum allowable length of the text string

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

XmText(3), XmTextFieldSetString(3), andXmTextFieldSetStringWcs(3).

1430

Xm Functions

XmTextFieldSetSelection(library call)

XmTextFieldSetSelection

Purpose A TextField function that sets the primary selection of the text

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetSelection(
Widget widget,
XmTextPosition first,
XmTextPosition last,
Time time);

Description

XmTextFieldSetSelectionsets the primary selection of the text in the widget. It also
sets the insertion cursor position to the last position of the selection and calls the
widget’s XmNmotionVerifyCallback callbacks.XmTextFieldSetSelection always
generates anXmNgainPrimaryCallback unless it fails to take ownership of the
primary text selection.

widget Specifies the TextField widget ID

first Marks the first character position of the text to be selected

last Marks the last position of the text to be selected

time Specifies the time at which the selection value is desired. This should be
the same as the time of the event that triggered this request. One source
of a valid time stamp is the functionXtLastTimestampProcessed.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

XmTextField(3).

1431

Motif 2.1—Programmer’s Reference

XmTextFieldSetString(library call)

XmTextFieldSetString

Purpose A TextField function that sets the string value

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetString(
Widget widget,
char * value);

Description

XmTextFieldSetString sets the string value of the TextField widget. This
routine calls the widget’sXmNvalueChangedCallback and verification callbacks,
either XmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs , or
both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is
passed to the XmNmodifyVerifyCallbackWcs callbacks. It also sets the
insertion cursor position to the beginning of the string and calls the widget’s
XmNmotionVerifyCallback callbacks.

widget Specifies the TextField widget ID

value Specifies the character pointer to the string value and places the string
into the text edit window

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

XmTextField(3) andXmTextFieldSetStringWcs(3).

1432

Xm Functions

XmTextFieldSetStringWcs(library call)

XmTextFieldSetStringWcs

Purpose A TextField function that sets a wide character string value

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetStringWcs(
Widget widget,
wchar_t *wcstring);

Description

XmTextFieldSetStringWcs sets the wide character string value of the TextField
widget. This routine calls the widget’sXmNvalueChangedCallbackand verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of
the XmNmodifyVerifyCallback list are executed first and the resulting data
is passed to theXmNmodifyVerifyCallbackWcs callbacks. It also sets the
insertion cursor position to the beginning of the string and calls the widget’s
XmNmotionVerifyCallback callbacks.

widget Specifies the TextField widget ID

wcstring Specifies the wide character string value

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

XmTextField(3) andXmTextFieldSetString(3).

1433

Motif 2.1—Programmer’s Reference

XmTextFieldShowPosition(library call)

XmTextFieldShowPosition

Purpose A TextField function that forces text at a given position to be displayed

Synopsis #include <Xm/TextF.h>

void XmTextFieldShowPosition(
Widget widget,
XmTextPosition position);

Description

XmTextFieldShowPosition forces text at the specified position to be displayed. The
cursor position is not updated nor is the cursor shown at this position.

widget Specifies the TextField widget ID

position Specifies the character position to be displayed. This is an integer
number of characters from the beginning of the text buffer. The first
character position is 0 (zero). SeeXmTextPosition(3) for details on the
XmTextPosition data type.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

XmTextField(3) andXmTextPosition(3).

1434

Xm Functions

XmTextFieldXYToPos(library call)

XmTextFieldXYToPos

Purpose A TextField function that accesses the character position nearest an x and y position

Synopsis #include <Xm/TextF.h>

XmTextPosition XmTextFieldXYToPos(
Widget widget,
Position x,
Position y);

Description

XmTextFieldXYToPos accesses the character position nearest to the specifiedx and
y position, relative to the upper left corner of the TextField widget.

widget Specifies the TextField widget ID

x Specifies thex position, relative to the upper left corner of the widget.

y Specifies they position, relative to the upper left corner of the widget.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns the character position in the text nearest thex andy position specified. This is
an integer number of characters from the beginning of the buffer. The first character
position is 0 (zero).

Related Information

XmTextField(3).

1435

Motif 2.1—Programmer’s Reference

XmTextFindString(library call)

XmTextFindString

Purpose A Text function that finds the beginning position of a text string

Synopsis #include <Xm/Xm.h>

Boolean XmTextFindString(
Widget widget,
XmTextPosition start,
char *string,
XmTextDirection direction,
XmTextPosition *position);

Description

XmTextFindString locates the beginning position of a specified text string. This
routine searches forward or backward for the first occurrence of the string starting
from the given start position. If it finds a match, the function returns the position of
the first character of the string inposition. If the match string begins at the current
position, this routine returns the current position.

widget Specifies the Text widget ID.

start Specifies the character position from which the search proceeds. This is
an integer number of characters from the beginning of the text buffer.
The first character position is 0 (zero).

string Specifies the search string.

direction Indicates the search direction. It is relative to the primary direction of
the text. The possible values are

XmTEXT_FORWARD
The search proceeds toward the end of the text buffer.

XmTEXT_BACKWARD
The search proceeds toward the beginning of the text
buffer.

1436

Xm Functions

XmTextFindString(library call)

position Specifies the pointer in which the first character position of the string
match is returned. This is an integer number of characters from the
beginning of the buffer. The first character position is 0 (zero). If the
function returns False, this value is undefined.

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns True if a string match is found; otherwise, returns False.

Related Information

XmText(3) andXmTextFindStringWcs(3).

1437

Motif 2.1—Programmer’s Reference

XmTextFindStringWcs(library call)

XmTextFindStringWcs

Purpose A Text function that finds the beginning position of a wide character text string

Synopsis #include <Xm/Text.h>

Boolean XmTextFindStringWcs(
Widget widget,
XmTextPosition start,
wchar_t *wcstring,
XmTextDirection direction,
XmTextPosition *position);

Description

XmTextFindStringWcs locates the beginning position of a specified wide character
text string. This routine searches forward or backward for the first occurrence of the
string, starting from the given start position. If a match is found, the function returns
the position of the first character of the string inposition. If the match string begins
at the current position, this routine returns the current position.

widget Specifies the Text widget ID.

start Specifies the character position from which the search proceeds. This is
an integer number of characters from the beginning of the text buffer.
The first character position is 0 (zero).

wcstring Specifies the wide character search string.

direction Indicates the search direction. It is relative to the primary direction of
the text. The possible values are

XmTEXT_FORWARD
The search proceeds toward the end of the buffer.

XmTEXT_BACKWARD
The search proceeds toward the beginning of the buffer.

1438

Xm Functions

XmTextFindStringWcs(library call)

position Specifies the pointer in which the first character position of the string
match is returned. This is an integer number of characters from the
beginning of the buffer. The first character position is 0 (zero). If the
function returns False, this value is undefined.

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns True if a string match is found; otherwise, returns False.

Related Information

XmText(3) andXmTextFindString (3).

1439

Motif 2.1—Programmer’s Reference

XmTextGetBaseline(library call)

XmTextGetBaseline

Purpose A Text function that accesses the y position of the baseline

Synopsis #include <Xm/Text.h>

int XmTextGetBaseline(
Widget widget);

Description

XmTextGetBaselineaccesses they position of the baseline in the Text widget, relative
to they position of the top of the widget.

In vertical mode (when the XmNlayoutDirection resource is
XmTOP_TO_BOTTOM) this function returns 0 and the program should
useXmTextGetCenterline

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns an integer value that indicates they position of the baseline in the Text widget.
The calculation takes into account the margin height, shadow thickness, highlight
thickness, and font ascent of the first font (set) in the fontlist used for drawing text.
In this calculation, they position of the top of the widget is 0 (zero).

Related Information

XmText(3), XmTextGetCenterline(3).

1440

Xm Functions

XmTextGetCenterline(library call)

XmTextGetCenterline

Purpose Return the height (length) of a character string when the writing direction is vertical

Synopsis #include <Xm/Text.h>

int XmTextGetCenterline(
Widget widget);

Description

XmTextGetCenterline accesses the x position of the centerline in theText widget,
relative to the x position of the top of the widget.

widget Specifies theText widget ID.

Return Values

In the case of horizontal writing, this function accesses 0.

In the case of vertical writing, this function accesses the x position of the first centerline
in the Text widget, relative to the x position of the left of the widget. The calculation
takes into account the margin width, shadow thickness, highlight thickness, and a half
of font width of the first font(set) in the fontlist used for drawing text.

Related Information

XmText(3), XmTextGetBaseline(3)

1441

Motif 2.1—Programmer’s Reference

XmTextGetEditable(library call)

XmTextGetEditable

Purpose A Text function that accesses the edit permission state

Synopsis #include <Xm/Text.h>

Boolean XmTextGetEditable(
Widget widget);

Description

XmTextGetEditable accesses the edit permission state of the Text widget.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns a Boolean value that indicates the state of theXmNeditable resource.

Related Information

XmText(3).

1442

Xm Functions

XmTextGetInsertionPosition(library call)

XmTextGetInsertionPosition

Purpose A Text function that accesses the position of the insert cursor

Synopsis #include <Xm/Text.h>

XmTextPosition XmTextGetInsertionPosition(
Widget widget);

Description

XmTextGetInsertionPosition accesses the insertion cursor position of the Text
widget.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns anXmTextPosition value that indicates the state of theXmNcursorPosition
resource. This is an integer number of characters from the beginning of the text buffer.
The first character position is 0 (zero).

Related Information

XmText(3).

1443

Motif 2.1—Programmer’s Reference

XmTextGetLastPosition(library call)

XmTextGetLastPosition

Purpose A Text function that accesses the last position in the text

Synopsis #include <Xm/Text.h>

XmTextPosition XmTextGetLastPosition(
Widget widget);

Description

XmTextGetLastPosition accesses the last position in the text buffer of the Text
widget. This is an integer number of characters from the beginning of the buffer,
and represents the position that text added to the end of the buffer is placed after. The
first character position is 0 (zero). The last character position is equal to the number
of characters in the text buffer.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns anXmTextPosition value that indicates the last position in the text buffer.

