Motif 2.1—Programmer’s Reference

Desktop Product Documentation

The Open Group

Copyright © The Open Group, 1997.
All Rights Reserved
The information contained within this document is subject to change without notice.

This documentation and the software to which it relates are derived in part from copyrighted materials supplied by Digital Equipment
Corporation, Hewlett-Packard Company, International Business Machines, Massachusetts Institute of Technology, Microsoft Corporation, Sun
Microsystems Inc., and The Santa Cruz Operation Inc.

THE OPEN GROUP MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The Open Group shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

Desktop Product Documentation:

Motif 2.1—Programmer’s Reference, Volume 1
ISBN 1-85912-119-5
Document Number M214A

Motif 2.1—Programmer’s Reference, Volume 2
ISBN 1-85912-124-1
Document Number M214B

Motif 2.1—Programmer’s Reference, Volume 3
ISBN 1-85912-164-0
Document Number M214C

Published in the U.K. by The Open Group, 1997

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza

Forbury Road
Reading

Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:
OGPubs@opengroup.org

OTHER NOTICES

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH THE OPEN GROUP
OR ITS LICENSORS.

Certain portions of CDE known as "PBMPlus" are copyrighted © 1989, 1991 by Jef Poskanzer. Permission to use, copy, modify, and distribute

this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both the copyright notice and this permission notice appears in supporting documentation. This software is provided "as is"
without express or implied warranty.

The code and documentation for the DtComboBox and DtSpinBox widgets were contributed by Interleaf, Inc. Copyright © 1993, Interleaf,
Inc.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE
These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE:Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the rights of
the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer Software-Restricted
Rights clause.

RESTRICTED RIGHTS NOTICE:Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND:Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B)
of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with "restricted rights."
Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer
Software-Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the "Alternate
III" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.
Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface

Chapter 1. Programs .

The Open Group

The Development of Product Standards .

Open Group Publications .

Versions and Issues of Specifications.

Corrigenda .
Ordering Information
This Book .
Audience
Applicability
Purpose

Organizaton
Reference Page Format .

Related Documents

Typographic and Keying Conventions.

DocBook SGML Conventions
Terminology Conventions.
Keyboard Conventions
Mouse Conventions .

Problem Reporting.
Trademarks

mwm .
uil .
xmbind

XVii
XVii
Xviii
Xix
XXi
XXi
XXi
XXii
XXii
XXii
XXii
XXii
XXili
XXV
XXV
XXVi
XXVi
XXVi
XXVii
XXVil
XXVil

37
39

Motif 2.1—Programmer’s Reference

Chapter 2. Xt Widget Classes . . .

ApplicationShell
Composite.
Constraint.
Core

Object. . .
OverrideShell .
RectObj

Shell . .
TopLevelShell.
TransientShell.
VendorShell
WMShell .

Chapter 3. Xm Widget Classes . . .

XmArrowButton
XmArrowButtonGadget
XmBulletinBoard .
XmCascadeButton
XmCascadeButtonGadget
XmComboBox .
XmCommand .
XmContainer .
XmDialogShell
XmDisplay
XmDragContext
XmDraglcon . .
XmDrawingArea .
XmDrawnButton .
XmDropTransfer .
XmFileSelectionBo
XmForm

XmFrame .
XmGadget.
XmlconGadget
XmLabel . . .
XmLabelGadget .
XmList .
XmMainWindow .
XmManager
XmMenuShell. .
XmMessageBox .
XmNotebook .

41
42

51
54
59

64
67
71
76

94

103
104
111
117
128
139
147
161
171
213
219
230
252
257
268
277
281
303
319
325
333
340
356
371
406
413
428
434
444

Contents

Chapter 4. Translations

Chapter 5. Xm Data Types

Chapter 6. Xm Functions.

XmPanedWindow.
XmPrimitive
XmPushButton
XmPushButtonGadget
XmRendition .
XmRowColumn
XmScale .

XmScreen.

XmScrollBar .
XmScrolledWindow
XmSelectionBox .
XmSeparator . .
XmSeparatorGadget .
XmText
XmTextField
XmToggleButton . .
XmToggleButtonGadget .

VirtualBindings

XmbDirection
XmFontList
XmParseMapping.
XmParseTable
XmRenderTable .
XmString . . .
XmStringDirection
XmStringTable
XmTab
XmTabList.
XmTextPosition

XmActivateProtocol
XmActivateWMProtocol
XmAddProtocolCallback .
XmAddProtocols .
XmAddTabGroup .
XmAddToPostFromList

XmAddWMProtocolCallback .

XmAddWMProtocols .

460
470
486
498
508
512
540
558
567
583
595
608
613
618
673
709
725

739
740

747
748
751
754
759
760
763
766
767
768
769
771

773
774
776
777
779
780
781
783
784

Motif 2.1—Programmer’s Reference

XmCascadeButtonGadgetHighlight 785
XmCascadeButtonHighIight . 786
XmChangeColor . . . s« x o« .. 187
XmChpboardCanceICopy . 788
XmClipboardCopy.« .+« .« . . 79
XmClipboardCopyByName 793
XmClipboardEndCopy« . 795
XmClipboardEndRetrieve. 797
XmClipboardinquireCount 799
XmClipboardinquireFormat 801
XmClipboardinquireLength 803
XmClipboardinquirePendingltems 805
XmClipboardLock. 807
XmClipboardRegisterFormat. 809
XmClipboardRetrieve. 811
XmClipboardStartCopy« .« . . 814
XmClipboardStartRetrieve 817
XmClipboardUndoCopy« .« . . 819
XmClipboardUnlock . . e, < VA
XmCIlpboardW|thdrawFormat. . 823
XmComboBoxAdditem 825
XmComboBoxDeletePos. 827
XmComboBoxSelectltem. 828
XmComboBoxSetltem 829
XmComboBoxUpdate. 830
XmCommandAppendVvalue 831
XmCommandError 832
XmCommandGetChild 833
XmCommandSetvalue 835
XmContainerCopy. . . . « .« .« . . . 836
XmContainerCopyLink 837
XmContainerCut . . . s« o« o« .. 839
XmConta|nerGetItemCthren . 841
XmContainerPaste 843
XmContainerPasteLink 844
XmContainerRelayout 845
XmContainerReorder. 846
XmConvertStringToUnits .~ 847
XmConvertUnits+ 850
XmCreateArrowButton 853
XmCreateArrowButtonGadget 854
XmCreateBulletinBoard 855
XmCreateBulletinBoardDialog 856
XmCreateCascadeButton, 858

Contents

XmCreateCascadeButtonGadget. 860
XmCreateComboBox. . .+ .+ .+ .+ .« . . 862
XmCreateCommand 863
XmCreateContainer+ 864
XmCreateDialogShell. 865
XmCreateDraglcon 866
XmCreateDrawingArea« .« « . . 868
XmCreateDrawnButton 869
XmCreateDropDownComboBox 870
XmCreateDropDownList 872
XmCreateErrorDialog. 873
XmCreateFileSelectionBax 875
XmCreateFileSelectionDialogg 877
XmCreateForm 879
XmCreateFormDialog. 880
XmCreateFrame 882
XmCreatelconGadget. 883
XmCreatelnformationDialog« . . 884
XmCreateLabel 886
XmCreateLabelGadget 887
XmCreatelist.+ 888
XmCreateMainWindow 889
XmCreateMenuBar 890
XmCreateMenuShell 892
XmCreateMessageBax 893
XmCreateMessageDialogg 895
XmCreateNotebook 897
XmCreateOptionMenu 898
XmCreatePanedWindow 901
XmCreatePopupMenu 902
XmCreatePromptDialog 904
XmCreatePulldownMenu. 906
XmCreatePushButton. 909
XmCreatePushButtonGadget. 910
XmCreateQuestionDialog. 911
XmCreateRadioBox 913
XmCreateRowColumn 915
XmCreateScale 917
XmCreateScrollBar 918
XmCreateScrolledList. 919
XmCreateScrolledText 921
XmCreateScrolledWindow 923
XmCreateSelectionBax 924
XmCreateSelectionDialog 926

Motif 2.1—Programmer’s Reference

Vi

XmCreateSeparator . .
XmCreateSeparatorGadget .
XmCreateSimpleCheckBox .
XmCreateSimpleMenuBar
XmCreateSimpleOptionMenu.
XmCreateSimplePopupMenu.
XmCreateSimplePulldownMenu .
XmCreateSimpleRadioBax
XmCreateSimpleSpinBox.
XmCreateSpinBox
XmCreateTemplateDialog
XmCreateText.
XmCreateTextField
XmCreateToggleButton
XmCreateToggleButtonGadget
XmCreateWarningDialog .
XmCreateWorkArea .
XmCreateWorkingDialog .
XmCvtByteStreamToXmString
XmCvtCTToXmString.
XmCvtStringToUnitType .

XvatTextPropertyToXmStnngTabIe.

XmCvtXmStringTableToTextProperty.
XmCvtXmStringToByteStream
XmCvtXmStringToCT.
XmbDeactivateProtocol
XmbDeactivateWMProtocol
XmDestroyPixmap
XmbDirectionMatch
XmbDirectionMatchPartial .
XmDirectionToStringDirection
XmDragCancel

XmDragStart .

XmDropSite

XmDropS|teConf|gureStacklngOrder.

XmDropSiteEndUpdate
XmDropS|teQueryStack|ngOrder
XmDropSiteRegister . .
XmDropSiteRegistered
XmDropSiteRetrieve .
XmDropSiteStartUpdate .
XmDropSiteUnregister
XmDropSiteUpdate
XmDropTransferAdd .

928
929
930
932
934
936
938
940
942
943
945
947
948
949
950
951
953
955
957
958
959
960
962
964
966
968
970
971
972
974
975
977
978
980
990
992
993
995
997
998
999
1000
1001
1002

Contents

XmDropTransferStart.
XmFileSelectionBoxGetChild.
XmFileSelectionDoSearch
XmFontListAdd .
XmFontListAppendEntry .
XmFontListCopy .
XmFontListCreate.
XmFontListEntryCreate
XmFontListEntryFree.
XmFontListEntryGetFont .
XmFontListEntryGetTag .
XmFontListEntryl oad.
XmFontListFree . .
XmFontListFreeFontContext .
XmFontListGetNextFont .
XmFontListinitFontContext
XmFontListNextEntry .
XmFontListRemoveEntry .
XmGetAtomName.
XmGetColorCalculation
XmGetColors .
XmGetDestination
XmGetDragContext
XmGetFocusWidget .
XmGetMenuCursor
XmGetPixmap. .
XmGetPixmapByDepth
XmGetPostedFromWidget

XmGetSecondaryResourceData .

XmGetTabGroup .
XmGetTearOffControl.
XmGetVisibility
XmGetXmDisplay.
XmGetXmScreen.
XmimCloseXIM
XmimFreeXIC.
XmIimGetXIC .
XmimGetXIM. . .
XmIimMbLookupString
XmimMbResetIC .
XmImRegister.
XmimSetFocusValues.
XmimSetValues
XmimSetXIC .

1003
1005
1007
1008
1010
1011
1012
1014
1016
1017
1018
1019
1021
1022
1023
1025
1026
1027
1029
1030
1031
1033
1034
1036
1037
1038
1042
1048
1049
1051
1052
1054
1056
1057
1058
1059
1060
1062
1063
1066
1067
1068
1070
1073

Vi

Motif 2.1—Programmer’s Reference

XmIimUnregister 1074
XmimUnsetFocus. . « .« .« « .« . . « 1075
XmimVaSetFocusValues. 1076
XmimVaSetvalues 1078
Xminstallmage 1079
XminternAtom. . .« .« .+ « &« 1081
XmlsMotifWMRunning 1082
XmlsTraversable+ .+ . . . 1083
XmListAddltem+ .+ .« . . . 1085
XmListAddltemUnselected 1086
XmListAddltems« .« . . . 1087
XmListAddltemsUnselected 1088
XmListDeleteAllltems. 1089
XmListDeleteltem.« .« .« .+ . . 1090
XmListDeleteltems+ 1091
XmListDeleteltemsPos 1092
XmListDeletePos.+ . . . 1093
XmListDeletePositons 1094
XmListDeselectAllltems+ .+ . . 1095
XmListDeselectltem« . . 1096
XmListDeselectPos+ .+ .« .« . . 1097
XmListGetKbdltemPos 1098
XmListGetMatchPos 1099
XmListGetSelectedPas 1101
XmListltemExists. . .+ .+« « « « . . . 1103
XmListltemPos+ .« .« .« . . . 1104
XmListPosSelected 1105
XmListPosToBounds. . . .+ . .« . . . 1106
XmListReplaceltems 1108
XmListReplaceltemsPos. 1110
XmListReplaceltemsPosUnselected 1112
XmListReplaceltemsUnselected 1114
XmListReplacePositions 1116
XmListSelectltem. 1118
XmListSelectPos.+ . . . 1119
XmListSetAddMode 1120
XmListSetBottomltem. 1121
XmListSetBottomPos. . . .+ .« .« .« . . 1122
XmListSetHorizPos 1123
XmListSetltem+ .+ .+« « .« .« . 1124
XmListSetkbdltemPos 1125
XmListSetPos. . . .« .+« + .« « « « . 1126
XmListUpdateSelectedList 1127
XmListYToPos+ .« .+« .« . . . 1128

viii

Contents

XmMainWindowSep1l.
XmMainWindowSep2.
XmMainWindowSep3.
XmMainWindowSetAreas.
XmMapSegmentEncoding
XmMenuPosition . .
XmMessageBoxGetChlld
XmNotebookGetPagelnfo.
XmObjectAtPoint .
XmOptionButtonGadget .
XmOptionLabelGadget
XmParseMappingCreate .
XmParseMappingFree
XmParseMappingGetValues .
XmParseMappingSetValues .
XmParseTableFree
XmGetScaledPixmap.
XmPrintPopupPDM
XmPrintSetup.