Related Information

XmText(3).

1444

Xm Functions

XmTextGetMaxLength(library call)

XmTextGetMaxLength

Purpose A Text function that accesses the value of the current maximum allowable length of
a text string entered from the keyboard

Synopsis #include <Xm/Text.h>

int XmTextGetMaxLength(
Widget widget);

Description

XmTextGetMaxLength accesses the value of the current maximum allowable length
of the text string in the Text widget entered from the keyboard. The maximum
allowable length prevents the user from entering a text string larger than this limit.
Note that the maximum allowable length is the same as the value of the widget’s
XmNmaxLength resource.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns the integer value that indicates the string’s maximum allowable length that
can be entered from the keyboard.

Related Information

XmText(3).

1445

Motif 2.1—Programmer’s Reference

XmTextGetSelection(library call)

XmTextGetSelection

Purpose A Text function that retrieves the value of the primary selection

Synopsis #include <Xm/Text.h>

char * XmTextGetSelection(
Widget widget);

Description

XmTextGetSelectionretrieves the value of the primary selection. It returns a NULL
pointer if no text is selected in the widget. The application is responsible for freeing
the storage associated with the string by callingXtFree.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns a character pointer to the string that is associated with the primary selection.

Related Information

XmText(3) andXmTextGetSelectionWcs(3).

1446

Xm Functions

XmTextGetSelectionPosition(library call)

XmTextGetSelectionPosition

Purpose A Text function that accesses the position of the primary selection

Synopsis #include <Xm/Text.h>

Boolean XmTextGetSelectionPosition(
Widget widget,
XmTextPosition *left,
XmTextPosition *right);

Description

XmTextGetSelectionPosition accesses the left and right position of the primary
selection in the text buffer of the Text widget.

widget Specifies the Text widget ID

left Specifies the pointer in which the position of the left boundary of the
primary selection is returned. This is an integer number of characters
from the beginning of the buffer. The first character position is 0 (zero).

right Specifies the pointer in which the position of the right boundary of the
primary selection is returned. This is an integer number of characters
from the beginning of the buffer. The first character position is 0 (zero).

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

This function returns True if the widget owns the primary selection; otherwise, it
returns False.

1447

Motif 2.1—Programmer’s Reference

XmTextGetSelectionPosition(library call)

Related Information

XmText(3).

1448

Xm Functions

XmTextGetSelectionWcs(library call)

XmTextGetSelectionWcs

Purpose A Text function that retrieves the value of a wide character encoded primary selection

Synopsis #include <Xm/Text.h>

wchar_t * XmTextGetSelectionWcs(
Widget widget);

Description

XmTextGetSelectionWcsretrieves the value of the primary selection that is encoded
in a wide character format. It returns a NULL pointer if no text is selected in the
widget. The application is responsible for freeing the storage associated with the wide
character buffer by callingXtFree.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns the wide character string that is associated with the primary selection in the
Text widget.

Related Information

XmText(3) andXmTextGetSelection(3).

1449

Motif 2.1—Programmer’s Reference

XmTextGetSource(library call)

XmTextGetSource

Purpose A Text function that accesses the source of the widget

Synopsis #include <Xm/Text.h>

XmTextSource XmTextGetSource(
Widget widget);

Description

XmTextGetSource accesses the source of the Text widget. Text widgets can share
sources of text so that editing in one widget is reflected in another. This function
accesses the source of one widget so that it can be made the source of another widget,
using the functionXmTextSetSource(3).

Setting a new text source destroys the old text source if no other Text widgets are using
that source. To replace a text source but keep it for later use, create an unmanaged
Text widget and set its source to the text source you want to keep.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns anXmTextSource value that represents the source of the Text widget.

Related Information

XmText(3).

1450

Xm Functions

XmTextGetString(library call)

XmTextGetString

Purpose A Text function that accesses the string value

Synopsis #include <Xm/Text.h>

char * XmTextGetString(
Widget widget);

Description

XmTextGetString accesses the string value of the Text widget. The application is
responsible for freeing the storage associated with the string by callingXtFree.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns a character pointer to the string value of the text widget. This returned value
is a copy of the value of theXmNvalue resource. Returns an empty string if the length
of the Text widget’s string is 0 (zero).

Related Information

XmText(3) andXmTextGetStringWcs(3).

1451

Motif 2.1—Programmer’s Reference

XmTextGetStringWcs(library call)

XmTextGetStringWcs

Purpose A Text function that retrieves a copy of the wide character string value of a Text
widget

Synopsis #include <Xm/Text.h>

wchar_t * XmTextGetStringWcs(
Widget widget);

Description

XmTextGetStringWcs retrieves a copy of the wide character string value of the Text
widget. The application is responsible for freeing the storage associated with the string
by calling XtFree.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns the wide character string value of the Text widget. The function returns an
empty string if the length of the Text widget’s string is 0 (zero).

Related Information

XmText(3) andXmTextGetString(3).

1452

Xm Functions

XmTextGetSubstring(library call)

XmTextGetSubstring

Purpose A Text function that retrieves a copy of a portion of the internal text buffer

Synopsis #include <Xm/Text.h>

int XmTextGetSubstring(
Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
char *buffer);

Description

XmTextGetSubstring retrieves a copy of a portion of the internal text buffer of a
Text widget. The function copies a specified number of characters from a given start
position in the internal text buffer into a buffer provided by the application. A NULL
terminator is placed at the end of the copied data.

The size of the required buffer depends on the maximum number of bytes per character
(MB_CUR_MAX) for the current locale.MB_CUR_MAX is a macro defined in
stdlib.h. The buffer should be large enough to contain the substring to be copied and
a NULL terminator. Use the following equation to calculate the size of buffer the
application should provide:
buffer_size= (num_chars* MB_CUR_MAX) + 1

widget Specifies the Text widget ID.

start Specifies the beginning character position from which the data will be
retrieved. This is an integer number of characters from the beginning of
the text buffer. The first character position is 0 (zero).

num_chars Specifies the number of characters to be copied into the provided buffer.

buffer_size Specifies the size of the supplied buffer in bytes. This size should
account for a NULL terminator.

1453

Motif 2.1—Programmer’s Reference

XmTextGetSubstring(library call)

buffer Specifies the character buffer into which the internal text buffer will be
copied.

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

XmCOPY_SUCCEEDED
The function was successful.

XmCOPY_FAILED
The function failed because it was unable to copy the specified
number of characters into the buffer provided. The buffer size may be
insufficient. The contents ofbuffer are undefined.

XmCOPY_TRUNCATED
The requested number of characters extended beyond the internal buffer.
The function copied characters betweenstart and the end of the widget’s
buffer and terminated the string with a NULL terminator; fewer than
num_charscharacters were copied.

Related Information

XmText(3) andXmTextGetSubstringWcs(3).

1454

Xm Functions

XmTextGetSubstringWcs(library call)

XmTextGetSubstringWcs

Purpose A Text function that retrieves a portion of a wide character internal text buffer

Synopsis #include <Xm/Text.h>

int XmTextGetSubstringWcs(
Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
wchar_t *buffer);

Description

XmTextGetSubstringWcs retrieves a copy of a portion of the internal text buffer of a
Text widget that is stored in a wide character format. The function copies a specified
number of characters from a given start position in the internal text buffer into a buffer
provided by the application. A NULL terminator is placed at the end of the copied
data.

widget Specifies the Text widget ID.

start Specifies the beginning character position from which the data will be
retrieved. This is an integer number of characters from the beginning of
the text buffer. The first character position is 0 (zero).

num_chars Specifies the number ofwchar_t characters to be copied into the
provided buffer.

buffer_size Specifies the size of the supplied buffer as a number ofwchar_t storage
locations. The minimum size isnum_chars+ 1.

buffer Specifies the wide character buffer into which the internal text buffer
will be copied.

For a complete definition of Text and its associated resources, seeXmText(3).

1455

Motif 2.1—Programmer’s Reference

XmTextGetSubstringWcs(library call)

Return Values

XmCOPY_SUCCEEDED
The function was successful.

XmCOPY_FAILED
The function failed because it was unable to copy the specified
number of characters into the buffer provided. The buffer size may be
insufficient. The contents ofbuffer are undefined.

XmCOPY_TRUNCATED
The requested number of characters extended beyond the internal buffer.
The function copied characters betweenstart and the end of the widget’s
buffer and terminated the string with a NULL terminator; fewer than
num_charscharacters were copied.

Related Information

XmText(3) andXmTextGetSubstring(3).

1456

Xm Functions

XmTextGetTopCharacter(library call)

XmTextGetTopCharacter

Purpose A Text function that accesses the position of the first character displayed

Synopsis #include <Xm/Text.h>

XmTextPosition XmTextGetTopCharacter(
Widget widget);

Description

XmTextGetTopCharacter accesses the position of the text at the top of the Text
widget. If there is no text in the Text widget (in other words,XmNvalue contains an
empty string), thenXmTextGetTopCharacter returns 0.

Suppose that theXmNtopCharacter resource has been set to a value greater than
the number of characters in the text widget. In this case,XmTextGetTopCharacter
returns anXmTextPosition value identifying the position of the first character in the
last line of text in a multiline case; otherwise, it identifies the position of the last
character in the line.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns anXmTextPosition value that indicates the state of theXmNtopCharacter
resource. This is an integer number of characters from the beginning of the text buffer.
The first character position is 0 (zero).

Related Information

XmText(3).

1457

Motif 2.1—Programmer’s Reference

XmTextInsert(library call)

XmTextInsert

Purpose A Text function that inserts a character string into a text string

Synopsis #include <Xm/Text.h>

void XmTextInsert(
Widget widget,
XmTextPosition position,
char * value);

Description

XmTextInsert inserts a character string into the text string in the Text widget. The
character positions begin at 0 (zero) and are numbered sequentially from the beginning
of the text. For example, to insert a string after the fourth character, the parameter
positionmust be 4.

This routine calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks. If theXmNcursorPosition resource
is greater than or is the same value asposition, the XmNmotionVerifyCallback is
called.

Note that, if value is a null string, no callbacks will be generated, since no
modifications will have been made.

widget Specifies the Text widget ID.

position Specifies the position in the text string where the character string is to
be inserted.

value Specifies the character string value to be added to the text widget.

For a complete definition of Text and its associated resources, seeXmText(3).

1458

Xm Functions

XmTextInsert(library call)

Related Information

XmText(3) andXmTextInsertWcs(3).

1459

Motif 2.1—Programmer’s Reference

XmTextInsertWcs(library call)

XmTextInsertWcs

Purpose A Text function that inserts a wide character string into a Text widget

Synopsis #include <Xm/Text.h>

void XmTextInsertWcs(
Widget widget,
XmTextPosition position,
wchar_t *wcstring);

Description

XmTextInsertWcs inserts a wide character string into the Text widget at a specified
location. The character positions begin at 0 (zero) and are numbered sequentially from
the beginning of the text. For example, to insert a string after the fourth character, the
positionparameter must be 4.

This routine calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks. If theXmNcursorPosition resource
is greater than or is the same value asposition, the XmNmotionVerifyCallback is
called.

Note that, if value is a null string, no callbacks will be generated, since no
modifications will have been made.

widget Specifies the Text widget ID

position Specifies the position in the text string where the new character string
is to be inserted

wcstring Specifies the wide character string value to be added to the Text widget

For a complete definition of Text and its associated resources, seeXmText(3).

1460

Xm Functions

XmTextInsertWcs(library call)

Related Information

XmText(3) andXmTextInsert (3).

1461

Motif 2.1—Programmer’s Reference

XmTextPaste(library call)

XmTextPaste

Purpose A Text function that inserts the clipboard selection

Synopsis #include <Xm/Text.h>

Boolean XmTextPaste(
Widget widget);

Description

XmTextPaste inserts the clipboard selection at the insertion cursor of the destination
widget. If XmNpendingDelete is True and the insertion cursor is inside the current
selection, the clipboard selection replaces the selected text.

This routine calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks. If theXmNcursorPosition resource
is greater than or is the same value as the position where the selection is to be
inserted, theXmNmotionVerifyCallback is called.

This routine calls the widget’sXmNdestinationCallback procedures with the
selectionmember of theXmDestinationCallbackStruct set toCLIPBOARDand with
the operationmember set toXmCOPY.

widget Specifies the Text widget ID.

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

This function returns False if no transfers take place. Otherwise, it returns True.

1462

Xm Functions

XmTextPaste(library call)

Related Information

XmText(3).

1463

Motif 2.1—Programmer’s Reference

XmTextPasteLink(library call)

XmTextPasteLink

Purpose A Text function that inserts a link to the clipboard selection

Synopsis #include <Xm/Text.h>

Boolean XmTextPasteLink(
Widget widget);

Description

XmTextPasteLink inserts a link to the clipboard selection at the insertion cursor. This
routine calls the widget’sXmNdestinationCallback procedures with theselection
member of theXmDestinationCallbackStruct set to CLIPBOARD and with the
operation member set toXmLINK . The Text widget itself performs no transfers;
the XmNdestinationCallback procedures are responsible for inserting the link to the
clipboard selection and for taking any related actions.

widget Specifies the Text widget ID.

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

This function returns False if no transfers take place. Otherwise, it returns True.

Related Information

XmText(3).

1464

Xm Functions

XmTextPosToXY(library call)

XmTextPosToXY

Purpose A Text function that accesses the x and y position of a character position

Synopsis #include <Xm/Text.h>

Boolean XmTextPosToXY(
Widget widget,
XmTextPosition position,
Position *x,
Position *y);

Description

XmTextPosToXY accesses thex and y position, relative to the upper left corner of
the Text widget, of a given character position in the text buffer.

In the case of horizontal writing, the position is the origin of the character. In the case
of vertical writing, the position is the vertical origin of the character.

widget Specifies the Text widget ID

position Specifies the character position in the text for which thex andy position
is accessed. This is an integer number of characters from the beginning
of the buffer. The first character position is 0 (zero).

x Specifies the pointer in which thex position is returned. The returned
position is the distance from the left side of the widget to the left border
of the character. This value is meaningful only if the function returns
True.

y Specifies the pointer in which they position is returned. The returned
position is the distance from the top of the widget to the character’s
baseline. This value is meaningful only if the function returns True.

For a complete definition of Text and its associated resources, seeXmText(3).

1465

Motif 2.1—Programmer’s Reference

XmTextPosToXY(library call)

Return Values

This function returns True if the character position is displayed in the Text widget;
otherwise, it returns False, and nox or y value is returned.

Related Information

XmText(3).

1466

Xm Functions

XmTextRemove(library call)

XmTextRemove

Purpose A Text function that deletes the primary selection

Synopsis #include <Xm/Text.h>

Boolean XmTextRemove(
Widget widget);

Description

XmTextRemove deletes the primary selected text. If there is a selection, this
routine also calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. This function may also call the
XmNmotionVerifyCallback callback.

widget Specifies the Text widget ID.

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

This function returns False if the primary selection is NULL or if thewidgetdoes not
own the primary selection. Otherwise, it returns True.

Related Information

XmText(3).

1467

Motif 2.1—Programmer’s Reference

XmTextReplace(library call)

XmTextReplace

Purpose A Text function that replaces part of a text string

Synopsis #include <Xm/Text.h>

void XmTextReplace(
Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
char * value);

Description

XmTextReplace replaces part of the text string in the Text widget. The character
positions begin at 0 (zero) and are numbered sequentially from the beginning of the
text.

An example text replacement would be to replace the second and third characters
in the text string. To accomplish this, the parameterfrom_posmust be 1 andto_pos
must be 3. To insert a string after the fourth character, both parameters,from_posand
to_pos, must be 4.

This routine calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks. TheXmNmotionVerifyCallback is
generated ifto_posis less than or equal to the cursor position and the length ofvalue
is not the same as the length of the text being replaced, or if the cursor position is
betweenfrom_posand to_pos, and the distance from the cursor position tofrom_pos
is greater than the length ofvalue.

widget Specifies the Text widget ID

from_pos Specifies the start position of the text to be replaced

1468

Xm Functions

XmTextReplace(library call)

to_pos Specifies the end position of the text to be replaced

value Specifies the character string value to be added to the text widget

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3) andXmTextReplaceWcs(3).

1469

Motif 2.1—Programmer’s Reference

XmTextReplaceWcs(library call)

XmTextReplaceWcs

Purpose A Text function that replaces part of a wide character string in a Text widget

Synopsis #include <Xm/Text.h>

void XmTextReplaceWcs(
Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
wchar_t *wcstring);

Description

XmTextReplaceWcsreplaces part of the wide character string in the Text widget. The
character positions begin at zero and are numbered sequentially from the beginning
of the text.

An example text replacement would be to replace the second and third characters in
the text string. To accomplish this, thefrom_posparameter must be 1 and theto_pos
parameter must be 3. To insert a string after the fourth character, both thefrom_pos
and to_posparameters must be 4.

This routine calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. This routine calls the widget’s
XmNmotionVerifyCallback callback whenfrom_pos is less than or equal to the
cursor position.

widget Specifies the Text widget ID

from_pos Specifies the start position of the text to be replaced

to_pos Specifies the end position of the text to be replaced

wcstring Specifies the wide character string value to be added to the Text widget

1470

Xm Functions

XmTextReplaceWcs(library call)

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3) andXmTextReplace(3).

1471

Motif 2.1—Programmer’s Reference

XmTextScroll(library call)

XmTextScroll

Purpose A Text function that scrolls text

Synopsis #include <Xm/Text.h>

void XmTextScroll(
Widget widget,
int lines);

Description

XmTextScroll scrolls text by a given number of lines in a Text widget. The sign of
the number is interpreted according to the value of theXmNlayoutDirectionresource.

widget Specifies the Text widget ID

lines Specifies the number of lines of text to scroll. A positive value causes
text to scroll upward; a negative value causes text to scroll downward.
Note that the text will scroll only as long as one line of text remains
visible in the window.

If a navigator exists, this function uses theXmQTnavigatortrait to update
the vertical navigator’s value.

In the case of vertical writing, a positive value causes the text to scroll
forward; a negative value causes the lines to scroll backward.

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3).

1472

Xm Functions

XmTextSetAddMode(library call)

XmTextSetAddMode

Purpose A Text function that sets the state of Add mode

Synopsis #include <Xm/Text.h>

void XmTextSetAddMode(
Widget widget,
Booleanstate);

Description

XmTextSetAddMode controls whether or not the Text widget is in Add mode. When
the widget is in Add mode, the insert cursor can be moved without disturbing the
primary selection.

widget Specifies the Text widget ID

state Specifies whether or not the widget is in Add mode. A value of True
turns on Add mode; a value of False turns off Add mode.

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3).

1473

Motif 2.1—Programmer’s Reference

XmTextSetEditable(library call)

XmTextSetEditable

Purpose A Text function that sets the edit permission

Synopsis #include <Xm/Text.h>

void XmTextSetEditable(
Widget widget,
Booleaneditable);

Description

XmTextSetEditable sets the edit permission state of the Text widget. When set to
True, the text string can be edited.

widget Specifies the Text widget ID

editable Specifies a Boolean value that when True allows text string edits

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3).