XmPrintShell .
XmPrintToFile.
XmProcessTraversal .
XmRedisplayWidget .
XmRegisterSegmentEncoding
XmRemoveFromPostFromList
XmRemoveProtocolCallback .
XmRemoveProtocols .
XmRemoveTabGroup. .
XmRemoveWMProtocoICaIIback
XmRemoveWMProtocols. .
XmRenderTableAddRenditions
XmRenderTableCopy. .
XmRenderTableCvtFromProp
XmRenderTableCvtToProp
XmRenderTableFree . .
XmRenderTableGetRendition
XmRenderTableGetRenditions
XmRenderTableGetTags .

XmRenderTableRemoveRenditions .

XmRenditionCreate
XmRenditionFree.
XmRenditionRetrieve .
XmRenditionUpdate .
XmRepTypeAddReverse .

1129
1130
1131
1132
1134
1135
1136
1138
1141
1143
1145
1147
1148
1149
1150
1151
1152
1154
1157
1160
1166
1169
1175
1179
1181
1183
1185
1187
1188
1189
1190
1192
1193
1194
1195
1196
1197
1199
1200
1202
1204
1205
1206
1207

Motif 2.1—Programmer’s Reference

XmRepTypeGetld. 1208
XmRepTypeGetNamelList. 1209
XmRepTypeGetRecord 1210
XmRepTypeGetRegistered 1212
XmRepTypeInstalITearOffModeIConverter « - . 1214
XmRepTypeRegister 1215
XmRepTypeValidvalue 1217
XmResolveAllPartOffsets. 1218
XmResolvePartOffsets 1222
XmScaleGetvValue. 1225
XmScaleSetTicks. . . .+ .« .+ .+ . . . 1226
XmScaleSetvalve. 1228
XmScrollBarGetvalues 1229
XmScrollBarSetvalues 1231
XmScrollVisible . . « o« o+« = . . 1233
XmScroIIedWmdowSetAreas « o« o« o« .. 1235
XmSelectionBoxGetChid, 1237
XmSetColorCalculaton 1239
XmSetFontUnit 1241
XmSetFontUnits 1242
XmSetMenuCursar . . .+ .+ .« 1244
XmSetProtocolHooks. 1245
XmSetWMProtocolHooks, 1247
XmSpinBox . . . =« .« .. 1249
XmS|mpIeSp|nBoxAddItem « o« o« x o« o« . 1269
XmSimpleSpinBoxDeletePos. 1270
XmSimpleSpinBoxSetltemm 1271
XmSpinBoxValidatePosition 1272
XmSimpleSpinBox 1276
XmStringBaseline. 1285
XmStringByteCompare 1286
XmStringByteStreamLength 1288
XmStringCompare 1289
XmStringComponentCreate 1290
XmStringComponentType e - x e« woow 1292
XmStringConcat . . « =« o« & .o« 1295
XmStrlngConcatAndFree « -« = o« o« oo. 1296
XmStringCopy- =+« + « .« .« .« . . 1298
XmStringCreate 1299
XmStringCreatelLocalized. 1301
XmStringCreatelLtoR. 1302
XmStringCreateSimple 1304
XmStringDirectionCreate. 1306
XmStringDirectionToDirecton 1307

Contents

XmStringDraw.
XmStringDrawlmage .
XmStringDrawUnderline .
XmStringEmpty
XmStringExtent
XmStringFree. . .
XmStringFreeContext.
XmStringGenerate
XmStringGetLtoR.
XmStrmgGetNextComponent
XmStringGetNextSegment
XmStringGetNextTriple
XmStringHasSubstring
XmStringHeight
XmStringlnitContext .
XmStringls\Void
XmStringLength
XmStringLineCount
XmStringNConcat.
XmStringNCopy .
XmStringParseText .
XmStrlngPeekNextComponent
XmStringPeekNextTriple .
XmStringPutRendition
XmStringSegmentCreate.
XmStringSeparatorCreate

XmStringTableParseStringArray .

XmStringTableProposeTablist
XmStringTableToXmString
XmStringTableUnparse .
XmStringToXmStringTable
XmStringUnparse.
XmStringWidth
XmTabCreate.

XmTabFree
XmTabGetValues .
XmTabListCopy
XmTablListFree
XmTabListGetTab.
XmTablListInsertTabs .
XmTabListRemoveTabs . .
XmTabListReplacePositions .
XmTabListTabCount .
XmTabSetValue

1308
1310
1312
1314
1315
1316
1317
1318
1320
1322
1325
1327
1329
1330
1331
1332
1333
1334
1335
1337
1338
1341
1342
1343
1345
1347
1348
1350
1352
1354
1356
1358
1361
1362
1364
1365
1367
1369
1370
1371
1373
1375
1377
1378

Xi

Motif 2.1—Programmer’s Reference

Xii

XmTargetsAreCompatible.
XmTextClearSelection
XmTextCopy . .
XmTextCopyLink .
XmTextCut .
XmTextDisableRedisplay .
XmTextEnableRedisplay .
XmTextFieldClearSelection
XmTextFieldCopy. .
XmTextFieldCopyLink.
XmTextFieldCut . .
XmTextFieldGetBaseline .
XmTextFieldGetEditable .
XmTextFieldGetlnsertionPosition.
XmTextFieldGetLastPosition .
XmTextFieldGetMaxLength
XmTextFieldGetSelection.
XmTextFieldGetSelectionPosition
XmTextFieldGetSelectionWcs
XmTextFieldGetString.
XmTextFieldGetStringWcs
XmTextFieldGetSubstring.
XmTextFieldGetSubstringWcs
XmTextFieldInsert. .
XmTextFieldlnsertWcs
XmTextFieldPaste.
XmTextFieldPasteLink
XmTextFieldPosToXY.
XmTextFieldRemove .
XmTextFieldReplace .
XmTextFieldReplaceWcs.
XmTextFieldSetAddMode.
XmTextFieldSetEditable .
XmTextFieldSetHighlight .
XmTextFieldSetinsertionPosition.
XmTextFieldSetMaxLength
XmTextFieldSetSelection.
XmTextFieldSetString.
XmTextFieldSetStringWcs
XmTextFieldShowPosition
XmTextFieldXYToPos.
XmTextFindString.
XmTextFindStringWcs
XmTextGetBaseline

1379
1381
1382
1384
1386
1388
1389
1390
1391
1392
1394
1396
1397
1398
1399
1400
1401
1402
1404
1405
1406
1407
1409
1411
1413
1415
1417
1418
1420
1421
1423
1425
1426
1427
1429
1430
1431
1432
1433
1434
1435
1436
1438
1440

Contents

XmTextGetCenterline.
XmTextGetEditable
XmTextGetlnsertionPosition .
XmTextGetLastPosition
XmTextGetMaxLength
XmTextGetSelection . .
XmTextGetSelectionPosition .
XmTextGetSelectionWcs .
XmTextGetSource
XmTextGetString .
XmTextGetStringWcs.
XmTextGetSubstring .
XmTextGetSubstringWecs.
XmTextGetTopCharacter .
XmTextlnsert . .
XmTextlnsertWcs.
XmTextPaste .
XmTextPasteLink .
XmTextPosToXY .
XmTextRemove
XmTextReplace
XmTextReplaceWcs .
XmTextScroll . .
XmTextSetAddMode .
XmTextSetEditable
XmTextSetHighlight
XmTextSetlnsertionPosition .
XmTextSetMaxLength
XmTextSetSelection .
XmTextSetSource.
XmTextSetString .
XmTextSetStringWecs .
XmTextSetTopCharacter .
XmTextShowPosition .
XmTextXYToPos .

XmToggleButtonGadgetGetState.
XmToggleButtonGadgetSetState.

XmToggleButtonGetState.
XmToggleButtonSetState.
XmToggleButtonSetValue.
XmTrackingEvent.

XmTrackingLocate

XmTransferDone . .
XmTransferSendRequest.

1441
1442
1443
1444
1445
1446
1447
1449
1450
1451
1452
1453
1455
1457
1458
1460
1462
1464
1465
1467
1468
1470
1472
1473
1474
1475
1477
1478
1479
1480
1482
1483
1484
1485
1486
1488
1489
1491
1492
1493
1494
1496
1498
1501

Xiii

Motif 2.1—Programmer’s Reference

XmTransferSetParameters 1502
XmTransferStartRequest. 1504

XmTransfervalue. 1505

XmTranslateKey 1508

XmUninstallmage. 1510

XmUpdateDisplay. . « « o« .« . . 1512
XmVaCreateS|mpIeCheckBox « « o« o« = . 1512
XmVaCreateSimpleMenuBar. 1515
XmVaCreateSimpleOptionMenu 1517
XmVaCreateSimplePopupMenu 1521
XmVaCreateSimplePulldownMenu 1525
XmVaCreateSimpleRadioBox. 1529

XmWidgetGetBaselines 1532
XmWidgetGetDisplayRect 1534

Chapter 7. Mrm Functions . . « =« = o« a = = . 1537
MrmCIoseHlerarchy « +« « %« « x« « = . 1538

MrmFetchBitmapLiteral 1539

MrmFetchColorLiteral. 1541

MrmFetchlconLiteral 1543

MrmFetchLiteral 1545

MrmFetchSetvalues 1547

MrmFetchWidget. 1549
MrmFetchWidgetOverride. 1551

Mrminitialize+ .+ . .+ .+ . . . 1553

MrmOpenHierarchy . . « « « « = . 1554
MrmOpenHlerarchyFromBuffer « « « « . . 1558
MrmOpenHlerarchyPerDlspIa.y « « « « = . 1560

MrmRegisterClass . . « « « « = . 1565

MrmRegisterNames . . « o« o« o« . 1567
MrmReg|sterNamesInH|erarchy « = o« o« . 1569

Chapter 8. Uil Functions . N Yk
U|I . « o« « x o« w1572

U|IDumpSymb0ITabIe « « « « « &« = . 1578

Chapter 9. File Formats« .« .« .« .« « « .« . . 1581
MWMIC + « + &« + « + + » + « . 1582

Traits .+ « « « « + « &« « « . . 1597

UL . .« + &« « + « « W« « =+« =« . 1lo606

WML . . .+ .+ + « « + « « . . . le42

Appendix A. Constraint Arguments and Automatically Created Children . . . 1653

Xiv

Contents

Appendix B. UIL Built-In Tables+ . .+ .+ .+ . . .« . 1659
Appendix C. UIL Arguments . . .+« « « « « « « « « « . . 1755
Appendix D. UIL Diagnostic Messages. + « +« +« +« « +« « « « . 1773

XV

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers

and suppliers of technology. Its mission is to cause the development of a viable global
information infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the
telephone. The essential functionality embedded in this infrastructure is what we term

the IT DialTone. The Open Group creates an environment where all elements involved

in technology development can cooperate to deliver less costly and more flexible IT

solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the
Open Software Foundation (founded in 1988), The Open Group is supported by most
of the world’s largest user organizations, information systems vendors, and software
suppliers. By combining the strengths of open systems specifications and a proven
branding scheme with collaborative technology development and advanced research,
The Open Group is well positioned to meet its new mission, as well as to assist
user organizations, vendors, and suppliers in the development and implementation
of products supporting the adoption and proliferation of systems which conform to
standard specifications.

XVili

Preface

With more than 200 member companies, The Open Group helps the IT industry to
advance technologically while managing the change caused by innovation. It does this

by:
» consolidating, prioritizing, and communicating customer requirements to vendors

» conducting research and development with industry, academia, and government
agencies to deliver innovation and economy through projects associated with its
Research Institute

* managing cost-effective development efforts that accelerate consistent multi-
vendor deployment of technology in response to customer requirements

 adopting, integrating, and publishing industry standard specifications that provide
an essential set of blueprints for building open information systems and integrating
new technology as it becomes available

* licensing and promoting the Open Brand, represented by the “X” mark, that
designates vendor products which conform to Open Group Product Standards

» promoting the benefits of open systems to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle
including innovation, market adoption, product development, and proliferation.
Presently, it focuses on seven strategic areas: open systems application platform
development, architecture, distributed systems management, interoperability,
distributed computing environment, security, and the information superhighway. The
Open Group is also responsible for the management of the UNIX trademark on
behalf of the industry.

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the
IT DialTone, development of CAE and Preliminary Specifications through an industry
consensus review and adoption procedure (in parallel with formal standards work),
and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the

documentation that records the conformance requirements (and other information) to
which a vendor may register a product. There are currently two forms of Product

XViii

Preface

Standard, namely the Profile Definition and the Component Definition, although these
will eventually be merged into one.

The “X” mark is used by vendors to demonstrate that their products conform to
the relevant Product Standard. By use of the Open Brand they guarantee, through
the X/Open Trade Mark Licence Agreement (TMLA), to maintain their products in
conformance with the Product Standard so that the product works, will continue to
work, and that any problems will be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part
of which is focused on specification development and product documentation, but
which also includes Guides, Snapshots, Technical Studies, Branding and Testing
documentation, industry surveys, and business titles.

There are several types of specification:

CAE Specifications
CAE (Common Applications Environment) Specifications are the stable
specifications that form the basis for our Product Standards, which
are used to develop X/Open branded systems. These specifications are
intended to be used widely within the industry for product development
and procurement purposes.

Anyone developing products that implement a CAE Specification can
enjoy the benefits of a single, widely supported industry standard.
Where appropriate, they can demonstrate product compliance through
the Open Brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of
conformant products without delay.

Preliminary Specifications
Preliminary Specifications usually address an emerging area of
technology and consequently are not yet supported by multiple
sources of stable conformant implementations. They are published
for the purpose of validation through implementation of products. A
Preliminary Specification is not a draft specification; rather, it is as

XiX

Preface

XX

stable as can be achieved, through applying The Open Group’s rigorous
development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued
by formal standards organizations, and developers are encouraged to
develop products on the basis of them. However, experience through
implementation work may result in significant (possibly upwardly
incompatible) changes before its progression to becoming a CAE
Specification. While the intent is to progress Preliminary Specifications
to corresponding CAE Specifications, the ability to do so depends on
consensus among Open Group members.

Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia.
For example, it publishes the NMF SPIRIT procurement specifications
on behalf of the Network Management Forum. It also publishes

Technology Specifications relating to OSF/1, DCE, OSF/Motif, and

CDE.

Technology Specifications (formerly AES Specifications) are often

candidates for consensus review, and may be adopted as CAE
Specifications, in which case the relevant Technology Specification is
superseded by a CAE Specification.

In addition, The Open Group publishes:

Product Documentation

Guides

This includes product documentation—programmer’'s guides, user
manuals, and so on—relating to the Prestructured Technology Projects
(PSTs), such as DCE and CDE. It also includes the Single UNIX

Documentation, designed for use as common product documentation
for the whole industry.

These provide information that is useful in the evaluation, procurement,
development, or management of open systems, particularly those that
relate to the CAE Specifications. The Open Group Guides are advisory,
not normative, and should not be referenced for purposes of specifying
or claiming conformance to a Product Standard.

Technical Studies

Technical Studies present results of analyses performed on subjects of
interest in areas relevant to The Open Group’s Technical Program. They
are intended to communicate the findings to the outside world so as

Preface

to stimulate discussion and activity in other bodies and the industry in
general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new
developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

» A new Version indicates there is no change to the definitive information contained
in the previous publication of that title, but additions/extensions are included. As
such, it replaces the previous publication.

» A new Issue indicates there is substantive change to the definitive information
contained in the previous publication of that title, and there may also be additions/
extensions. As such, both previous and new documents are maintained as current
publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda

information is published on the World-Wide Webldtp://www.opengroup.org/public/
pubs

Ordering Information

Full catalogue and ordering information on all Open Group publications is available
on the World-Wide Web ahttp://www.opengroup.org/public/pubs

XXi

Preface

This Book

The Motif 2.1—Programmer’'s Referenantains the reference pages for all Motif
programs, Xt widget classes, Xm widget classes, translations, Xm data types and
functions, Mrm functions, Uil functions, and file formats.

Audience

This document is written for programmers who want to write applications by using
Motif interfaces.

This document assumes that the reader is familiar with the American National
Standards Institute (ANSI) C programming language. It also assumes that the reader
has a general understanding of the X Window System, the Xlib library, and the X
Toolkit Intrinsics (Xt).

Applicability

This is revision 2.1 of this document. It applies to Version 2.1 of the Motif software
system.

Purpose

The purpose of this guide is to provide detailed information about all Motif 2.1
programs, widget classes, translations, data types, functions, and file formats for the
application developer.

Organization

This document is organized into nine chapter and four appendixes:

XXil

Preface

» Chapter 1 contains the
» Chapter 2 contains the
» Chapter 3 contains the
» Chapter 4 contains the
» Chapter 5 contains the
» Chapter 6 contains the
» Chapter 7 contains the
» Chapter 8 contains the

» Chapter 9 contains the

» Appendix A contains a list of the constraint arguments and automatically created

reference pages for Motif programs.
reference pages for Xt widget classes.
reference pages for Xm widget classes.
reference pages for Motif translations.
reference pages for Xm data types.
reference pages for Xm functions.
reference pages for Mrm functions.
reference pages for Uil functions.

reference pages for Motif file formats.

children for widgets available within UIL (User Interface Language).

» Appendix B contains a list of the reasons and controls, or children, that UIL

supports for each Motif Toolkit object.

» Appendix C contains a list of the UIL arguments and their data types.

» Appendix D contains a list of the UIL compiler diagnostics messages.

Reference Page Format

The reference pages in this volume use the following format:

Purpose This section gives a short description of the interface.

Synopsis This section describes the appropriate syntax for using the interface.

Description This section describes the behavior of the interface. On widget reference
pages there are tables of resource values in the descriptions. These tables

have the following headings:

Name Contains the name of the resource. Each new resource is

described following the new resources table.

Class Contains the class of the resource.
Type Contains the type of the resource.
Default Contains the default value of the resource.

XXiii

Preface

Access Contains the access permissions for the resourc€ A
in this column means the resource can be set at widget
creation time. ArS means the resource can be set anytime.
A G means the resource’s value can be retrieved.

Examples This section gives practical examples for using the interface.

Return Values
This section lists the values returned by function interfaces.

Errors/Warnings
This section describes the error conditions associated with using this
interface.

Related Information
This section provides cross-references to related interfaces and header
files described within this document.

Related Documents

For information on Motif and CDE style, refer to the following documents:

CDE 2.1/Motif 2.1—Style Guide and Glossary
Document Number M027 ISBN 1-85912-104-7

CDE 2.1/Motif 2.1—Style Guide Certification Checklist
Document Number M028 ISBN 1-85912-109-8

CDE 2.1/Motif 2.1—Style Guide Reference
Document Number M029 ISBN 1-85912-114-4

For additional information about Motif and CDE, refer to the following Desktop
Documentation:

CDE 2.1/Motif 2.1—User’s Guide
Document Number M021 ISBN 1-85912-173-X

CDE 2.1—System Manager’'s Guide
Document Number M022 ISBN 1-85912-178-0

XXV

Preface

CDE 2.1—Programmer’s Overview and Guide
Document Number M023 ISBN 1-85912-183-7

CDE 2.1—Programmer’s Reference, Volume 1
Document Number M024A ISBN 1-85912-188-8

CDE 2.1—Programmer’s Reference, Volume 2
Document Number M024B ISBN 1-85912-193-4

CDE 2.1—Programmer’s Reference, Volume 3
Document Number M024C ISBN 1-85912-174-8

CDE 2.1—Application Developer’'s Guide
Document Number M026 ISBN 1-85912-198-5

Motif 2.1—Programmer’s Guide
Document Number M213 ISBN 1-85912-134-9

Motif 2.1—Widget Writer's Guide
Document Number M216 [ISBN 1-85912-129-2

For additional information about Xlib and Xt, refer to the following X Window System
documents:

Xlib—C Language X Interface

X Toolkit Intrinsics—C Language Interface

Typographic and Keying Conventions

This book uses the following conventions.

XXV

Preface

DocBook SGML Conventions

This book is written in the Structured Generalized Markup Language (SGML) using
the DocBook Document Type Definition (DTD). The following table describes the
DocBook markup used for various semantic elements.

Markup
Appearance Semantic Element(s) Example
AaBbCcl123 The names of commands. Use thels command to list files.

AaBbCc123 The names of command optionsUsels —a to list all files.

AaBbCc123 Command-line placeholder:To delete a file, typem filename
replace with a real name @r
value.

AaBbCc123 The names of files angdEdit your.login file.
directories.

AaBbCc123 Book titles, new words or terms,Read Chapter 6 itUser's Guide
or words to be emphasized. These are callectlass options.
You mustbe root to do this.

Terminology Conventions

Components of the user interface are represented by uppercase letters for each major
word in the name of the component, such as PushButton. In addition, this book uses
the termprimitive to mean any subclass ®mPrimitive and the termmanagerto

mean any subclass ofmManager. Note that both of these terms are in lowercase.

Keyboard Conventions

Because not all keyboards are the same, it is difficult to specify keys that are correct
for every manufacturer’'s keyboard. To solve this problem, this guide describes keys
that use avirtual keymechanism. The termirtual implies that the keys as described

do not necessarily correspond to a fixed set of actual keys. Instead, virtual keys are

XXVi

Preface

linked to actual keys by means wiftual bindings A given virtual key may be bound
to different physical keys for different keyboards.

See Chapter 13 of theMotif 2.1—Programmer’s Guidefor information on
the mechanism for binding virtual keys to actual keys. For details, see the
VirtualBindings (3) reference page in this manual.

Mouse Conventions

Mouse buttons are described in this reference by usiigw@al button mechanism to

better describe behavior independent from the number of buttons on the mouse. This
guide assumes a 3-button mouse. On a 3-button mouse, the leftmost mouse button is
usually defined aBSelect the middle mouse button is usually definedBasansfer,

and the rightmost mouse button is usually defined&tenu. For details about how
virtual mouse buttons are usually defined, seeMinrialBindings (3) reference page

in this document.

Problem Reporting

If you have any problems with the software or vendor-supplied documentation, contact
your software vendor’s customer service department. Comments relating to this Open
Group document, however, should be sent to the addresses provided on the copyright

page.

Trademarks

Motif® OSF/P, and UNIX® are registered trademarks and the IT DialTon&he
Open Group, and the “X Device” are trademarks of The Open Group.

AIX is a trademark of International Business Machines Corp.
HP/UX is a trademark of Hewlett Packard Company.

Solaris is a trademark of Sun Microsystems, Inc.

XXVii

Preface

UnixWare is a trademark of Novell, Inc.
Microsoft Windows is a trademark of Microsoft.
0S/2 is a trademark of International Business Machines Corp.

X Window System is a trademark of X Consortium, Inc.

XXVili

Chapter 4

Translations

739

Motif 2.1—Programmer’s Reference

VirtualBindings(library call)

VirtualBindings

Purpose Bindings for virtual mouse and key events

Description

The Motif reference pages describe key translations in termstofl bindings based
on those described in theDE 2.1/Motif 2.1—Style Guide and Glossary

Bindings for osf Keysyms

Keysym strings that begin with osf are not part of the X server’'s keyboard mapping.
Instead, these keysyms are produced on the client side at run time. They are interpreted
by the routineXmTranslateKey, and are used by the translation manager when the
server delivers an actual key event. For each application, a mapping is maintained
between osf keysyms and keysyms that correspond to actual keys. This mapping is
based on information obtained at application startup from one of the following sources,
listed in order of precedence:

» The XmNdefaultVirtualBindings resource from Display.

» A property on the root window, which can be set fmyvm on startup, or by the
xmbind client, or on prior startup of a Motif application.

» The file .motifbind in the user's home directory.

* A set of bindings based on the vendor string and optionally the vendor release of
the X server. Motif searches for these bindings in the following steps:

1. If the file xmbind.alias exists in the user’s home directory, Motif searches
this file for a pathname associated with the vendor string or with the vendor
string and vendor release. If it finds such a pathname and if that file exists,
Motif loads the bindings contained in that file.

2. If it has found no bindings, Motif next looks for the filembind.alias
in the directory specified by the environment variabt@IBINDDIR ,
if XMBINDDIR is set, or in the directory/usr/lib/Xm/bindings if
XMBINDDIR is not set. If this file exists Motif searches it for a pathname
associated with the vendor string or with the vendor string and vendor

740

Translations

VirtualBindings(library call)

release. If it finds such a pathname and if that file exists, Motif loads the
bindings contained in that file.

3. If it still has found no bindings, Motif loads a set of hard-coded fallback
bindings.

The xmbind.alias file contains zero or more lines of the following form:
" vendor_string [vendor_release " bindings_file

where vendor_stringis the X server vendor name as returned by the X client
xdpyinfo or the Xlib function XServerVendor, and must appear in double quotes.

If vendor_releasés included, it is the X server vendor release number as returned
by the X clientxdpyinfo or the Xlib function XVendorRelease and must also be
contained within the double quotes separated by one spacevieador_string The
vendor_releasargument is provided to allow support of changes in keyboard hardware
from a vendor, assuming that the vendor increments the release number to flag such
changes. Alternatively, the vendor may simply use a unique vendor string for each
different keyboard.

The bindings_file argument is the pathname of the file containing the bindings
themselves. It can be a relative or absolute pathname. If it it is a relative pathname, it
is relative to the location of thembind.alias file.

Comment lines in theembind.alias file begin with ! (exclamation point).

The bindings found in either thenotifbind file or the vendor mapping are placed in
a property on the root window. This property is used to determine the bindings for
subsequent Motif applications.

On startupmwm attempts to load the filemotifbind in the user's home directory.

If this is unsuccessful, it loads the vendor bindings as described previously. It places
the bindings it loads in a property on the root window for use by subsequent Motif
applications.

Thexmbind function loads bindings from a file if that file is specified on the command
line. If no file is specified on the command line, it attempts to load therfiltifbind

in the user's home directory. If this fails, it loads the vendor bindings as described
previously. It places the bindings it loads in a property on the root window for use by
subsequent Motif applications.

The format of the specification for mapping osf keysyms to actual keysyms is similar
to that of a specification for an event translation. (See below) The syntax is specified
(and below) here in EBNF notation using the following conventions:

741

Motif 2.1—Programmer’s Reference

VirtualBindings(library call)

742

[a] Means either nothing or a
{ a} Means zero or more occurrences of a
(al b) Means either a or b.

Terminals are enclosed in double quotation marks.

The syntax of an osf keysym binding specification is as follows:

binding_spec = {line "\n"} [line]

line = virtual_keysym ":" list_of key_event
list_of_key_event = key_event { "" key_event}

key_event = {modifier_name} "<Key>" actual_keysym
virtual_keysym = keysym

actual_keysym = keysym

keysym = A valid X11 keysym name that is

mapped by XStringToKeysym

As with event translations, more specific event descriptions must precede less specific
descriptions. For example, an event description for a key with a modifier must precede
a description for the same key without the same modifier.

Following is an example of a specification for tHefaultVirtualBindings resource
in a resource file:

*defaultVirtualBindings: \

osfBackSpace : <Key>BackSpace \n\
osflnsert : <Key>InsertChar \n\
osfDelete : <Key>DeleteChar \n\
osfLeft : <Key>left, Ctrl<Key>H

The format of a.motifbind file or of a file containing vendor bindings is the same,
except that the binding specification for each keysym is placed on a separate line. The
previous example specification appears as follows .imatifbind or vendor bindings

file:

osfBackSpace : <Key>BackSpace
osflnsert : <Key>InsertChar
osfDelete : <Key>DeleteChar
osfLeft : <Key>left, Ctrl<Key>H

Translations

VirtualBindings(library call)

The following table lists the fixed fallback default bindings fusf keysyms.