1474

Xm Functions

XmTextSetHighlight(library call)

XmTextSetHighlight

Purpose A Text function that highlights text

Synopsis #include <Xm/Text.h>

void XmTextSetHighlight(
Widget widget,
XmTextPosition left,
XmTextPosition right,
XmHighlightMode mode);

Description

XmTextSetHighlight highlights text between the two specified character positions.
The modeparameter determines the type of highlighting. Highlighting text merely
changes the visual appearance of the text; it does not set the selection.

widget Specifies the Text widget ID

left Specifies the position of the left boundary of text to be highlighted. This
is an integer number of characters from the beginning of the text buffer.
The first character position is 0 (zero).

right Specifies the position of the right boundary of text to be highlighted.
This is an integer number of characters from the beginning of the text
buffer. The first character position is 0 (zero).

mode Specifies the type of highlighting to be done. A value of
XmHIGHLIGHT_NORMAL removes highlighting. A value of
XmHIGHLIGHT_SELECTED highlights the text using reverse
video. A value of XmHIGHLIGHT_SECONDARY_SELECTED
highlights the text using underlining.

For a complete definition of Text and its associated resources, seeXmText(3).

1475

Motif 2.1—Programmer’s Reference

XmTextSetHighlight(library call)

Related Information

XmText(3).

1476

Xm Functions

XmTextSetInsertionPosition(library call)

XmTextSetInsertionPosition

Purpose A Text function that sets the position of the insert cursor

Synopsis #include <Xm/Text.h>

void XmTextSetInsertionPosition(
Widget widget,
XmTextPosition position);

Description

XmTextSetInsertionPositionsets the insertion cursor position of the Text widget. This
routine also calls the widget’sXmNmotionVerifyCallback callbacks if the insertion
cursor position changes.

widget Specifies the Text widget ID

position Specifies the position of the insertion cursor. This is an integer number
of characters from the beginning of the text buffer. The first character
position is 0 (zero).

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3).

1477

Motif 2.1—Programmer’s Reference

XmTextSetMaxLength(library call)

XmTextSetMaxLength

Purpose A Text function that sets the value of the current maximum allowable length of a text
string entered from the keyboard

Synopsis #include <Xm/Text.h>

void XmTextSetMaxLength(
Widget widget,
int max_length);

Description

XmTextSetMaxLength sets the value of the current maximum allowable length of the
text string in the Text widget. The maximum allowable length prevents the user from
entering a text string from the keyboard that is larger than this limit. Strings that are
entered using theXmNvalue (or XmNvalueWcs) resource, or theXmTextSetString
(or XmTextSetStringWcs) function ignore this resource.

widget Specifies the Text widget ID

max_length Specifies the maximum allowable length of the text string

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3), XmTextSetString(3), andXmTextSetStringWcs(3).

1478

Xm Functions

XmTextSetSelection(library call)

XmTextSetSelection

Purpose A Text function that sets the primary selection of the text

Synopsis #include <Xm/Text.h>

void XmTextSetSelection(
Widget widget,
XmTextPosition first,
XmTextPosition last,
Time time);

Description

XmTextSetSelectionsets the primary selection of the text in the widget. It also sets
the insertion cursor position to the last position of the selection and calls the widget’s
XmNmotionVerifyCallback callbacks.

widget Specifies the Text widget ID

first Marks the first character position of the text to be selected

last Marks the last position of the text to be selected

time Specifies the time at which the selection value is desired. This
should be the same as the time of the event that triggered this
request. request. One source of a valid time stamp is the function
XtLastTimestampProcessed.

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3).

1479

Motif 2.1—Programmer’s Reference

XmTextSetSource(library call)

XmTextSetSource

Purpose A Text function that sets the source of the widget

Synopsis #include <Xm/Text.h>

void XmTextSetSource(
Widget widget,
XmTextSource source,
XmTextPosition top_character,
XmTextPosition cursor_position);

Description

XmTextSetSourcesets the source of the Text widget. Text widgets can share sources
of text so that editing in one widget is reflected in another. This function sets the
source of one widget so that it can share the source of another widget.

Setting a new text source destroys the old text source if no other Text widgets are using
that source. To replace a text source but keep it for later use, create an unmanaged
Text widget and set its source to the text source you want to keep.

widget Specifies the Text widget ID.

source Specifies the source with which the widget displays text. This can be
a value returned by theXmTextGetSource(3) function. If no source is
specified, the widget creates a default string source.

top_character
Specifies the position in the text to display at the top of the widget. This
is an integer number of characters from the beginning of the text buffer.
The first character position is 0 (zero).

cursor_position
Specifies the position in the text at which the insert cursor is located.
This is an integer number of characters from the beginning of the text
buffer. The first character position is 0 (zero).

1480

Xm Functions

XmTextSetSource(library call)

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3).

1481

Motif 2.1—Programmer’s Reference

XmTextSetString(library call)

XmTextSetString

Purpose A Text function that sets the string value

Synopsis #include <Xm/Text.h>

void XmTextSetString(
Widget widget,
char * value);

Description

XmTextSetString sets the string value of the Text widget. This routine
calls the widget’s XmNvalueChangedCallback and verification callbacks,
either XmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs , or
both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. This function also sets the
insertion cursor position to the beginning of the string and calls the widget’s
XmNmotionVerifyCallback callbacks.

widget Specifies the Text widget ID

value Specifies the character pointer to the string value and places the string
into the text edit window

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3) andXmTextSetStringWcs(3).

1482

Xm Functions

XmTextSetStringWcs(library call)

XmTextSetStringWcs

Purpose A Text function that sets a wide character string value

Synopsis #include <Xm/Text.h>

void XmTextSetStringWcs(
Widget widget,
wchar_t *wcstring);

Description

XmTextSetStringWcs sets the wide character string value of the Text widget.
This routine calls the widget’sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs ,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. This function also sets the
insertion cursor position to the beginning of the string and calls the widget’s
XmNmotionVerifyCallback callbacks.

widget Specifies the Text widget ID

value Specifies the wide character string value

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3) andXmTextSetString(3).

1483

Motif 2.1—Programmer’s Reference

XmTextSetTopCharacter(library call)

XmTextSetTopCharacter

Purpose A Text function that sets the position of the first character displayed

Synopsis #include <Xm/Text.h>

void XmTextSetTopCharacter(
Widget widget,
XmTextPosition top_character);

Description

XmTextSetTopCharacter sets the position of the text at the top of the Text widget.
If the XmNeditMode is XmMULTI_LINE_EDIT , the line of text that contains
top_characteris displayed at the top of the widget without the text shifting left or
right. If the edit mode isXmSINGLE_LINE_EDIT , the text moves horizontally so
that top_characteris the first character displayed.

widget Specifies the Text widget ID

top_character
Specifies the position in the text to display at the top of the widget. This
is an integer number of characters from the beginning of the text buffer.
The first character position is 0 (zero).

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3).

1484

Xm Functions

XmTextShowPosition(library call)

XmTextShowPosition

Purpose A Text function that forces text at a given position to be displayed

Synopsis #include <Xm/Text.h>

void XmTextShowPosition(
Widget widget,
XmTextPosition position);

Description

XmTextShowPosition forces text at the specified position to be displayed. If the
XmNautoShowCursorPosition resource is True, the application should also set the
insert cursor to this position.

widget Specifies the Text widget ID

position Specifies the character position to be displayed. This is an integer
number of characters from the beginning of the text buffer. The first
character position is 0 (zero).

If a navigator exists, this function uses theXmQTnavigatortrait to update the
horizontal navigator’s value.

For a complete definition of Text and its associated resources, seeXmText(3).

Related Information

XmText(3).

1485

Motif 2.1—Programmer’s Reference

XmTextXYToPos(library call)

XmTextXYToPos

Purpose A Text function that accesses the character position nearest an x and y position

Synopsis #include <Xm/Text.h>

XmTextPosition XmTextXYToPos(
Widget widget,
Position x,
Position y);

Description

XmTextXYToPos accesses the character position nearest to the specifiedx and y
position, relative to the upper left corner of the Text widget.

In the case of horizontal writing, the position is the origin of the character. In the case
of vertical writing, the position is the vertical origin of the character.

widget Specifies the Text widget ID

x Specifies thex position, relative to the upper left corner of the widget

y Specifies they position, relative to the upper left corner of the widget

For a complete definition of Text and its associated resources, seeXmText(3).

Return Values

Returns the character position in the text nearest thex andy position specified. This is
an integer number of characters from the beginning of the buffer. The first character
position is 0 (zero).

1486

Xm Functions

XmTextXYToPos(library call)

Related Information

XmText(3).

1487

Motif 2.1—Programmer’s Reference

XmToggleButtonGadgetGetState(library call)

XmToggleButtonGadgetGetState

Purpose A ToggleButtonGadget function that obtains the state of a ToggleButtonGadget

Synopsis #include <Xm/ToggleBG.h>

Boolean XmToggleButtonGadgetGetState(
Widget widget);

Description

XmToggleButtonGadgetGetStateobtains the state of a ToggleButtonGadget.

widget Specifies the ToggleButtonGadget ID

For a complete definition of ToggleButtonGadget and its associated resources, see
XmToggleButtonGadget(3).

Return Values

Returns True if the button is selected and False if the button is unselected.

Related Information

XmToggleButtonGadget(3).

1488

Xm Functions

XmToggleButtonGadgetSetState(library call)

XmToggleButtonGadgetSetState

Purpose A ToggleButtonGadget function that sets or changes the current state

Synopsis #include <Xm/ToggleBG.h>

void XmToggleButtonGadgetSetState(
Widget widget,
Booleanstate,
Booleannotify);

Description

XmToggleButtonGadgetSetStatesets or changes the ToggleButtonGadget’s current
state.

widget Specifies the ToggleButtonGadget widget ID.

state Specifies a Boolean value that indicates whether the
ToggleButtonGadget state is selected or unselected. If the value
is True, the button state is selected; if it is False, the button state is
unselected.

notify Indicates whetherXmNvalueChangedCallback is called; it can be
either True or False. TheXmNvalueChangedCallback is only called
when this function changes the state of the ToggleButtonGadget.
When this argument is True and the ToggleButtonGadget is a
child of a RowColumn widget whoseXmNradioBehavior is True,
setting the ToggleButtonGadget causes other ToggleButton and
ToggleButtonGadget children of the RowColumn to be unselected.