Fallback Default Bindings for osf Keysyms

osf Keysym Fallback Default Binding
osfActivate: <Key>KP_Enter <Key>Execute
osfAddMode: Shift<Key>F8

osfBackSpace: <Key>BackSpace

osfBeginLine:

<Key>Home <Key>Begin

osfCancel: <Key>Escape <Key>Cancel
osfClear: <Key>Clear

osfCopy: unbound

osfCut: unbound

osfDelete: <Key>Delete

osfDeselectAll: unbound

osfDown: <Key>Down
osfEndLine: <Key>End

osfHelp: <Key>F1 <Key>Help
osflnsert: <Key>Insert

osfLeft: <Key>Left
osfLeftLine: unbound

osfMenu: Shift<Key>F10 <Key>Menu
osfMenuBar: <Key>F10 Shift<Key>Menu
osfNextMinor: unbound

osfPageDown: <Key>Next

osfPageletft: unbound

osfPageRight: unbound

osfPageUp: <Key>Prior

osfPaste: unbound

743

Motif 2.1—Programmer’s Reference

VirtualBindings(library call)

744

osfPrimaryPaste: unbound
osfPriorMinor: unbound
osfReselect: unbound
osfRestore: unbound
osfRight: <Key>Right
osfRightLine: unbound
osfSelect: <Key>Select
osfSelectAll: unbound
osfSwitchDirection: Alt<Key>Return Alt<Key>KP_Enter
osfUndo: <Key>Undo
osfUp: <Key>Up

Changes in the Handling of Shifted Keys

In conjunction with MIT X11R5 Patch 24, this version of Motif introduces a change

in the way that keys involving the <Shift> modifier are processed. This change allows
the numeric keypad to be used to generate numbers using the standard X mechanisms.
Since the default behavior is now to honor the xmodmap keymap bindings, translations
and virtual key bindings that use <Shift> may behave differently. A common symptom

is that unshifted keypad and function keys (with or without other modifiers) produce
the expected results, but shifted ones do not.

To obtain the old behavior you can remove the shifted interpretation from problematic
keys using thexmodmap utility. Each entry in axmodmap keymap table contains

up to four keysym bindings. The second and fourth keysyms are for shifted keys. If
an expression contains only two keysyms, simply remove the second keysym. If an
entry contains three or more keysyms, replace the second keysymNasiymbol

and remove the fourth keysym.

Action Translations

The translation table syntax used by Motif is completely specified in the X11R5
Toolkit Intrinsics Documentation. For the complete syntax description, and for general
instructions about writing or modifying a translation table, please refer to this
document. A brief summary of the translation table format, however, is included
below.

Translations

VirtualBindings(library call)

The syntax is defined as in the binding syntax specification above. Informal
descriptions are contained in angle brackets (<>).

TranslationTable [directive] { production }

directive = ("#replace" | "#override" | "#augment") "\n"
production = lhs ":" rhs "\n"

Ihs = (event | keyseq) {"," (event | keyseq) }

keyseq = " keychar { keychar } "™

keychar = ("~ "$t | "\ <ISO Latin 1 character>

event = [modifier_list] "<" event_type ">" [count] {detail}
modifier_list = (""" { modifier } | "None™)

modifier = ["~"] ("@" <keysym> | <name from table below>)
count = "(" <positive integer> ["+"]")"

rhs = { action_name "(" [params] ")" }

params = string { "," string }

The string field need not be quoted unless it includes a space or tab character, or any
comma, newline, or parenthesis. The entire list of string values making ygpathens
field will ba passed to the named action routine.

The detailsfield may be used to specify a keysym that will identify a particular key
event. For example, Key is the name of a type of event, but it must be modified by
the detailsfield to name a specific event, such as Key

Modifier Names The modifier list, which may be empty, consists of a list of modifier
keys that must be pressed with the key sequence. The modifier keys may abbreviated
with single letters, as in the following list of the familiar modifiers:

S Shift

cor” Ctrl (Control)
m or $ Meta
a Alt

Other modifiers are available, such as "Mod5" and "Button2." These have no
abbreviation (although the "Button" modifiers may be abbreviated in combination with
events, as outlined below). If a modifier list has no entries, and is not "None", it means
the position of the modifier keys is irrelevant. If modifiers are listed, the designated
keys must be in the specified position, but the unlisted modifier keys are irrelevant. If
the list begins with an exclamation point (!), however, the unlisted modifiers may not
be asserted. In addition, if a modifier name is preceded by a tilde (~), the corresponding
key mustnot be pressed.

745

Motif 2.1—Programmer’s Reference
VirtualBindings(library call)

If a modifier list begins with a colon (:), X tries to use the standard modifiers (Shift
and Lock), if present, to map the key event code into a recognized keysym.

Event Types These are a few of the recognized event types.

Key or KeyDown
A keyboard key was pressed.

KeyUp A keyboard key was released.

BtnDown A mouse button was pressed.

BtnUp A mouse button was released.

Motion The mouse pointer moved.

Enter The pointer entered the widget's window.
Leave The pointer left the widget's window.
Focusin The widget has received focus.

FocusOut The widget has lost focus.

There are some event abbreviations available. For example, Btn1Motion is actually a
"Motion" event, modified with the "Button1" modifieBtton1<Motion>). Similarly,
Btn3Up is actually a "BtnUp" event with the "Button3" modifier. These abbreviations
are used extensively in the Motif translation tables.

Related Information
xmbind (1)

746

Chapter 5

Xm Data Types

747

Motif 2.1—Programmer’s Reference

XmDirection(library call)

XmDirection

Purpose Data type for the direction of widget components

Synopsis #include <Xm/Xm.h>

Description

XmDirection is the data type specifying the direction in which the system displays
subwidgets, children of widgets, or other visual components that are to be laid out.
This data type also affects traversal order within tab groups.

XmbDirection is implemented as an unsigned char bit mask. The horizontal and
vertical directions can be specified independent of each oXmbDirection also
specifies the precedence of the horizontal and vertical directions relative to each other.
For example, a value cKmRIGHT_TO_LEFT_TOP_TO_BOTTOM lays out a
component horizontally from right to left first, then vertically top to bottom.

XmbDirection provides the following masks, each of which corresponds to a particular
bit in XmDirection:

« XmRIGHT_TO_LEFT_MASK

« XmLEFT_TO_RIGHT_MASK

« XmTOP_TO_BOTTOM_MASK

« XmBOTTOM_TO_TOP_MASK

« XMPRECEDENCE_HORIZ_MASK
« XMPRECEDENCE_VERT_MASK

In addition to the preceding single bit masksnDirection also provides the following
multiple bit masks. These multiple bit masks are particularly useful as arguments to
XmDirectionMatchPartial :

* XMHORIZONTAL_MASK
* XmMPRECEDENCE_MASK

748

Xm Data Types

XmDirection(library call)

* XMVERTICAL_MASK

Motif also provides the following enumerated constants for specifying various
combinations of directions:

XmMRIGHT_TO_LEFT_TOP_TO_BOTTOM
Specifies that the components are laid out from right to left first, then
top to bottom.

XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
Specifies that the components are laid out from left to right first, then
top to bottom.

XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
Specifies that the components are laid out from right to left first, then
bottom to top.

XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
Specifies that the components are laid out from left to right first, then
bottom to top.

XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
Specifies that the components are laid out from top to bottom first, then
right to left.

XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
Specifies that the components are laid out from top to bottom first, then
left to right.

XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
Specifies that the components are laid out from bottom to top first, then
right to left.

XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
Specifies that the components are laid out from bottom to top first, then
left to right.

XmTOP_TO_BOTTOM
Specifies that the components are laid out from top to bottom. If
horizontal direction is important, do not use this constant.

XmBOTTOM_TO_TOP
Specifies that the components are laid out from bottom to top. If
horizontal direction is important, do not use this constant.

749

Motif 2.1—Programmer’s Reference

XmDirection(library call)

XmDEFAULT_DIRECTION
Specifies that the components are laid out according to the default
direction. (This constant is primarily for widget writers.)

XmLEFT_TO_RIGHT
Specifies that the components are laid out from left to right. If vertical
direction is important, do not use this constant.

XmRIGHT_TO_LEFT
Specifies that the components are laid out from right to left. If vertical
direction is important, do not use this constant.

Related Information

XmDirectionMatch (3), XmDirectionMatchPartial (3),
XmDirectionToStringDirection (3), XmString (3), XmStringDirection (3), and
XmStringDirectionToDirection (3).

750

Xm Data Types

XmFontList(library call)

XmFontList

Purpose Data type for a font list

Synopsis #include <Xm/Xm.h>

Description

XmFontList is the data type for a font list. A font list consists of font list entries. Each
entry contains a font or a font set (a group of fonts) and is identified with a tag, which
is optional. If this tag is NULL, the tag is set ®mMFONTLIST_DEFAULT_TAG .

The value of XmMFONTLIST_DEFAULT_TAG is
XmFONTLIST_DEFAULT_TAG_STRING .

When a compound string is displayed, the font list element tag of the compound string
segment is matched with a font list entry tag in the font list and the matching font list
entry is used to display the compound string. A font list entry is chosen as follows:

» The first font list entry whose tag matches the tag of the compound string segment

is used.

If no match has been found and if the tag of the compound string
segment is XmFONTLIST_DEFAULT_TAG , the first font list entry
whose tag matches the tag that would result from creating an entry with
XmSTRING_DEFAULT_CHARSET is used. For example, if creating an entry
with XmSTRING_DEFAULT_CHARSET would result in the tagS0O8859-1

the compound string segment tAghWFONTLIST_DEFAULT_TAG matches the
font list entry taglSO8859-1

If no match has been found and if the tag of the compound string
segment matches the tag that would result from creating a segment with
XmSTRING_DEFAULT_CHARSET , the first font list entry whose tag is
XmFONTLIST_DEFAULT_TAG is used.

If no match has been found, the first entry in the font list is used.

The font list interface consists of the routines listedRialated Information.

751

Motif 2.1—Programmer’s Reference

XmFontList(library call)

Font lists are specified in resource files with the following syntax:

resource_spec font_entry[, font_entry]+

The resource value string consists of one or more font list entries separated by commas.
Eachfont_entryidentifies a font or font set and an optional font list entry tag. A tag
specified for a single font follows the font name and is separated by = (equals sign);
otherwise, in a font set the tag is separated by a colon. The colon is required whether
a tag is specified or not. A font entry uses the following syntax to specify a single
font:

font_nameg =" tag]
For example, the following entry specifies a 10 point Times Italic font without a font
list entry tag;

fontList: -Adobe-Times-Medium-I-Normal--10

A font entry containing a font set is similar, except a semicolon separates multiple
font names and the specification ends with a colon followed by an optional tag:

font_nam¢g ’;’ font_naméd+ "’ [tag]

A font_nameis an X Logical Font Description (XLFD) string artdg is any set of
characters from 1ISO646IRV except space, comma, colon, equal sign and semicolon.
Following is an example of a font set entry. It consists of three fonts (except for
charsets), and an explicit font list entry tag.

*fontList: -Adobe-Courier-Bold-R-Normal--25-180-100-100-M-150;\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240;\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120:MY_TAG

Note that theXmRenderTable is another data type that can be used for font lists.
Refer to theXmRenderTable(3) for details.

Related Information

XmFontListAdd (3), XmFontListAppendEntry (3), XmFontListCopy (3),
XmFontListCreate(3), XmFontListEntryCreate (3), XmFontListEntryFree (3),
XmFontListEntryGetFont (3), XmFontListEntryGetTag (3),
XmFontListEntryLoad (3), XmFontListFree(3), XmFontListFreeFontContext(3),

752

Xm Data Types

XmFontList(library call)

XmFontListGetNextFont(3), XmFontListInitFontContext (3),
XmFontListNextEntry (3), XmFontListRemoveEntry(3), XmRenderTable(3), and
XmString (3).

753

Motif 2.1—Programmer’s Reference

XmParseMapping(library call)

XmParseMapping

Purpose Data type for a compound string parse mapping

Synopsis #include <Xm/Xm.h>

Description

754

XmParseMapping is an opaque data type for a parse mapping used by
XmStringParseText to create a compound string. A parse mapping contains a pattern
to be matched in text being parsed to create a compound string. It also contains a
compound string, or a function to be invoked to provide a compound string, to be
included in the compound string being created whenever the pattern is matched.

An application uses a resource-style interface to specify components for
an XmParseMapping. XmParseMappingCreate creates a parse mapping,
using a resource-style argument listXmParseMappingGetValues and
XmParseMappingSetValues retrieve and set the components of a parse
mapping. XmParseMappingFree recovers memory used by a parse mapping.
XmParseTableis an array ofXmParseMapping objects.

The XmNinvokeParseProcresource is a function of typEmParseProg which is
defined as follows:

XmincludeStatus (*XmParseProdekt_in_out, text_end, type, tag, entry, pattern_length,
str_include, call_datp

XtPointer *ext_in_out

XtPointertext_end

XmTextTypetype

XmStringTagtag;

XmParseMappingntry;

int pattern_length

XmString *str_include

XtPointercall_datg

Xm Data Types

XmParseMapping(library call)

A parse procedure provides an escape mechanism for arbitrarily complex parsing. This
procedure is invoked when a pattern in the input text is matched with a pattern in a
parse mapping whosémNincludeStatusis XmINVOKE .

The input text is a pointer to the first byte of the pattern that was matched to trigger
the call to the parse procedure. The parse procedure consumes as many bytes of the
input string as it needs and sets the input text pointer to the following byte. It returns a
compound string to be included in the compound string being constructed, and it also
returns anXmincludeStatus indicating how the returned compound string should be
handled. If the parse procedure does not set the input text pointer ahead by at least
one byte, the parsing routine continues trying to match the input text with the patterns
in the remaining parse mappings in the parse table. Otherwise, the parsing routine
begins with the new input text pointer and tries to match the input text with patterns

in the parse mappings starting at the beginning of the parse table.

text_in_out Specifies the text being parsed. The value is a pointer to the first byte of
text matching the pattern that triggered the call to the parse procedure.
When the parse procedure returns, this argument is set to the position
in the text where parsing should resume—that is, to the byte following
the last character parsed by the parse procedure.

text_end Specifies a pointer to the end of tiext_in_outstring. If text_endis
NULL, the string is scanned until a NULL character is found. Otherwise,
the string is scanned up to but not including the character whose address
is text_end

type Specifies the type of text and the tag type. If a locale tag should
be createdtype has a value of eitheKXmMULTIBYTE_TEXT or
XmWIDECHAR_TEXT . If a charset should be createtype has a
value of XmMCHARSET TEXT .

tag Specifies the tag to be used in creating the result. The type of string
tag created (charset or locale) depends on the text type and the passed
in tag value. If the tag value is NULL and if type indicates that
a charset string tag should be created, the string tag has the value
that is the result of mappingmSTRING_DEFAULT_CHARSET .
If type indicates a locale string tag, the string tag has the value
_MOTIF_DEFAULT_LOCALE .

entry Specifies the parse mapping that triggered the call to the parse procedure.

755

Motif 2.1—Programmer’s Reference

XmParseMapping(library call)

pattern_length
Specifies the number of bytes in the input text, followiegt in_out
that constitute the matched pattern.

str_include Specifies a pointer to a compound string. The parse procedure creates
a compound string to be included in the compound string being
constructed. The parse procedure then returns the compound string in
this argument.

call_data Specifies data passed by the application to the parsing routine.

The parse procedure returns dmincludeStatus indicating howstr_includeis to be
included in the compound string being constructed. Following are the possible values:

XmINSERT Concatenate the result to the compound string being constructed and
continue parsing.

XmTERMINATE
Concatenate the result to the compound string being constructed and
terminate parsing.

New Resources

The following table defines a set of resources used by the programmer to specify
data. The codes in the access column indicate if the given resource can be set at
creation time (C), set by usingmParseMappingSetValues(S), retrieved by using
XmParseMappingGetValues(G), or is not applicable (N/A).

XmParseMapping Resource Set
Name Class Type Default Access
XmNclientData XtPointer NULL CSG
XmNincludeStatus XmincludeStatus XmINSERT CSG
XmNinvokeParseProc XmParseProc NULL CSG
XmNpattern XtPointer NULL CSG
XmNpatternType XmTextType XmCHARSET_TEXT | CSG
XmNsubstitute XmString NULL CSG

XmNclientData
Specifies data to be used by the parse procedure.

756

Xm Data Types

XmParseMapping(library call)

XmNincludeStatus
Specifies how the result of the mapping is to be included in the
compound string being constructed. Unless the valuéndNVOKE ,
the result of the mapping is the value X¥iNsubstitute. Following are
the possible values fokmNincludeStatus

XmINSERT Concatenate the result to the compound string being
constructed and continue parsing.

XmINVOKE
Invoke the XmNinvokeParseProc on the text being
parsed and use the returned compound string instead
of XmNsubstitute as the result to be inserted into
the compound string being constructed. The include
status returned by the parse procedulem(NSERT
or XmTERMINATE) determines how the returned
compound string is included.

XmTERMINATE
Concatenate the result to the compound string being
constructed and terminate parsing.

XmNinvokeParseProc
Specifies the parse procedure to be invoked wKerNincludeStatus
is XmINVOKE .

XmNpattern
Specifies a pattern to be matched in the text being parsed. This is a
maximum of one character.

XmNpatternType
Specifies the type of the pattern that is the valueXofiNpattern.
Following are the possible values:

* XMCHARSET_TEXT
* XMMULTIBYTE_TEXT
* XmMWIDECHAR_TEXT

XmNsubstitute
Specifies the compound string to be included in the compound
string being constructed whedmNincludeStatus is XmINSERT or
XmMTERMINATE .

757

Motif 2.1—Programmer’s Reference

XmParseMapping(library call)

Related Information

XmParseMappingCreatg3), XmParseMappingFreg3),
XmParseMappingGetValueg3), XmParseMappingSetValue$3),
XmParseTablg3), andXmString (3).

758

Xm Data Types

XmParseTable(library call)

XmParseTable

Purpose Data type for a compound string parse table

Synopsis #include <Xm/Xm.h>

Description

XmParseTable is the data type for an array of parse mappings (objects of type
XmParseMapping).

A parse table is used by some routines that parse and unparse compound strings. The
table is an ordered list of parse mappings. A parsing routine that uses a parse table
scans the input text and searches the parse mappings, in order, for one containing a
pattern that matches the input text. The matching parse mapping supplies a compound
string to be included in the compound string under construction.

An unparsing routine that uses a parse table searches the parse mappings, in order,
for one containing a compound string that matches the input compound string. The
unparsing routine can then include the parse mapping’s text pattern in the output text
under construction.

Related Information
XmParseMapping(3), XmParseTableFred3), andXmString (3).

759

Motif 2.1—Programmer’s Reference

XmRenderTable(library call)

XmRenderTable

Purpose Data type for a render table

Synopsis #include <Xm/Xm.h>

XmRenderTable

Description

760

XmRenderTable is the data type for a render table, which contains a table of
renditions KmRenditions). Each rendition consists of a set of attributes for rendering
text, including a font or fontset, colors, tabs, and lines. Each rendition is identified
with a tag.

When a compound string is displayed, for each segment in the string, the rendition used
to render that string is formed as follows. If the segment has at least one rendition begin
tag or if the list of tags formed by accumulating from previous segments the rendition
begin tags and removing the rendition end tags is not empty, these tags are matched
with renditions in the render table. The effective rendition used to render the segment
is formed by successively merging each rendition found into the current rendition with
non-XmAS_|IS (XmUNSPECIFIED_PIXEL for color resources) values for resources

in the rendition to be merged, thus replacing the corresponding values of the resources
in the current rendition. Finally, if the resulting rendition still has resources with
unspecified values and the segment has a locale or charset tag (these are optional and
mutually exclusive) this tag is matched with a rendition in the render table, and the
missing rendition values are filled in from that entry.

If no matching rendition is found for a particular tag, then the
XmNnoRenditionCallback of the XmDisplay object is called and the render table
is searched again for that tag.

If the resulting rendition does not specify a font or fontset, then for segments whose
text type iSXmMCHARSET_TEXT , the render table will be searched for a rendition
tagged withXmFONTLIST_DEFAULT_TAG , and if a matching rendition is found,

it will be merged into the current rendition. If the resulting rendition contains no font
or fontset, theXmNnoFontCallback will be called with the default rendition and "

Xm Data Types

XmRenderTable(library call)

as the font name. If no rendition matches or no font was found after the callback, then
the first rendition in the render table will be merged into the current rendition. If this
rendition still has no font, then the segment will not be rendered and a warning will
be emitted.

For segments whose text type is XmMULTIBYTE_TEXT or
XmWIDECHAR_TEXT , the render table will be searched for a rendition
tagged with MOTIF_DEFAULT_LOCALE , and, if a matching rendition is found,

it will be merged into the current rendition. If the resulting rendition contains no
font, theXmNnoFontCallback will be called with the default rendition and ™ as the
font name. An application can have this callback attempt to remedy this problem by
calling XmRenditionUpdate on the input rendition to provide a font for the widget

to use. This may be done by either providing an alternative font name to be loaded
using theXmNfontName and XmNfontType resources or with an already loaded
font using theXmNfont resource. If no rendition matches or no font was found after
the callback, then the segment will not be rendered and a warning will be issued.

Render tables are specified in resource files with the following syntax:

resource_sped tag [, tag]*]
wheretag is some string suitable for thémNtag resource of a rendition.

If no tags are specified, then a render table will be created that is either empty or
contains only a rendition with a tag oMOTIF_DEFAULT_LOCALE .

Specific values for specific rendition resources are specified using the following syntax:

resource_spe€*|.] rendition[*|.] resource_namevalue
where:

resource_spec
Specifies the render table.

rendition Is either the class Rendition or a tag.

resource_name
Is either the class or name of a particular resource.

value Is the specification of the value to be set.

Any resource line that consists of just a resource name or class component with
no rendition component or loose binding will be assumed to specify resource
values for a rendition with a tag ofMOTIF_DEFAULT_LOCALE . In effect, this

761

Motif 2.1—Programmer’s Reference

XmRenderTable(library call)

creates a default rendition in much the same way that specifying no fontlist tag
for a fontlist resource causes the fontlist created to contain an entry tagged with
XmFONTLIST_DEFAULT_TAG :

resource_spermesou rce_nameval ue

For example, the following would set theXmNrenderTable resource
of labell to a render table consisting of three renditions tagged with
_MOTIF_DEFAULT_LOCALE , bold, andoblique with values for resources set as
described in the resource specifications.

*labell.renderTable: bold, oblique
*labell.renderTable.bold.renditionForeground: Green
*labell.renderTable.bold.fontName: *-*-*-bold-*-is08859-1
*labell.renderTable.bold.fontType: FONT_IS_FONT
*labell.renderTable.oblique.renditionBackground: Red
*labell.renderTable.oblique.fontName: *-*-*-jtalic-*-is08859-1
*labell.renderTable.oblique.fontType: FONT_IS_FONT
*labell.renderTable.oblique.underlineType: AS_IS
*labell.renderTable.fontName: fixed
*labell.renderTable.fontType: FONT_IS_FONT
*labell.renderTable.renditionForegound: black
*labell.renderTable*tabList: 1in, +1.5in, +3in

Related Information

762

XmRenderTableAddRenditiong3), XmRenderTableCopy3),
XmRenderTableCvtFromProp(3), XmRenderTableCvtToProp(3),
XmRenderTableFreg3), XmRenderTableGetRendition(3),
XmRenderTableGetRenditiong3), XmRenderTableGetTag$3),
XmRenderTableRemoveRendition§3), XmRendition(3), andXmString (3).

Xm Data Types

XmString(library call)

XmString

Purpose Data type for a compound string

Synopsis #include <Xm/Xm.h>

Description

XmString is the data type for a compound string. Compound strings consist of a
sequence of components, including, but not limited to, the following:

* XMSTRING_COMPONENT_SEPARATOR

* XMSTRING_COMPONENT_TAB

* XMSTRING_COMPONENT_LAYOUT_POP

* XMSTRING_COMPONENT_DIRECTION

* XMSTRING_COMPONENT_LAYOUT_PUSH

* XMSTRING_COMPONENT_CHARSET

* XMSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
* XMSTRING_COMPONENT_LOCALE

* XMSTRING_COMPONENT_LOCALE_TEXT

* XMSTRING_COMPONENT_TAG

* XMSTRING_COMPONENT_TEXT

* XMSTRING_COMPONENT_END

* XMSTRING_COMPONENT_RENDITION_BEGIN
* XMSTRING_COMPONENT_RENDITION_END

* XMSTRING_COMPONENT_UNKNOWN

* XMSTRING_COMPONENT_WIDECHAR_TEXT

763

Motif 2.1—Programmer’s Reference

XmString(library call)

and also a rendition tags table, text, and text component. When a compound string is
displayed, the rendition tags and the direction are used to determine how to display
the text.

Calling XtGetValues for a resource whose type XmString yields a copy of
the compound string resource value. The application is responsible for using
XmStringFree to free the memory allocated for the copy.

Please see th&mStringComponentType reference page for more detail about
compound string components, and for a description of the order in which the
components should appear in a compound string. Refer toXth&enderTable
reference page for a description of the algorithm that associates the rendition tags
used for displaying a compound string text component with a rendition in a render
table.

Related Information

764

XmParseMapping(3), XmParseMappingCreatg3), XmParseMappingFreg3),
XmParseMappingGetValueg3), XmParseMappingSetValue$3),
XmParseTablg3), XmParseTableFreg3), XmStringBaseling(3),
XmStringByteCompare(3), XmStringByteStreamLength(3),
XmStringCompare(3), XmStringComponentCreate(3),
XmStringComponentType(3), XmStringConcat(3), XmStringConcatAndFree(3),
XmStringCopy(3), XmStringCreate(3), XmStringCreateLocalized(3),
XmStringCreateLtoR (3), XmStringCreateSimple(3), XmStringDirection (3),
XmStringDirectionCreate(3), XmStringDirectionToDirection (3),
XmStringDraw (3), XmStringDrawlmage (3), XmStringDrawUnderline (3),
XmStringEmpty (3), XmStringExtent (3), XmStringFree(3),
XmStringFreeContext(3), XmStringGenerate(3), XmStringGetLtoR (3),
XmStringGetNextComponeni{(3), XmStringGetNextSegmen(3),
XmStringGetNextTriple (3), XmStringHasSubstring(3), XmStringHeight(3),
XmStringlnitContext (3), XmStringlsVoid (3), XmStringLength (3),
XmStringLineCount (3), XmStringNConcat(3), XmStringNCopy(3),
XmsStringParseText(3), XmStringPeekNextComponen(3),
XmStringPeekNextTriple(3), XmStringPutRendition (3),
XmStringSegmentCreat€3), XmStringSeparatorCreate(3), XmStringTable(3),
XmsStringTableParseStringArray (3), XmStringTableProposeTablis{(3),
XmStringTableToXmString (3), XmStringTableUnparse(3),
XmStringToXmStringTable (3), XmStringUnparse(3), XmStringWidth (3),

Xm Data Types

XmString(library call)

XmCvtXmStringToByteStream(3), XmCvtXmStringToCT (3),
XmCvtCTToXmString (3), andXmCvtByteStreamToXmString(3).

765

Motif 2.1—Programmer’s Reference

XmStringDirection(library call)

XmStringDirection

Purpose Data type for the direction of display in a string

Synopsis #include <Xm/Xm.h>

Description

XmStringDirection is the data type for specifying the direction in which the system
displays characters of a string, or characters of a segment of a compound string. This
is an enumeration with three possible values:

XmSTRING_DIRECTION_L_TO_R
Specifies left to right display

XmSTRING_DIRECTION_R_TO_L
Specifies right to left display

XmSTRING_DIRECTION_DEFAULT
Specifies that the display direction will be set by the widget in which
the compound string is to be displayed.

Related Information
XmString (3).