For a complete definition of ToggleButtonGadget and its associated resources, see
XmToggleButtonGadget(3).

1489

Motif 2.1—Programmer’s Reference

XmToggleButtonGadgetSetState(library call)

Related Information

XmToggleButtonGadget(3).

1490

Xm Functions

XmToggleButtonGetState(library call)

XmToggleButtonGetState

Purpose A ToggleButton function that obtains the state of a ToggleButton

Synopsis #include <Xm/ToggleB.h>

Boolean XmToggleButtonGetState(
Widget widget);

Description

XmToggleButtonGetStateobtains the state of a ToggleButton.

widget Specifies the ToggleButton widget ID

For a complete definition of ToggleButton and its associated resources, see
XmToggleButton(3).

Return Values

Returns True if the button is selected and False if the button is unselected.

Related Information

XmToggleButton(3).

1491

Motif 2.1—Programmer’s Reference

XmToggleButtonSetState(library call)

XmToggleButtonSetState

Purpose A ToggleButton function that sets or changes the current state

Synopsis #include <Xm/ToggleB.h>

void XmToggleButtonSetState(
Widget widget,
Booleanstate,
Booleannotify);

Description

XmToggleButtonSetStatesets or changes the ToggleButton’s current state.

widget Specifies the ToggleButton widget ID.

state Specifies a Boolean value that indicates whether the ToggleButton state
is selected or unselected. If the value is True, the button state is selected;
if it is False, the button state is unselected.

notify Indicates whetherXmNvalueChangedCallback is called; it can be
either True or False. TheXmNvalueChangedCallback is only called
when this function changes the state of the ToggleButton. When this
argument is True and the ToggleButton is a child of a RowColumn
widget whoseXmNradioBehavior is True, setting the ToggleButton
causes other ToggleButton and ToggleButtonGadget children of the
RowColumn to be unselected.

For a complete definition of ToggleButton and its associated resources, see
XmToggleButton(3).

Related Information

XmToggleButton(3).

1492

Xm Functions

XmToggleButtonSetValue(library call)

XmToggleButtonSetValue

Purpose A ToggleButton function that sets or changes the current state

Synopsis #include <Xm/ToggleB.h>

void XmToggleButtonSetValue(
Widget widget,
XmToggleButtonStatestate,
Booleannotify);

Description

XmToggleButtonSetValuesets or changes the ToggleButton’s current state.

widget Specifies the ToggleButton widget ID.

state Specifies whether the ToggleButton state is selected or unselected. If
the value is True, the button state is selected; if it is False, the button
state is unselected, if it isXmINDETERMINATE , the button state is
neither.

notify Indicates whetherXmNvalueChangedCallback is called; it can be
either True or False. TheXmNvalueChangedCallback is only called
when this function changes the state of the ToggleButton. When this
argument is True and the ToggleButton is a child of a RowColumn
widget whoseXmNradioBehavior is True, setting the ToggleButton
causes other ToggleButton and ToggleButtonGadget children of the
RowColumn to be unselected.

For a complete definition of ToggleButton and its associated resources, see
XmToggleButton(3).

Related Information

XmToggleButton(3).

1493

Motif 2.1—Programmer’s Reference

XmTrackingEvent(library call)

XmTrackingEvent

Purpose A Toolkit function that provides a modal interaction

Synopsis #include <Xm/Xm.h>

Widget XmTrackingEvent(
Widget widget,
Cursor cursor,
Booleanconfine_to,
XEvent *event_return);

Description

XmTrackingEvent provides a modal interface for selection of a component. It is
intended to support context help. The function calls theXmUpdateDisplay function.
XmTrackingEvent then grabs the pointer and discards succeeding events untilBSelect
is released or a key is pressed and then released. The function then returns the widget
or gadget that contains the pointer whenBSelectis released or a key is released, and
ungrabs the pointer.

widget Specifies the widget ID of a widget to use as the basis of the modal
interaction. That is, the widget within which the interaction must occur,
usually a top-level shell.

cursor Specifies the cursor to be used for the pointer during the interaction.
This is a standard X cursor name.

confine_to Specifies whether or not the cursor should be confined towidget.

event_return Returns the ButtonRelease or KeyRelease event that causes the function
to return.

1494

Xm Functions

XmTrackingEvent(library call)

Return Values

Returns the widget or gadget that contains the pointer whenBSelect is released or
a key is released. If no widget or gadget contains the pointer, the function returns
NULL.

Related Information

XmTrackingLocate(3).

1495

Motif 2.1—Programmer’s Reference

XmTrackingLocate(library call)

XmTrackingLocate

Purpose A Toolkit function that provides a modal interaction

Synopsis #include <Xm/Xm.h>

Widget XmTrackingLocate(
Widget widget,
Cursor cursor,
Booleanconfine_to);

Description

XmTrackingLocate provides a modal interface for selection of a component. It is
intended to support context help. This function is implemented asXmTrackingEvent .

NOTE: This function is obsolete and exists for compatibility with previous releases.
It has been replaced byXmTrackingEvent .

widget Specifies the widget ID of a widget to use as the basis of the modal
interaction. That is, the widget within which the interaction must occur,
usually a top-level shell.

cursor Specifies the cursor to be used for the pointer during the interaction.
This is a standard X cursor name.

confine_to Specifies whether or not the cursor should be confined towidget

Return Values

Returns the widget or gadget that contains the pointer whenBSelect is released or
a key is released. If no widget or gadget contains the pointer, the function returns
NULL.

1496

Xm Functions

XmTrackingLocate(library call)

Related Information

XmTrackingEvent (3).

1497

Motif 2.1—Programmer’s Reference

XmTransferDone(library call)

XmTransferDone

Purpose A toolkit function that completes a data transfer

Synopsis #include <Xm/Xm.h>

void XmTransferDone(
XtPointer transfer_id,
XmTransferStatus status);

Description

XmTransferDone completes an already-initiated data transfer operation. An
application can call this routine from anXmNdestinationCallback procedure or any
function called as a result, including the selection procedures called as a result of
calls toXmTransferValue.

The caller ofXmTransferDone supplies an identifier for the transfer operation and an
indication of the completion status.XmTransferDone causes any remaining transfers
for the operation to be discarded.

transfer_id Specifies a unique indentifier for the data transfer operation.
The value must be the same as the value of thetransfer_id
member of the XmDestinationCallbackStruct passed to the
XmNdestinationCallback procedure.

status Specifies the completion status of the data transfer. Following are the
possible values:

XmTRANSFER_DONE_SUCCEED
The transfer was completed successfully. This status has
the following additional effects:

• For a move operation, the selection owner receives a
request to convert the selection to theDELETEtarget.

1498

Xm Functions

XmTransferDone(library call)

• If a TRANSACToperation is in progress, the owner
receives a request to commit the transaction.

• If a PERSISTor _MOTIF_SNAPSHOT operation is
in progress, the owner receives a notification that the
operation is finished.

• The widget class destination procedure is not called.

XmTRANSFER_DONE_FAIL
The transfer was completed unsuccessfully. This status has
the following additional effects:

• For a move operation, the selection owner does not
receive a request to convert the selection to the
DELETE target.

• For a drag and drop operation, the
DropTransfer’s XmNtransferStatus is set to
XmTRANSFER_FAILURE .

• If a TRANSACToperation is in progress, the owner
receives a request to abort the transaction.

• If a PERSISTor _MOTIF_SNAPSHOT operation is
in progress, the owner receives a notification that the
operation is finished.

• The widget class destination procedure is not called.

XmTRANSFER_DONE_CONTINUE
This status has the same effect as
XmTRANSFER_DONE_SUCCEED, except that
if a PERSISTor _MOTIF_SNAPSHOT operation is in
progress, the owner does not receive a notification that
the operation is finished.

XmTRANSFER_DONE_DEFAULT
The widget class destination procedure is called. Further
effects depend on the actions of that procedure.

1499

Motif 2.1—Programmer’s Reference

XmTransferDone(library call)

Related Information

XmTransferSendRequest(3), XmTransferStartRequest(3),
XmTransferStartRequest(3), andXmTransferValue(3).

1500

Xm Functions

XmTransferSendRequest(library call)

XmTransferSendRequest

Purpose A toolkit function that transfers a MULTIPLE request

Synopsis #include <Xm/Transfer.h>

void XmTransferSendRequest(
XtPointer transfer_id,
Time time);

Description

XmTransferSendRequest marks the end of a MULTIPLE request started by
XmTransferStartRequest.

transfer_id Specifies a unique indentifier for the data transfer operation.

time Specifies the time of theXEvent that triggered the data transfer. You
should typically set this field toXtLastTimestampProcessed.

Related Information

XmTransferSetParameters(3), XmTransferStartRequest(3), and
XmTransferValue(3).

1501

Motif 2.1—Programmer’s Reference

XmTransferSetParameters(library call)

XmTransferSetParameters

Purpose A toolkit function that establishes parameters to be passed by the next call to
XmTransferValue

Synopsis #include <Xm/Transfer.h>

void XmTransferSetParameters(
XtPointer transfer_id,
XtPointer parm,
int parm_fmt,
unsigned longparm_length,
Atom parm_type);

Description

XmTransferSetParameters establishes a parameter definition. Your application
calls XmTransferSetParameters just before callingXmTransferValue, and only if
XmTransferValue needs to transfer a value containing a parameter.

transfer_id Specifies a unique indentifier for the data transfer operation.
The value must be the same as the value of thetransfer_id
member of the XmDestinationCallbackStruct passed to the
XmNdestinationCallback procedure.

parm Specifies parameters to be passed to the conversion routine (and the
XmNconvertCallback procedures, if any) of the widget that owns the
selection. The type and length of parameters are target-specific. If the
target takes no parameters, the value is NULL.

parm_fmt Specifies whether the data inparm should be viewed as a list of 8-bit,
16-bit, or 32-bit quantities. Possible values are 0 (whenparm is NULL),
8, 16, and 32.

1502

Xm Functions

XmTransferSetParameters(library call)

parm_length Specifies the number of elements of data inparm, where each element
has the number of bits specified byparm_fmt. When parm is NULL,
the value is 0.

parm_type Specifies the type ofparm.

Related Information

XmTransferSendRequest(3), XmTransferStartRequest(3), and
XmTransferValue(3).

1503

Motif 2.1—Programmer’s Reference

XmTransferStartRequest(library call)

XmTransferStartRequest

Purpose A toolkit function that begins a MULTIPLE transfer

Synopsis #include <Xm/Transfer.h>

void XmTransferStartRequest(
XtPointer transfer_id);

Description

XmTransferStartRequest begins aMULTIPLE request. TheMULTIPLE request
may contain one or more calls toXmTransferValue. Your application concludes
a MULTIPLE request by callingXmTransferSendRequest.

XmTransferStartRequest is typically called by a destination callback or by a transfer
procedure.

transfer_id Specifies a unique indentifier for the data transfer operation. You should
use thetransfer_id passed in theXmDestinationCallbackStruct or
XmSelectionCallbackStruct.

Related Information

XmTransferSetParameters(3), XmTransferSendRequest(3), and
XmTransferValue(3).

1504

Xm Functions

XmTransferValue(library call)

XmTransferValue

Purpose A toolkit function that transfers data to a destination

Synopsis #include <Xm/Xm.h>

void XmTransferValue(
XtPointer transfer_id,
Atom target,
XtCallbackProc proc,
XtPointer client_data,
Time time);

Description

XmTransferValue converts a selection, transferring any data from the selection owner,
in the context of an already-initiated data transfer operation. An application can call
this routine from anXmNdestinationCallback procedure or any function called as a
result.

The caller ofXmTransferValue supplies the target to which the selection is converted.
The caller also supplies a callback procedure to handle the data that results from the
conversion.

transfer_id Specifies a unique indentifier for the data transfer operation.
The value must be the same as the value of thetransfer_id
member of the XmDestinationCallbackStruct passed to the
XmNdestinationCallback procedure.

target Specifies the target to which the selection is to be converted.

proc Specifies a callback procedure to be invoked when the selection has been
converted and the data, if any, is available. This procedure is responsible
for inserting or otherwise handling any data transferred. The procedure
can also terminate the data transfer by callingXmTransferDone. The
proc receives three arguments:

1505

Motif 2.1—Programmer’s Reference

XmTransferValue(library call)

• The widget that requested the conversion

• The value of theclient_dataargument

• A pointer to anXmSelectionCallbackStruct

This procedure can be called before or afterXmTransferValue returns.

client_data Specifies data to be passed to the callback procedure (the value of the
proc argument) when the selection has been converted.

time Specifies the time of theXEvent that triggered the data transfer. You
should typically set this field toXtLastTimestampProcessed.

The callback procedure (the value of theproc argument) receives a pointer to an
XmSelectionCallbackStruct, which has the following definition:

typedef struct
{

int reason;
XEvent *event;
Atom selection;
Atom target;
Atom type;
XtPointer transfer_id;
int flags;
int remaining;
XtPointervalue;
unsigned longlength;
int format;

} XmSelectionCallbackStruct;

reason Indicates why the callback was invoked.

event Points to theXEventthat triggered the callback. It can be NULL.

selection Specifies the selection that has been converted.

target Specifies the target to whichXmTransferValue requested conversion.
The value is the same as the value of thetarget argument to
XmTransferValue.

type Specifies the type of the selection value. This is not the target, but the
type used to represent the target. The valueXT_CONVERT_FAILmeans

1506

Xm Functions

XmTransferValue(library call)

that the selection owner did not respond to the conversion request within
the Intrinsics selection timeout interval.

transfer_id Specifies a unique indentifier for the data transfer operation. The value is
the same as the value of thetransfer_id argument toXmTransferValue.

flags This member is currently unused. The value is always
XmSELECTION_DEFAULT .

remaining Indicates the number of transfers remaining for the operation specified
by transfer_id.

value Represents the data transferred by this request. The application is
responsible for freeing the value by callingXtFree.

length Indicates the number of elements of data invalue, where each element
has the size symbolized byformat. If value is NULL, length is 0.

format Indicates whether the data invalueshould be viewed as a list ofchar,
short, or long quantities. Possible values are 8 (for a list ofchar), 16
(for a list of short), or 32 (for a list oflong).

Related Information

XmTransferSetParameters(3), XmTransferSendRequest(3), and
XmTransferStartRequest(3).

1507

Motif 2.1—Programmer’s Reference

XmTranslateKey(library call)

XmTranslateKey

Purpose The default keycode-to-keysym translator

Synopsis #include <Xm/Xm.h>

void XmTranslateKey(
Display *display,
KeyCode keycode,
Modifiers modifiers,
Modifiers * modifiers_return,
KeySym *keysym_return);

Description

XmTranslateKey is the default XtKeyProc translation procedure for Motif
applications. The function takes a keycode and modifiers and returns the
corresponding keysym.

XmTranslateKey serves two main purposes: to enable new translators with expanded
functionality to get the default Motif keycode-to-keysym translation in addition to
whatever they add, and to reinstall the default translator. This function enables keysyms
defined by the Motif virtual bindings to be used when an application requires its own
XtKeyProc to be installed.

display Specifies the display that the keycode is from

keycode Specifies the keycode to translate

modifiers Specifies the modifier keys to be applied to the keycode

modifiers_return
Specifies a mask of the modifier keys actually used to generate the
keysym (an AND ofmodifiersand any default modifiers applied by the
currently registered translator)

keysym_return
Specifies a pointer to the resulting keysym

1508

Xm Functions

XmTranslateKey(library call)

Related Information

VirtualBindings (3).

1509

Motif 2.1—Programmer’s Reference

XmUninstallImage(library call)

XmUninstallImage

Purpose A pixmap caching function that removes an image from the image cache

Synopsis #include <Xm/Xm.h>

Boolean XmUninstallImage(
XImage * image);

Description

XmUninstallImage removes an image from the image cache.

image Points to the image structure given to the XmInstallImage() routine

Return Values

Returns True when successful; returns False if theimageis NULL, or if it cannot be
found to be uninstalled.

Related Information

XmInstallImage(3), XmGetPixmap(3), andXmDestroyPixmap(3).

1510

Xm Functions

XmUpdateDisplay(library call)

XmUpdateDisplay

Purpose A function that processes all pending exposure events immediately

Synopsis void XmUpdateDisplay (widget)
Widget widget;

Description

XmUpdateDisplay provides the application with a mechanism for forcing all pending
exposure events to be removed from the input queue and processed immediately. When
a user selects a button within a menu pane, the menu panes are unposted and then any
activation callbacks registered by the application are invoked. If one of the callbacks
performs a time-consuming action, the portion of the application window that was
covered by the menu panes will not have been redrawn; normal exposure processing
does not occur until all of the callbacks have been invoked. If the application writer
suspects that a callback will take a long time, then the callback may choose to invoke
XmUpdateDisplay before starting its time-consuming operation. This function is also
useful any time a transient window, such as a dialog box, is unposted; callbacks are
invoked before normal exposure processing can occur.

widget Specifies any widget or gadget.

1511

Motif 2.1—Programmer’s Reference

XmVaCreateSimpleCheckBox(library call)

XmVaCreateSimpleCheckBox

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmVaCreateSimpleCheckBox(
Widget parent,
String name,
XtCallbackProc callback);

Description

XmVaCreateSimpleCheckBoxcreates an instance of a RowColumn widget of type
XmWORK_AREA and returns the associated widget ID. This routine uses the ANSI
C variable-length argument list (varargs) calling convention.

This routine creates a CheckBox and its ToggleButtonGadget children. A CheckBox
is similar to a RadioBox, except that more than one button can be selected at a time.
The name of each button isbutton_n, where n is an integer from 0 (zero) to the
number of buttons in the menu minus 1. Buttons are named and created in the order
in which they are specified in the variable portion of the argument list.

parent Specifies the parent widget ID.

name Specifies the name of the created widget.

callback Specifies a callback procedure to be called when a button’s value
changes. This callback function is added to each button after creation
as the button’sXmNvalueChangedCallback. The callback function is
called when a button’s value changes, and the button number is returned
in the client_datafield.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. The following list
describes the possible first arguments in each group ofvarargs:

1512

Xm Functions

XmVaCreateSimpleCheckBox(library call)

XmVaCHECKBUTTON
This is followed by four additional arguments. The set specifies one
button in the CheckBox and some of its resource values. The following
list describes the additional four arguments, in order.

label The label string, of typeXmString

mnemonic The mnemonic, of typeKeySym. This is ignored in this
release.

accelerator The accelerator, of typeString. This is ignored in this
release.

accelerator_text
The accelerator text, of typeXmString . This is ignored
in this release.

resource_name
This is followed by one additional argument, the value of the resource,
of type XtArgVal. The pair specifies a resource and its value for the
RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional four
arguments, in order:

name The resource name, of typeString

type The type of the resource value supplied, of typeString

value The resource value (or a pointer to the resource value,
depending on the type and size of the value), of type
XtArgVal

size The size of the resource value in bytes, of typeint

XtVaNestedList
This is followed by one additional argument of type XtVarArgsList. This
argument is a nested list ofvarargs returned byXtVaCreateArgsList .