766

Xm Data Types

XmStringTable(library call)

XmStringTable

Purpose Data type for an array of compound strings

Synopsis #include <Xm/Xm.h>

Description

XmStringTable is the data type for an array of compound strings (objects of type
XmString).

Related Information
XmString (3).

767

Motif 2.1—Programmer’s Reference
XmTab(library call)

XmTab

Purpose Data type for a tab stop

Synopsis #include <Xm/Xm.h>
XmTab

Description

XmTab is a data structure that specifies a tab stop to be used in rendering an
XmString containing tab components. AmTab value contains a value, a unit type,

an offset model (eitheKmABSOLUTE or XmRELATIVE), an alignment model
(XmALIGNMENT_BEGINNING), and a decimal point character. The resource file
syntax forXmTab is specified in theXmTabList reference page.

Related Information

XmTabCreate(3), XmTabFree(3), XmTabGetValueg3), XmTabList (3), and
XmTabSetValug(3).

768

Xm Data Types
XmTablList(library call)

XmTabList

Purpose Data type for a tab list

Synopsis #include <Xm/Xm.h>
XmTablList

Description

XmTablist is the data type for a tab list. A tab list consists of tab stop list entries
(XmTabs). Whenever a tab component is encountered whil&Xastring is being
rendered, the origin of the next X draw depends on the Xextab. If a tab stop would
cause text to overlap, the x position for the segment is reset to follow immediately
after the end of the previous segment.

Tab lists are specified in resource files with the following syntax:

resource_spectab WHITESPACE [, WHITESPACREab]*

The resource value string consists of one or more tabs separated by commas. Each
tab identifies the value of the tab, the unit type, and whether the offset is relative or
absolute. For example:

tab := float [WHITESPACE units]
float := [sign] [[DIGIT]*. IDIGIT+
sign:= +

where the presence or absencesigh indicates, respectively, a relative offset or an
absolute offset. Note that negative tab values are not alloweits indicates the
unitType to use as described in tkenConvertUnits reference page.

For example, the following specifies a tab list consisting of a one inch absolute tab
followed by a one inch relative tab:

*tabList: lin, +1lin

769

Motif 2.1—Programmer’s Reference
XmTablList(library call)

For resources of type, dimension, or position, you can specify units as described in the
XmNunitType resource of themGadget, XmManager, or XmPrimitive reference

page.

Related Information

Refer to theMotif 2.1—Programmer’s Guidér more information about tabs and
tab lists.XmTabListCopy(3), XmTabListFree(3), XmTabListGetTab (3),
XmTablListinsertTabs (3), XmTabListRemoveTabg3),
XmTabListReplacePositiong3), andXmTabListTabCount (3).

770

Xm Data Types

XmTextPosition(library call)

XmTextPosition

Purpose Data type for a character position within a text string

Synopsis #include <Xm/Xm.h>

Description

XmTextPosition is an integer data type that holds a character’s position within a text
string for Text and TextField.

An XmTextPosition value conceptually points to the gap between two characters.
For example, consider a text string consistinghbfcharacters. A value of 0 refers
to the position immediately prior to the first character. A value of 1 refers to the
position in between the first and second characters. A valderefers to the position
immediately following the last character. Therefore, the text stringN atharacters
actually containdN + 1 positions.

Related Information
XmText(3).

771

Chapter 6

Xm Functions

773

Motif 2.1—Programmer’s Reference

XmActivateProtocol(library call)

XmActivateProtocol

Purpose A VendorShell function that activates a protocol

Synopsis #include <Xm/Protocols.h>

void XmActivateProtocol(
Widget shell
Atom property,
Atom protoco);

Description

774

XmActivateProtocol activates a protocol. It updates the handlers andotbperty if

the shell is realized. It is sometimes useful to allow a protocol’s state information
(callback lists, and so on) to persist, even though the client may choose to temporarily
resign from the interaction. This is supported by allowingratocol to be in one

of two states: active or inactive. If therotocol is active and theshell is realized,

the property contains theprotocol Atom. If the protocolis inactive, theAtom is not
present in theproperty.

XmActivateWMProtocol is a convenience interface. It callimActivateProtocol
with the property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
property Specifies the protocol property
protocol Specifies the protocghtom

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Xm Functions

XmActivateProtocol(library call)

Related Information

VendorShell(3), XmActivateWMProtocol (3), XmRemoveProtocol$3) and
XminternAtom (3).

775

Motif 2.1—Programmer’s Reference

XmActivateWMProtocol(library call)

XmActivateWMProtocol

Purpose A VendorShell convenience interface that activates a protocol

Synopsis #include <Xm/Protocols.h>

void XmActivateWMProtocol(
Widget shell
Atom protoco);

Description

XmActivateWMProtocol is a convenience interface. It callmActivateProtocol
with the property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
protocol Specifies the protocghtom

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmActivateProtocol(3), XmInternAtom (3), and
XmRemoveWMProtocolq3).

776

Xm Functions

XmAddProtocolCallback(library call)

XmAddProtocolCallback

Purpose A VendorShell function that adds client callbacks for a protocol

Synopsis #include <Xm/Protocols.h>

void XmAddProtocolCallback(
Widget shell
Atom property,
Atom protocol
XtCallbackProc callback
XtPointer closure;

Description

XmAddProtocolCallback adds client callbacks for a protocol. It checks if the protocol

is registered, and if it is not, callmAddProtocols. It then adds the callback to the
internal list. These callbacks are called when the corresponding client message is
received.

XmAddWMProtocolCallback is a convenience interface. It calls
XmAddProtocolCallback with the property value set to the atom returned
by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
property Specifies the protocol property

protocol Specifies the protocghtom

callback Specifies the procedure to call when a protocol message is received
closure Specifies the client data to be passed to the callback when it is invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

777

Motif 2.1—Programmer’s Reference

XmAddProtocolCallback(library call)

Related Information

VendorShell(3), XmAddWMProtocolCallback (3), XminternAtom (3), and
XmRemoveProtocolCallback3).

778

Xm Functions

XmAddProtocols(library call)

XmAddProtocols

Purpose A VendorShell function that adds the protocols to the protocol manager and allocates
the internal tables

Synopsis #include <Xm/Protocols.h>

void XmAddProtocols(
Widget shell
Atom property,
Atom * protocols
Cardinal num_protocoly

Description

XmAddProtocols adds the protocols to the protocol manager and allocates the internal
tables.

XmAddWMProtocols is a convenience interface. It calsnAddProtocols with the
property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
property Specifies the protocol property
protocols Specifies the protocoktoms

num_protocols
Specifies the number of elementsgrotocols

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmAddWMProtocols (3), XminternAtom (3), and
XmRemoveProtocol$3).

779

Motif 2.1—Programmer’s Reference
XmAddTabGroup(library call)

XmAddTabGroup

Purpose A function that adds a manager or a primitive widget to the list of tab groups

Synopsis #include <Xm/Xm.h>

void XmAddTabGroup(
Widget tab_group;

Description

This function is obsolete and its behavior is replaced by seXim§navigationType

to XmEXCLUSIVE_TAB_GROUP . When the keyboard is used to traverse through

a widget hierarchy, primitive or manager widgets are grouped together into what are
known astab groups. Any manager or primitive widget can be a tab group. Within

a tab group, move the focus to the next widget in the tab group by using the arrow
keys. To move to another tab group, usdextField or KPrevField.

Tab groups are ordinarily specified by th&¥mNnavigationType resource.
XmAddTabGroup is called to control the order of traversal of tab groups. The
widget specified bytab_groupis appended to the list of tab groups to be traversed,
and the widget'sXmNnavigationType is set toXmEXCLUSIVE_TAB_GROUP .

tab_group Specifies the manager or primitive widget ID

Related Information

XmManager(3), XmGetTabGroup(3), XmPrimitive (3), and
XmRemoveTabGroup(3).

780

Xm Functions
XmAddToPostFromList(library call)

XmAddToPostFromList

Purpose a RowColumn function that makes a menu accessible from more than one widget

Synopsis #include <Xm/RowColumn.h>

void XmAddToPostFromList(
Widget menuy
Widget post_from_widgét

Description

XmAddToPostFromList makes a menu accessible from more than one widget. After

a menu is once created, this function may be used to make that menu accessible from
a second widget. The process may be repeated indefinitely. In other words, where an
application would us&XmCreatePopupMenu or XmCreatePulldownMenu or their
equivalent to create a new menu identical to one that already exists, it can use this
function to reuse that earlier menu.

If menurefers to a Popup menu, then thest_from_widgetvidget can now pop up the
specified menu. The actual posting of the menu occurs as it always does, either through
an event handler, or the automatic popup menu support (seéntiikowColumn(3)
reference page).

If menurefers to a Pulldown menu, its ID is placed in tkenNsubMenuld resource
of the specifiecpost_from_widgetin this case, th@ost_from_widgetwidget must be
either a CascadeButton or a CascadeButtonGadget.

Note that this function manipulates the internal structures themselves, not a copy of
them.

menu Specifies the ID of the RowColumn widget containing the menu (Popup
or Pulldown) to be made accessible from the widget.

781

Motif 2.1—Programmer’s Reference
XmAddToPostFromList(library call)

post_from_widget
Specifies the widget ID of the widget which will now be able to post
the menu specified bgnenu

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Related Information

XmGetPostedFromWidge(3), XmRemoveFromPostFromLis{(3), and
XmRowColumn(3).

782

Xm Functions
XmAddWMProtocolCallback(library call)

XmAddWMProtocolCallback

Purpose A VendorShell convenience interface that adds client callbacks for a protocol

Synopsis #include <Xm/Protocols.h>

void XmAddWMProtocolCallback(
Widget shell
Atom protocol
XtCallbackProc callback
XtPointer closure;

Description

XmAddWMProtocolCallback is a convenience interface. It calls
XmAddProtocolCallback with the property value set to the atom returned
by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
protocol Specifies the protocghtom

callback Specifies the procedure to call when a protocol message is received
closure Specifies the client data to be passed to the callback when it is invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmAddProtocolCallback(3), XmiInternAtom (3), and
XmRemoveWMProtocolCallback(3).

783

Motif 2.1—Programmer’s Reference
XmAddWMProtocols(library call)

XmAddWMProtocols

Purpose A VendorShell convenience interface that adds the protocols to the protocol manager
and allocates the internal tables

Synopsis #include <Xm/Protocols.h>

void XmAddwWMProtocols(
Widget shell
Atom * protocols
Cardinal num_protocoly

Description

XmAddWMProtocols is a convenience interface. It calenAddProtocols with the
property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
protocols Specifies the protocoktoms

num_protocols
Specifies the number of elementsgrotocols

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmAddProtocols(3), XmInternAtom (3), and
XmRemoveWMProtocols

784

Xm Functions
XmCascadeButtonGadgetHighlight(library call)

XmCascadeButtonGadgetHighlight

Purpose A CascadeButtonGadget function that sets the highlight state

Synopsis #include <Xm/CascadeBG.h>

void XmCascadeButtonGadgetHighlight(
Widget cascadeButtonGadget
Boolean highlight);

Description

XmCascadeButtonGadgetHighlight either draws or erases the shadow highlight
around the CascadeButtonGadget.

cascadeButtonGadget
Specifies the CascadeButtonGadget to be highlighted or unhighlighted

highlight Specifies whether to highlight (True) or to unhighlight (False)

For a complete definition of CascadeButtonGadget and its associated resources, see
XmCascadeButtonGadgef3).

Related Information

XmCascadeButtor(3), XmCascadeButtonGadgef3), and
XmCascadeButtonHighlight(3).

785

Motif 2.1—Programmer’s Reference

XmCascadeButtonHighlight(library call)

XmCascadeButtonHighlight

Purpose A CascadeButton and CascadeButtonGadget function that sets the highlight state

Synopsis #include <Xm/CascadeB.h>
#include <Xm/CascadeBG.h>

void XmCascadeButtonHighlight(
Widget cascadeButton
Boolean highlight);

Description

XmCascadeButtonHighlight either draws or erases the shadow highlight around the
CascadeButton or the CascadeButtonGadget.

cascadeButton
Specifies the CascadeButton or CascadeButtonGadget to be highlighted
or unhighlighted

highlight Specifies whether to highlight (True) or to unhighlight (False)

For a complete definition of CascadeButton or CascadeButtonGadget and their
associated resources, s¢mCascadeButtor(3) or XmCascadeButtonGadget3).

Related Information

XmCascadeButtor(3), XmCascadeButtonGadgef3) and
XmCascadeButtonGadgetHighligh{3).

786

Xm Functions

XmChangeColor(library call)

XmChangeColor

Purpose Recalculates all associated colors of a widget

Synopsis #include <Xm/Xm.h>

void XmChangeColor(
Widget widget
Pixel background:

Description

XmChangeColor handles all color modifications for the specified widget when a new
background pixel value is specified. This function recalculates the foreground, select,
and shadow colors based on the new background color and sets the corresponding
resources for the widget. If a color calculation procedure has been set by a call to
XmSetColorCalculation, XmChangeColor uses that procedure to calculate the new
colors. Otherwise, the routine uses a default procedure.

widget Specifies the widget ID whose colors will be updated

background Specifies the background color pixel value

Related Information
XmGetColorCalculation(3), XmGetColors(3), andXmSetColorCalculation(3).

787

Motif 2.1—Programmer’s Reference

XmClipboardCancelCopy(library call)

XmClipboardCancelCopy

Purpose A clipboard function that cancels a copy to the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardCancelCopy (display, window, item_id
Display * display;,
Window window
long item_id

Description

XmClipboardCancelCopy cancels the copy to clipboard that is in progress and frees
up temporary storage. When a copy is to be perform&dClipboardStartCopy
allocates temporary storage for the clipboard ddmClipboardCopy copies the
appropriate data into the the temporary storageClipboardEndCopy copies the

data to the clipboard structure and frees up the temporary storage structures. If
XmClipboardCancelCopy is called, theXmClipboardEndCopy function does not

have to be called. A call tmClipboardCancelCopy is valid only after a call to
XmClipboardStartCopy .