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

1513

Motif 2.1—Programmer’s Reference

XmVaCreateSimpleCheckBox(library call)

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, seeXmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateRadioBox(3), XmCreateRowColumn(3),
XmCreateSimpleCheckBox(3), XmCreateSimpleRadioBox(3),
XmRowColumn(3), andXmVaCreateSimpleRadioBox(3).

1514

Xm Functions

XmVaCreateSimpleMenuBar(library call)

XmVaCreateSimpleMenuBar

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmVaCreateSimpleMenuBar(
Widget parent,
String name);

Description

XmVaCreateSimpleMenuBar creates an instance of a RowColumn widget of type
XmMENU_BAR and returns the associated widget ID. This routine uses the ANSI
C variable-length argument list (varargs) calling convention.

This routine creates a MenuBar and its CascadeButtonGadget children. The name of
each button isbutton_n, wheren is an integer from 0 (zero) to the number of buttons
in the menu minus 1. Buttons are named and created in the order in which they are
specified in the variable portion of the argument list.

parent Specifies the parent widget ID

name Specifies the name of the created widget

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. Following are the
possible first arguments in each group ofvarargs:

XmVaCASCADEBUTTON
This is followed by two additional arguments. The set specifies one
button in the MenuBar and some of its resource values. Following are
the additional two arguments, in order:

label The label string, of typeXmString

mnemonic The mnemonic, of typeKeySym

1515

Motif 2.1—Programmer’s Reference

XmVaCreateSimpleMenuBar(library call)

resource_name
This is followed by one additional argument, the value of the resource,
of type XtArgVal. The pair specifies a resource and its value for the
RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional four
arguments, in order:

name The resource name, of typeString

type The type of the resource value supplied, of typeString

value The resource value (or a pointer to the resource value,
depending on the type and size of the value), of type
XtArgVal

size The size of the resource value in bytes, of typeint

XtVaNestedList
This is followed by one additional argument of typeXtVarArgsList. This
argument is a nested list ofvarargs returned byXtVaCreateArgsList .

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, seeXmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateMenuBar(3), XmCreateRowColumn(3), XmCreateSimpleMenuBar(3),
andXmRowColumn(3).

1516

Xm Functions

XmVaCreateSimpleOptionMenu(library call)

XmVaCreateSimpleOptionMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmVaCreateSimpleOptionMenu(
Widget parent,
String name,
XmString option_label,
KeySym option_mnemonic,
int button_set,
XtCallbackProc callback);

Description

XmVaCreateSimpleOptionMenu creates an instance of a RowColumn widget of
type XmMENU_OPTION and returns the associated widget ID. This routine uses
the ANSI C variable-length argument list (varargs) calling convention.

This routine creates an OptionMenu and its Pulldown submenu containing
PushButtonGadget or CascadeButtonGadget children. The name of each button is
button_n, wheren is an integer from 0 (zero) to the number of buttons in the menu
minus 1. The name of each separator isseparator_n, wheren is an integer from 0
(zero) to the number of separators in the menu minus 1. Buttons and separators are
named and created in the order in which they are specified in the variable portion of
the argument list.

parent Specifies the parent widget ID

name Specifies the name of the created widget

option_label Specifies the label string to be used on the left side of the OptionMenu.

option_mnemonic
Specifies a keysym for a key that, when pressed by the user, posts the
associated Pulldown menu pane.

1517

Motif 2.1—Programmer’s Reference

XmVaCreateSimpleOptionMenu(library call)

button_set Specifies which PushButtonGadget is initially set. The value is the
integern that corresponds to thenth PushButtonGadget specified in the
variable portion of the argument list. Only a PushButtonGadget can be
set, and only PushButtonGadgets are counted in determining the integer
n. The first PushButtonGadget is number 0 (zero).

callback Specifies a callback procedure to be called when a button is activated.
This callback function is added to each button after creation as the
button’sXmNactivateCallback. The callback function is called when a
button is activated, and the button number is returned in theclient_data
field.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. Following are the
possible first arguments in each group ofvarargs:

XmVaPUSHBUTTON
This is followed by four additional arguments. The set specifies one
button in the OptionMenu’s Pulldown submenu and some of its resource
values. The button created is a PushButtonGadget. Following are the
additional four arguments, in order:

label The label string, of typeXmString

mnemonic The mnemonic, of typeKeySym

accelerator The accelerator, of typeString

accelerator_text
The accelerator text, of typeXmString

XmVaSEPARATOR
This is followed by no additional arguments. It specifies one separator
in the OptionMenu’s Pulldown submenu.

XmVaDOUBLE_SEPARATOR
This is followed by no additional arguments. It specifies one separator
in the OptionMenu’s Pulldown submenu. The separator type is
XmDOUBLE_LINE .

resource_name
This is followed by one additional argument, the value of the resource,
of type XtArgVal. The pair specifies a resource and its value for the
Pulldown submenu.

1518

Xm Functions

XmVaCreateSimpleOptionMenu(library call)

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the Pulldown submenu. A resource type
conversion is performed if necessary. Following are the additional four
arguments, in order:

name The resource name, of typeString

type The type of the resource value supplied, of typeString

value The resource value (or a pointer to the resource value,
depending on the type and size of the value), of type
XtArgVal

size The size of the resource value in bytes, of typeint

XtVaNestedList
This is followed by one additional argument of typeXtVarArgsList. This
argument is a nested list ofvarargs returned byXtVaCreateArgsList .

The user can specify resources in a resource file for the automatically created widgets
and gadgets of an OptionMenu. The following list identifies the names of these widgets
(or gadgets) and the associated OptionMenu areas:

Option Menu Label Gadget
OptionLabel

Option Menu Cascade Button
OptionButton

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, seeXmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

1519

Motif 2.1—Programmer’s Reference

XmVaCreateSimpleOptionMenu(library call)

Related Information

XmCreateOptionMenu(3), XmCreateRowColumn(3),
XmCreateSimpleOptionMenu(3), andXmRowColumn(3).

1520

Xm Functions

XmVaCreateSimplePopupMenu(library call)

XmVaCreateSimplePopupMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmVaCreateSimplePopupMenu(
Widget parent,
String name,
XtCallbackProc callback);

Description

XmVaCreateSimplePopupMenucreates an instance of a RowColumn widget of type
XmMENU_POPUP and returns the associated widget ID. This routine uses the ANSI
C variable-length argument list (varargs) calling convention.

This routine creates a Popup menu pane and its button children. The name of each
button isbutton_n, wheren is an integer from 0 (zero) to the number of buttons in
the menu minus 1. The name of each separator isseparator_n, wheren is an integer
from 0 (zero) to the number of separators in the menu minus 1. The name of each
title is label_n, wheren is an integer from 0 (zero) to the number of titles in the menu
minus 1. Buttons, separators, and titles are named and created in the order in which
they are specified in the variable portion of the argument list.

parent Specifies the widget ID of the parent of the MenuShell

name Specifies the name of the created widget

callback Specifies a callback procedure to be called when a button is activated or
when its value changes. This callback function is added to each button
after creation. For a CascadeButtonGadget or a PushButtonGadget, the
callback is added as the button’sXmNactivateCallback, and it is called
when the button is activated. For a ToggleButtonGadget, the callback
is added as the button’sXmNvalueChangedCallback, and it is called
when the button’s value changes. The button number is returned in the
client_datafield.

1521

Motif 2.1—Programmer’s Reference

XmVaCreateSimplePopupMenu(library call)

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. The following list
describes the possible first arguments in each group ofvarargs.

XmVaCASCADEBUTTON
This is followed by two additional arguments. The set specifies one
button in the PopupMenu and some of its resource values. The button
created is a CascadeButtonGadget. Following are the additional two
arguments, in order:

label The label string, of typeXmString

mnemonic The mnemonic, of typeKeySym

XmVaPUSHBUTTON
This is followed by four additional arguments. The set specifies one
button in the PopupMenu and some of its resource values. The button
created is a PushButtonGadget. Following are the additional four
arguments, in order:

label The label string, of typeXmString

mnemonic The mnemonic, of typeKeySym

accelerator The accelerator, of typeString

accelerator_text
The accelerator text, of typeXmString

XmVaRADIOBUTTON
This is followed by four additional arguments. The set specifies one
button in the PopupMenu and some of its resource values. The button
created is a ToggleButtonGadget. Following are the additional four
arguments, in order:

label The label string, of typeXmString

mnemonic The mnemonic, of typeKeySym

accelerator The accelerator, of typeString

accelerator_text
The accelerator text, of typeXmString

1522

Xm Functions

XmVaCreateSimplePopupMenu(library call)

XmVaCHECKBUTTON
This is followed by four additional arguments. The set specifies one
button in the PopupMenu and some of its resource values. The button
created is a ToggleButtonGadget. Following are the additional four
arguments, in order:

label The label string, of typeXmString

mnemonic The mnemonic, of typeKeySym

accelerator The accelerator, of typeString

accelerator_text
The accelerator text, of typeXmString

XmVaTITLE
This is followed by one additional argument. The pair specifies a title
LabelGadget in the PopupMenu. Following is the additional argument:

title The title string, of typeXmString

XmVaSEPARATOR
This is followed by no additional arguments. It specifies one separator
in the PopupMenu.

XmVaDOUBLE_SEPARATOR
This is followed by no additional arguments. It specifies one separator
in the PopupMenu. The separator type isXmDOUBLE_LINE .

resource_name
This is followed by one additional argument, the value of the resource,
of type XtArgVal. The pair specifies a resource and its value for the
RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional four
arguments, in order:

name The resource name, of typeString

type The type of the resource value supplied, of typeString

1523

Motif 2.1—Programmer’s Reference

XmVaCreateSimplePopupMenu(library call)

value The resource value (or a pointer to the resource value,
depending on the type and size of the value), of type
XtArgVal

size The size of the resource value in bytes, of typeint

XtVaNestedList
This is followed by one additional argument of typeXtVarArgsList. This
argument is a nested list ofvarargs returned byXtVaCreateArgsList .