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies a widget's window ID that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

item_id Specifies the number assigned to this data item. This number was
returned by a previous call t8mClipboardStartCopy .

788

Xm Functions

XmClipboardCancelCopy(library call)

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardFail
The function failed becausémClipboardStartCopy was not called or
because the data item contains too many formats.

Related Information

XmClipboardCopy (3), XmClipboardEndCopy (3), and
XmClipboardStartCopy (3).

789

Motif 2.1—Programmer’s Reference

XmClipboardCopy(library call)

XmClipboardCopy

Purpose A clipboard function that copies a data item to temporary storage for later copying to
clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardCopy (display, window, item_id, format_name,
buffer, length, private_id, data)d
Display * display;,
Window window
long item_id
char * format_name
XtPointer buffer,
unsigned long length
long private_id
long * data_id;

Description

XmClipboardCopy copies a data item to temporary storage. The data item is
moved from temporary storage to the clipboard data structure when a call to
XmClipboardEndCopy is made. Additional calls tomClipboardCopy before a

call to XmClipboardEndCopy add additional data item formats to the same data
item or append data to an existing format. Formats are described imtdreClient
Communication Conventions ManugCCCM) as targets.

NOTE: Do not call XmClipboardCopy before a call toXmClipboardStartCopy
has been made. The latter function allocates temporary storage required by
XmClipboardCopy.

If the buffer argument is NULL, the data is considered to be passed by name. When
data that has been passed by name is later requested by another application, the
application that owns the data receives a callback with a request for the data. The
application that owns the data must then transfer the data to the clipboard with the
XmClipboardCopyByName function. When a data item that was passed by name

790

Xm Functions

XmClipboardCopy(library call)

is deleted from the clipboard, the application that owns the data receives a callback
stating that the data is no longer needed.

For information on the callback function, see the callback argument description for
XmClipboardStartCopy .

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

item_id Specifies the number assigned to this data item. This number was
returned by a previous call tdmClipboardStartCopy .

format_name
Specifies the name of the format in which the data item is stored on the
clipboard. The format was known as target in the ICCCM.

buffer Specifies the buffer from which the clipboard copies the data.

length Specifies the length, in bytes, of the data being copied to the clipboard.

private_id Specifies the private data that the application wants to store with the
data item.

data_id Specifies an identifying number assigned to the data item that uniquely

identifies the data item and the format. This argument is required only
for data that is passed by name.

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

791

Motif 2.1—Programmer’s Reference

XmClipboardCopy(library call)

XmClipboardFail
The function failed becausémClipboardStartCopy was not called or
because the data item contains too many formats.

Related Information

XmClipboardCopyByName(3), XmClipboardEndCopy (3), and
XmClipboardStartCopy (3).

792

Xm Functions
XmClipboardCopyByName(library call)

XmClipboardCopyByName

Purpose A clipboard function that copies a data item passed by name

Synopsis #include <Xm/CutPaste.h>
int XmClipboardCopyByName (display, window, data_id,
buffer, length, private_id
Display * display;,
Window window
long data_id
XtPointer buffer,
unsigned long length
long private_id

Description

XmClipboardCopyByName copies the actual data for a data item that was previously
passed by name to the clipboard. Data is considered to be passed by name when a
call to XmClipboardCopy is made with a NULL buffer parameter. Additional calls

to this function append new data to the existing data.

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each clipboard function it calls.

data_id Specifies an identifying number assigned to the data item that uniquely
identifies the data item and the format. This number was assigned by
XmClipboardCopy to the data item.

buffer Specifies the buffer from which the clipboard copies the data.

length Specifies the number of bytes in the data item.

793

Motif 2.1—Programmer’s Reference

XmClipboardCopyByName(library call)

private_id Specifies the private data that the application wants to store with the
data item.

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information

XmClipboardCopy (3), XmClipboardLock (3), XmClipboardStartCopy (3), and
XmClipboardUnlock (3).

794

Xm Functions

XmClipboardEndCopy(library call)

XmClipboardEndCopy

Purpose A clipboard function that completes the copying of data to the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardEndCopy (display, window, item_id
Display * display;,
Window window
long item_id

Description

XmClipboardEndCopy locks the clipboard from access by other applications, places
data in the clipboard data structure, and unlocks the clipboard. Data items copied to
the clipboard byXmClipboardCopy are not actually entered in the clipboard data
structure until the call t&KmClipboardEndCopy.

This function also frees up temporary storage that was allocated by
XmClipboardStartCopy, which must be called beforémClipboardEndCopy. The
latter function should not be called ¥mClipboardCancelCopy has been called.

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each clipboard function it calls.

item_id Specifies the number assigned to this data item, which was returned by
a previous call toXmClipboardStartCopy .

Return Values

XmClipboardSuccess
The function was successful.

795

Motif 2.1—Programmer’s Reference

XmClipboardEndCopy(library call)

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardFail
The function failed becaus¢mClipboardStartCopy was not called.

Related Information

XmClipboardCancelCopy(3), XmClipboardCopy(3) and
XmClipboardStartCopy (3).

796

Xm Functions

XmClipboardEndRetrieve(library call)

XmClipboardEndRetrieve

Purpose A clipboard function that completes retrieval of data from the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardEndRetrieve (display, windoy
Display * display;,
Window window

Description

XmClipboardEndRetrieve suspends copying data incrementally from the clipboard.
It tells the clipboard routines that the application is through copying an item from the
clipboard. Until this function is called, data items can be retrieved incrementally from
the clipboard withXmClipboardRetrieve. The act of copying data is started with the
XmClipboardStartRetrieve function.

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
with XtWindow. The same application instance should pass the same
window ID to each of the clipboard functions that it calls.

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application

797

Motif 2.1—Programmer’s Reference

XmClipboardEndRetrieve(library call)

the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information

XmClipboardRetrieve(3), XmClipboardStartCopy (3), and
XmClipboardStartRetrieve (3).

798

Xm Functions

XmClipboardinquireCount(library call)

XmClipboardinquireCount

Purpose A clipboard function that returns the number of data item formats

Synopsis #include <Xm/CutPaste.h>
int XmClipboardinquireCount (display, window, count,

Description

XmClipboardinquireCount returns the number of data item formats available for
the data item in the clipboard. This function also returns the maximum name-length

max_format_name_length

Display * display;,

Window window

int *count

unsigned long * max_format_name_length

for all formats in which the data item is stored.

display

window

count

previous call toXOpenDisplay or XtDisplay.

ID to each of the clipboard functions that it calls.

Returns the number of data item formats available for the data item in
the clipboard. If no formats are available, this argument equals O (zero).

The count includes the formats that were passed by name.

max_format_name_length

Specifies the maximum length of all format names for the data item in

the clipboard.

799

Specifies a pointer to th®isplay structure that was returned in a

Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window

Motif 2.1—Programmer’s Reference

XmClipboardinquireCount(library call)

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardNoData
The function could not find data on the clipboard corresponding to the
format requested. This could occur because the clipboard is empty; there
is data on the clipboard, but not in the requested format; or the data in
the requested format was passed by name and is no longer available.

Related Information
XmClipboardStartCopy (3).

800

Xm Functions

XmClipboardinquireFormat(library call)

XmClipboardinquireFormat

Purpose A clipboard function that returns a specified format name

Synopsis #include <Xm/CutPaste.h>
int XmClipboardinquireFormat (display, window, index, format_name_buf,

Description

XmClipboardinquireFormat returns a specified format name for the data item in the

buffer_len, copied_lén

Display * display;,

Window window

int index

XtPointer format_name_buf
unsigned long buffer_len
unsigned long * copied_len

clipboard. If the name must be truncated, the function returns a warning status.

display

window

index

Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

ID to each of the clipboard functions that it calls.

Specifies which of the ordered format names to obtain. If this index
is greater than the number of formats for the data item, this function

returns a O (zero) in theopied_lenargument.

format_name_buf

Specifies the buffer that receives the format name.

buffer_len Specifies the number of bytes in the format name buffer.

copied_len Specifies the number of bytes in the data item copied to the buffer. If

this argument equals 0 (zero), there isntb format for the data item.

801

Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window

Motif 2.1—Programmer’s Reference

XmClipboardinquireFormat(library call)

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardTruncate
The data returned is truncated because the user did not provide a buffer
large enough to hold the data.

XmClipboardNoData
The function could not find data on the clipboard corresponding to the
format requested. This could occur because the clipboard is empty; there
is data on the clipboard, but not in the requested format; or the data in
the requested format was passed by name and is no longer available.

Related Information
XmClipboardStartCopy (3).

802

Xm Functions

XmClipboardinquireLength(library call)

XmClipboardinquireLength

Purpose A clipboard function that returns the length of the stored data

Synopsis #include <Xm/CutPaste.h>
int XmClipboardinquireLength (display, window, format_name, lenyth
Display * display;,
Window window
char * format_name
unsigned long * length;

Description

XmClipboardinquireLength returns the length of the data stored under a specified
format name for the clipboard data item. If no data is found for the specified format,
or if there is no item on the clipboard, this function returns a value of 0 (zero) in the
lengthargument.

Any format passed by name is assumed to h&egth passed in a call to
XmClipboardCopy, even though the data has not yet been transferred to the clipboard
in that format.

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

format_name
Specifies the name of the format for the data item.

length Specifies the length of the next data item in the specified format. This
argument equals 0 (zero) if no data is found for the specified format, or
if there is no item on the clipboard.

803

Motif 2.1—Programmer’s Reference

XmClipboardinquireLength(library call)

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardNoData
The function could not find data on the clipboard corresponding to the
format requested. This could occur because the clipboard is empty; there
is data on the clipboard, but not in the requested format; or the data in
the requested format was passed by name and is no longer available.

Related Information
XmClipboardCopy (3) andXmClipboardStartCopy (3).

804

Xm Functions

XmClipboardinquirePendingltems(library call)

XmClipboardinquirePendingltems

Purpose A clipboard function that returns a list of data ID/private ID pairs

Synopsis #include <Xm/CutPaste.h>
int XmClipboardinquirePendingltems (display, window, format_name, item_list, count
Display * display;,
Window window
char * format_name
XmClipboardPendingList * item_list,
unsigned long * count,

Description

XmClipboardinquirePendingltems returns a list of data ID/private ID pairs for the
specified format name. A data item is considered pending if the application originally
passed it by name, the application has not yet copied the data, and the item has not
been deleted from the clipboard. The application is responsible for freeing the memory
provided by this function to store the list. To free the memory, X#free.

This function is used by an application when exiting, to determine if the data that is
passed by name should be sent to the clipboard.

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

format_name
Specifies a string that contains the name of the format for which the list
of data ID/private ID pairs is to be obtained.

item_list Specifies the address of the array of data ID/private ID pairs
for the specified format name. This argument is a type

805

Motif 2.1—Programmer’s Reference

XmClipboardinquirePendingltems(library call)

count

Return Values

XmClipboardPendingList. The application is responsible for
freeing the memory provided by this function for storing the list.

Specifies the number of items returned in the list. If there is no data for
the specified format name, or if there is no item on the clipboard, this
argument equals 0O (zero).

XmClipboardSuccess

The function was successful.

XmClipboardLocked

Related Information

The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardStartCopy (3).

806

Xm Functions

XmClipboardLock(library call)

XmClipboardLock

Purpose A clipboard function that locks the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardLock (display, windoy
Display * display;,
Window window

Description

XmClipboardLock locks the clipboard from access by another application until
XmClipboardUnlock is called. All clipboard functions lock and unlock the
clipboard to prevent simultaneous access. This function allows the application
to keep the clipboard data from changing between calldnguire and other
clipboard functions. The application does not need to lock the clipboard
between calls toXmClipboardStartCopy and XmClipboardEndCopy or to
XmClipboardStartRetrieve and XmClipboardEndRetrieve.

If the clipboard is already locked by another applicati¥mClipboardLock returns
an error status. Multiple calls to this function by the same application increase the

lock level.

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window

to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

Return Values

XmClipboardSuccess
The function was successful.

807

Motif 2.1—Programmer’s Reference

XmClipboardLock(library call)

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information

XmClipboardEndCopy (3), XmClipboardEndRetrieve(3),
XmClipboardStartCopy (3), XmClipboardStartRetrieve (3), and
XmClipboardUnlock (3).

808

Xm Functions

XmClipboardRegisterFormat(library call)

XmClipboardRegisterFormat

Purpose A clipboard function that registers a new format

Synopsis #include <Xm/CutPaste.h>
int XmClipboardRegisterFormat (display, format_name, format_length
Display * display;,
char *format_name
int format_length

Description

XmClipboardRegisterFormat registers a new format. Each format stored on the
clipboard should have a length associated with it; this length must be known to the
clipboard routines. Formats are known as targets inltiter-Client Communication
Conventions Manua(ICCCM). All of the formats specified by version 1.1 of the
ICCCM conventions are preregistered. Any other format that the application wants
to use must either be 8-bit data or be registered via this routine. Failure to register
the length of the data results in incompatible applications across platforms having
different byte-swapping orders.

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

format_name
Specifies the string name for the new format (target).

format_length
Specifies the format length in bits (8, 16, or 32).

Return Values

XmClipboardBadFormat
The format_namemust not be NULL, and théormat_lengthmust be
8, 16, or 32.

809

Motif 2.1—Programmer’s Reference

XmClipboardRegisterFormat(library call)

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardFail
The function failed because the specified format was already registered
with a different length from that specified now. If a specified format
was already registered with the same length as that specified now,
XmClipboardSuccess returned.

Related Information
XmClipboardStartCopy (3).

810

Xm Functions
XmClipboardRetrieve(library call)

XmClipboardRetrieve

Purpose A clipboard function that retrieves a data item from the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardRetrieve (display, window, format_name,
buffer, length, num_bytes, private) id
Display * display;,
Window window
char *format_name
XtPointer buffer,
unsigned long length
unsigned long * num_bytes
long * private_id;

Description

XmClipboardRetrieve retrieves the current data item from clipboard storage. It
returns a warning if the clipboard is locked, if there is no data on the clipboard,
or if the data needs to be truncated because the buffer length is too short.