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, seeXmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreatePopupMenu(3), XmCreateRowColumn(3),
XmCreateSimplePopupMenu(3), andXmRowColumn(3).

1524

Xm Functions

XmVaCreateSimplePulldownMenu(library call)

XmVaCreateSimplePulldownMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmVaCreateSimplePulldownMenu(
Widget parent,
String name,
int post_from_button,
XtCallbackProc callback);

Description

XmVaCreateSimplePulldownMenu creates an instance of a RowColumn widget of
type XmMENU_PULLDOWN and returns the associated widget ID. This routine
uses the ANSI C variable-length argument list (varargs) calling convention.

This routine creates a Pulldown menu pane and its button children. The name of each
button isbutton_n, wheren is an integer from 0 to the number of buttons in the menu
minus 1. The name of each separator isseparator_n, wheren is an integer from 0
to the number of separators in the menu minus 1. The name of each title islabel_n,
where n is an integer from 0 (zero) to the number of titles in the menu minus 1.
Buttons, separators, and titles are named and created in the order in which they are
specified in the variable portion of the argument list.

This routine also attaches the PulldownMenu to a CascadeButton or
CascadeButtonGadget in the parent. The PulldownMenu is then posted from
this button.

parent Specifies the widget ID of the parent of the MenuShell.

name Specifies the name of the created widget.

post_from_button
Specifies the CascadeButton or CascadeButtonGadget in the parent to
which the Pulldown menu pane is attached. The value is the integern that

1525

Motif 2.1—Programmer’s Reference

XmVaCreateSimplePulldownMenu(library call)

corresponds to thenth CascadeButton or CascadeButtonGadget specified
for the parent of the Pulldown menu pane. A Pulldown menu pane can
be attached only to a CascadeButton or CascadeButtonGadget, and only
CascadeButtons and CascadeButtonGadgets are counted in determining
the integer n. The first CascadeButton or CascadeButtonGadget is
number 0 (zero).

callback Specifies a callback procedure to be called when a button is activated or
when its value changes. This callback function is added to each button
after creation. For a CascadeButtonGadget or a PushButtonGadget, the
callback is added as the button’sXmNactivateCallback, and it is called
when the button is activated. For a ToggleButtonGadget, the callback
is added as the button’sXmNvalueChangedCallback, and it is called
when the button’s value changes. The button number is returned in the
client_datafield.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. Following are the
possible first arguments in each group ofvarargs:

XmVaCASCADEBUTTON
This is followed by two additional arguments. The set specifies one
button in the PulldownMenu and some of its resource values. The button
created is a CascadeButtonGadget. Following are the additional two
arguments, in order:

label The label string, of typeXmString

mnemonic The mnemonic, of typeKeySym

XmVaPUSHBUTTON
This is followed by four additional arguments. The set specifies one
button in the PulldownMenu and some of its resource values. The
button created is a PushButtonGadget. Following are the additional four
arguments, in order:

label The label string, of typeXmString

mnemonic The mnemonic, of typeKeySym

accelerator The accelerator, of typeString

accelerator_text
The accelerator text, of typeXmString

1526

Xm Functions

XmVaCreateSimplePulldownMenu(library call)

XmVaRADIOBUTTON
This is followed by four additional arguments. The set specifies one
button in the PulldownMenu and some of its resource values. The
button created is a ToggleButtonGadget. Following are the additional
four arguments, in order:

label The label string, of typeXmString

mnemonic The mnemonic, of typeKeySym

accelerator The accelerator, of typeString

accelerator_text
The accelerator text, of typeXmString

XmVaCHECKBUTTON
This is followed by four additional arguments. The set specifies one
button in the PulldownMenu and some of its resource values. The
button created is a ToggleButtonGadget. Following are the additional
four arguments, in order:

label The label string, of typeXmString.

mnemonic The mnemonic, of typeKeySym

accelerator The accelerator, of typeString

accelerator_text
The accelerator text, of typeXmString

XmVaTITLE
This is followed by one additional argument. The pair specifies a
title LabelGadget in the PulldownMenu. Following is the additional
argument:

title The title string, of typeXmString

XmVaSEPARATOR
This is followed by no additional arguments. It specifies one separator
in the PulldownMenu.

XmVaDOUBLE_SEPARATOR
This is followed by no additional arguments. It specifies one separator
in the PulldownMenu. The separator type isXmDOUBLE_LINE .

1527

Motif 2.1—Programmer’s Reference

XmVaCreateSimplePulldownMenu(library call)

resource_name
This is followed by one additional argument, the value of the resource,
of type XtArgVal. The pair specifies a resource and its value for the
RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional four
arguments, in order:

name The resource name, of type String.

type The type of the resource value supplied, of type String.

value The resource value (or a pointer to the resource value,
depending on the type and size of the value), of type
XtArgVal.

size The size of the resource value in bytes, of type int.

XtVaNestedList
This is followed by one additional argument of type XtVarArgsList. This
argument is a nested list ofvarargs returned byXtVaCreateArgsList .

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, seeXmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreatePulldownMenu(3), XmCreateRowColumn(3),
XmCreateSimplePulldownMenu, andXmRowColumn(3).

1528

Xm Functions

XmVaCreateSimpleRadioBox(library call)

XmVaCreateSimpleRadioBox

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmVaCreateSimpleRadioBox(
Widget parent,
String name,
int button_set,
XtCallbackProc callback);

Description

XmVaCreateSimpleRadioBoxcreates an instance of a RowColumn widget of type
XmWORK_AREA and returns the associated widget ID. This routine uses the ANSI
C variable-length argument list (varargs) calling convention.

This routine creates a RadioBox and its ToggleButtonGadget children. The name of
each button isbutton_n, wheren is an integer from 0 (zero) to the number of buttons
in the menu minus 1.

parent Specifies the parent widget ID.

name Specifies the name of the created widget.

button_set Specifies which button is initially set. The value is the integern in the
button namebutton_n.

callback Specifies a callback procedure to be called when a button’s value
changes. This callback function is added to each button after creation
as the button’sXmNvalueChangedCallback. The callback function is
called when a button’s value changes, and the button number is returned
in the client_datafield.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments

1529

Motif 2.1—Programmer’s Reference

XmVaCreateSimpleRadioBox(library call)

follow in that group. The last argument in the list must be NULL. Following are the
possible first arguments in each group ofvarargs:

XmVaRADIOBUTTON
This is followed by four additional arguments. The set specifies one
button in the RadioBox and some of its resource values. Following are
the additional four arguments, in order:

label The label string, of typeXmString .

mnemonic The mnemonic, of typeKeySym. This is ignored in this
release.

accelerator The accelerator, of typeString. This is ignored in this
release.

accelerator_text
The accelerator text, of typeXmString . This is ignored
in this release.

resource_name
This is followed by one additional argument, the value of the resource,
of type XtArgVal. The pair specifies a resource and its value for the
RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional four
arguments, in this order:

name The resource name, of typeString

type The type of the resource value supplied, of typeString

value The resource value (or a pointer to the resource value,
depending on the type and size of the value), of type
XtArgVal

size The size of the resource value in bytes, of typeint

XtVaNestedList
This is followed by one additional argument of typeXtVarArgsList. This
argument is a nested list ofvarargs returned byXtVaCreateArgsList .

1530

Xm Functions

XmVaCreateSimpleRadioBox(library call)

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, seeXmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateRadioBox(3), XmCreateRowColumn(3),
XmCreateSimpleCheckBox(3), XmCreateSimpleRadioBox(3),
XmRowColumn(3), andXmVaCreateSimpleCheckBox(3),

1531

Motif 2.1—Programmer’s Reference

XmWidgetGetBaselines(library call)

XmWidgetGetBaselines

Purpose Retrieves baseline information for a widget

Synopsis #include <Xm/Xm.h>

Boolean XmWidgetGetBaselines(
Widget widget,
Dimension **baselines,
int * line_count);

Description

XmWidgetGetBaselinesreturns an array that contains one or more baseline values
associated with the specified widget. The baseline of any given line of text is a vertical
offset in pixels from the origin of the widget’s bounding box to the given baseline.

widget Specifies the ID of the widget for which baseline values are requested

baselines Returns an array that contains the value of each baseline of text in
the widget. The function allocates space to hold the returned array.
The application is responsible for managing the allocated space. The
application can recover this allocated space by callingXtFree.

line_count Returns the number of lines in the widget

Return Values

Returns a Boolean value that indicates whether the widget contains a baseline. If the
value is True, the function returns a value for each baseline of text. If it is False, the
function was unable to return a baseline value.

1532

Xm Functions

XmWidgetGetBaselines(library call)

Related Information

XmWidgetGetDisplayRect(3).

1533

Motif 2.1—Programmer’s Reference

XmWidgetGetDisplayRect(library call)

XmWidgetGetDisplayRect

Purpose Retrieves display rectangle information for a widget

Synopsis #include <Xm/Xm.h>

Boolean XmWidgetGetDisplayRect(
Widget widget,
XRectangle *displayrect);

Description

XmWidgetGetDisplayRect returns the width, height and the x and y-coordinates of
the upper left corner of the display rectangle of the specified widget. The display
rectangle is the smallest rectangle that encloses either a string or a pixmap.

If the widget contains a string, the return values specify the x and y-coordinates of
the upper left corner of the display rectangle relative to the origin of the widget and
the width and height in pixels.

In the case of a pixmap, the return values specify the x and y-coordinates of the upper
left corner of the pixmap relative to the origin, and the width and height of the pixmap
in pixels.

widget Specifies the widget ID

displayrect Specifies a pointer to an XRectangle structure in which the x and y-
coordinates, width and height of the display rectangle are returned

Return Values

Returns True if the specified widget has an associated display rectangle; otherwise,
returns False.

1534

Xm Functions

XmWidgetGetDisplayRect(library call)

Related Information

XmWidgetGetBaselines(3).

1535