Between a call to XmClipboardStartRetrieve and a call to
XmClipboardEndRetrieve, multiple calls to XmClipboardRetrieve with the

same format name result in data being incrementally copied from the clipboard until
the data in that format has all been copied.

The return valueXmClipboardTruncatéom calls toXmClipboardRetrieve indicates

that more data remains to be copied in the given format. It is recommended that any
calls to thelnquire functions that the application needs to make to effect the copy
from the clipboard be made between the calkimClipboardStartRetrieve and the

first call to XmClipboardRetrieve. This way, the application does not need to call
XmClipboardLock and XmClipboardUnlock .

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

811

Motif 2.1—Programmer’s Reference

XmClipboardRetrieve(library call)

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

format_name
Specifies the name of a format in which the data is stored on the
clipboard.

buffer Specifies the buffer to which the application wants the clipboard to copy
the data. The function allocates space to hold the data returned into the
buffer. The application is responsible for managing this allocated space.
The application can recover this allocated space by calitigee.

length Specifies the length of the application buffer.
num_bytes Specifies the number of bytes of data copied into the application buffer.

private_id Specifies the private data stored with the data item by the application
that placed the data item on the clipboard. If the application did not
store private data with the data item, this argument returns O (zero).

Return Values

812

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardTruncate
The data returned is truncated because the user did not provide a buffer
large enough to hold the data.

XmClipboardNoData
The function could not find data on the clipboard corresponding to the
format requested. This could occur because the clipboard is empty; there
is data on the clipboard but not in the requested format; or the data in
the requested format was passed by name and is no longer available.

Xm Functions

XmClipboardRetrieve(library call)

Related Information

XmClipboardEndRetrieve(3), XmClipboardLock (3), XmClipboardStartCopy (3),
XmClipboardStartRetrieve (3), andXmClipboardUnlock (3).

813

Motif 2.1—Programmer’s Reference

XmClipboardStartCopy(library call)

XmClipboardStartCopy

Purpose A clipboard function that sets up a storage and data structure

Synopsis #include <Xm/CutPaste.h>

int XmClipboardStartCopy (display, window, clip_label,
timestamp, widget, callback, item)id
Display * display;,
Window window
XmString clip_labet
Time timestamp
Widget widget
XmCutPasteProc callback
long *item_id;

Description

814

XmClipboardStartCopy sets up storage and data structures to receive clipboard data.
An application calls this function during a cut or copy operation. The data item that
these structures receive then becomes the next data item in the clipboard.

Copying a large piece of data to the clipboard can take a long time. It is possible that,
once the data is copied, no application will ever request that data. The Motif Toolkit
provides a mechanism so that an application does not need to actually pass data to
the clipboard until the data has been requested by some application.

Instead, the application passes format and length informatiotni€lipboardCopy

to the clipboard functions, along with a widget ID and a callback function address that
is passed ixXmClipboardStartCopy . The widget ID is necessary for communications
between the clipboard functions in the application that owns the data and the clipboard
functions in the application that requests the data.

The callback functions are responsible for copying the actual data to the clipboard
throughXmClipboardCopyByName. The callback function is also called if the data
item is removed from the clipboard and the actual data is no longer needed.

Xm Functions

XmClipboardStartCopy(library call)

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

clip_label Specifies the label to be associated with the data item. This argument is
used to identify the data item, as in a clipboard viewer. An example of a
label is the name of the application that places the data in the clipboard.

timestamp Specifies the time of the event that triggered the copy. A valid timestamp
must be supplied; it is not sufficient to uSairrentTime..

widget Specifies the ID of the widget that receives messages requesting data
previously passed by name. This argument must be present in order to
pass data by name. Any valid widget ID in your application can be used
for this purpose and all the message handling is taken care of by the cut
and paste functions.

callback Specifies the address of the callback function that is called when the
clipboard needs data that was originally passed by name. This is also
the callback to receive thdeletemessage for items that were originally
passed by name. This argument must be present in order to pass data
by name.

item_id Specifies the number assigned to this data item. The application uses
this number in calls toXmClipboardCopy, XmClipboardEndCopy,
and XmClipboardCancelCopy.

For more information on passing data by name, ¥@eClipboardCopy(3) and
XmClipboardCopyByName(3).

The widgetand callback arguments must be present in order to pass data by name.
The callback format is as follows:
void (*callback) (widget, data_id, private, reasdn

Widget widget

long *data_id

long *private

int *reason

widget Specifies the ID of the widget passed to this function.

815

Motif 2.1—Programmer’s Reference

XmClipboardStartCopy(library call)

data_id

private

reason

Return Values

Related Information

816

Specifies the identifying number returnedXyClipboardCopy, which
identifies the pass-by-name data.

Specifies the private information passedmClipboardCopy.

Specifies the reasonXmCR_CLIPBOARD_DATA DELETE or
XmCR_CLIPBOARD_DATA_REQUEST are the possible values.

XmClipboardSuccess

The function was successful.

XmClipboardLocked

The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

XmClipboardCancelCopy(3), XmClipboardCopy (3),
XmClipboardCopyByName(3), XmClipboardEndCopy (3),
XmClipboardEndRetrieve (3), XmClipboardinquireCount (3),
XmClipboardinquireFormat (3), XmClipboardinquireLength (3),
XmClipboardinquirePendingltems (3), XmClipboardLock (3),
XmClipboardRegisterFormat(3), XmClipboardRetrieve(3),
XmClipboardStartRetrieve (3), XmClipboardUndoCopy(3),
XmClipboardUnlock (3), andXmClipboardWithdrawFormat (3).

Xm Functions

XmClipboardStartRetrieve(library call)

XmClipboardStartRetrieve

Purpose A clipboard function that prepares to retrieve data from the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardStartRetrieve (display, window, timestamp
Display * display;,
Window window
Time timestamp

Description

XmClipboardStartRetrieve tells the clipboard routines that the application is ready
to start copying an item from the clipboard. The clipboard is locked by this
routine and stays locked unt{mClipboardEndRetrieve is called. Between a call

to XmClipboardStartRetrieve and a call toXmClipboardEndRetrieve, multiple
calls to XmClipboardRetrieve with the same format name result in data being
incrementally copied from the clipboard until the data in that format has all been
retrieved.

A return value ofXmClipboardTruncatérom calls toXmClipboardRetrieve indicates

that more data remains to be copied in the given format. It is recommended that any
calls to thelnquire functions that the application needs to make to complete the copy
from the clipboard be made between the calXimClipboardStartRetrieve and the

first call to XmClipboardRetrieve. This way, the application does not need to call
XmClipboardLock and XmClipboardUnlock .

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

timestamp Specifies the time of the event that triggered the copy. A valid timestamp
must be supplied; it is not sufficient to ugairrentTime..

817

Motif 2.1—Programmer’s Reference

XmClipboardStartRetrieve(library call)

Return Values

XmClipboardSuccess
The function is successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information

XmClipboardEndRetrieve(3), XmClipboardinquireCount (3),
XmClipboardinquireFormat (3), XmClipboardinquireLength (3),
XmClipboardinquirePendingltems (3), XmClipboardLock (3),
XmClipboardRetrieve(3), XmClipboardStartCopy (3), and
XmClipboardUnlock (3).

818

Xm Functions

XmClipboardUndoCopy(library call)

XmClipboardUndoCopy

Purpose A clipboard function that deletes the last item placed on the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardUndoCopy (display, windoy
Display * display;,
Window window,

Description

XmClipboardUndoCopy deletes the last item placed on the clipboard if the item was
placed there by an application with the passésplay and window arguments. Any
data item deleted from the clipboard by the original callXmClipboardCopy is
restored. If thedisplayor windowIDs do not match the last copied item, no action is
taken, and this function has no effect.

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each clipboard function it calls.

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with
the same parameters until the lock goes away. This gives the application

819

Motif 2.1—Programmer’s Reference

XmClipboardUndoCopy(library call)

the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information
XmClipboardLock (3) andXmClipboardStartCopy (3).

820

Xm Functions

XmClipboardUnlock(library call)

XmClipboardUnlock

Purpose A clipboard function that unlocks the clipboard

Synopsis #include <Xm/CutPaste.h>
int XmClipboardUnlock (display, window, remove_all_locks
Display * display;,
Window window
Booleanremove_all_locks

Description

XmClipboardUnlock unlocks the clipboard, enabling it to be accessed by other
applications.

If multiple calls to XmClipboardLock have occurred, the same number of calls to
XmClipboardUnlock is necessary to unlock the clipboard, unlessiove_all_locks
is set to True.

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

remove_all_locks
When True, indicates that all nested locks should be removed. When
False, indicates that only one level of lock should be removed.

Return Values

XmClipboardSuccess
The function was successful.

821

Motif 2.1—Programmer’s Reference

XmClipboardUnlock(library call)

XmClipboardFail
The function failed because the clipboard was not locked or was locked
by another application.

Related Information

822

XmClipboardCancelCopy(3), XmClipboardCopy (3), XmClipboardEndCopy (3),
XmClipboardEndRetrieve (3), XmClipboardinquireCount (3),
XmClipboardinquireFormat (3), XmClipboardinquireLength (3),
XmClipboardinquirePendingltems (3), XmClipboardLock (3),
XmClipboardRegisterFormat(3), XmClipboardRetrieve(3),
XmClipboardStartCopy (3), XmClipboardStartRetrieve (3),
XmClipboardUndoCopy(3), andXmClipboardWithdrawFormat (3).

Xm Functions

XmClipboardWithdrawFormat(library call)

XmClipboardWithdrawFormat

Purpose A clipboard function that indicates that the application no longer wants to supply a
data item

Synopsis #include <Xm/CutPaste.h>
int XmClipboardWithdrawFormat (display, window, data_id
Display * display;,
Window window
long data_id

Description

XmClipboardWithdrawFormat indicates that the application no longer supplies a
data item to the clipboard that the application had previously passed by name.

display Specifies a pointer to th®isplay structure that was returned in a
previous call toXOpenDisplay or XtDisplay.

window Specifies the window ID of a widget that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow . The same application instance should pass the same window
ID to each clipboard function it calls.

data_id Specifies an identifying number assigned to the data item, that uniquely
identifies the data item and the format. This was assigned to the item
when it was originally passed bymClipboardCopy.

Return Values

XmClipboardSuccess
The function was successful.

XmClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again with

823

Motif 2.1—Programmer’s Reference

XmClipboardWithdrawFormat(library call)

the same parameters until the lock goes away. This gives the application
the opportunity to ask if the user wants to keep trying or to give up on
the operation.

Related Information
XmClipboardCopy (3) andXmClipboardStartCopy (3).

824

Xm Functions
XmComboBoxAddItem(library call)

XmComboBoxAddltem

Purpose add an item to the ComboBox widget

Synopsis #include <Xm/ComboBox.h>

void XmComboBoxAddItem(
Widget w,
XmString item,
int pos
Booleanuniqué);

Description

The XmComboBoxAddItem function adds the given item to the XmComboBox at
the given position.

The w argument specifies the XmComboBox widget ID.
The item argument specifies thémString for the new item.
The posargument specifies the position of the new item.

The uniqueargument specifies if this item should duplicate an identical item or not.
Application Usage

The functionsXmComboBoxAdditem and XmComboBoxDeletePoshave different
naming conventions (Item versus Pos) because of the objects they are manipulating.
The Item is a string to be added, the Pos is a numeric position number.

Return Values

The XmComboBoxAddltem function returns no value.

825

Motif 2.1—Programmer’s Reference

XmComboBoxAddItem(library call)

Related Information

XmComboBoxDeletePo&3), XmComboBoxSetltem(3),
XmComboBoxSelectlten{3).

826

Xm Functions

XmComboBoxDeletePos(library call)

XmComboBoxDeletePos

Purpose Delete a XmComboBox item

Synopsis #include <Xm/ComboBox.h>

void XmComboBoxDeletePos(
Widget w,
int pos;

Description

The XmComboBoxDeletePodunction deletes a specified item from a XmComboBox
widget.

The w argument specifies the XmComboBox widget ID.

The posargument specifies the position of the item to be deleted.
Application Usage

The functionsXmComboBoxAdditem and XmComboBoxDeletePoshave different
naming conventions (Item versus Pos) because of the objects they are manipulating.
The Item is a string to be added, the Pos is a numeric position number.

Return Values

The XmComboBoxDeletePodunction returns no value.

Related Information

XmComboBoxAddItem(3), XmComboBoxSetlten(3),
XmComboBoxSelectlten{3).

827

Motif 2.1—Programmer’s Reference

XmComboBoxSelectltem(library call)

XmComboBoxSelectltem

Purpose select a XmComboBox item

Synopsis #include <Xm/ComboBox.h>

void XmComboBoxSelectltem(
Widget w,
XmString item);

Description

The XmComboBoxSelectltem function selects an item in the XmList of the
XmComboBox widget.

The w argument specifies the XmComboBox widget ID.

The item argument specifies th€émString of the item to be selected. If thieem is
not found on the listXmComboBoxSelectltemnotifies the user via th¥tWarning
function.

Return Values

The XmComboBoxSelectltemfunction returns no value.

Related Information

XmComboBoxAddItem(3), XmComboBoxDeletePog3),
XmComboBoxSetltem(3); XtWarning (3). in the CAE Specification, Window
Management: X Toolkit Intrinsics.

828

Xm Functions

XmComboBoxSetltem(library call)

XmComboBoxSetltem

Purpose set an item in the XmComboBox list

Synopsis #include <Xm/ComboBox.h>

void XmComboBoxSetltem(
Widget w,
XmString item);

Description

The XmComboBoxSetltem function selects an item in the XmList of the given
XmComboBox widget and makes it the first visible item in the list.

The w argument specifies the XmComboBox widget ID.

Theitemargument specifies thémString for the item to be set in the XmComboBox.
If the itemis not found on the listXmComboBoxSetltem notifies the user via the
XtWarning function.

Return Values

The XmComboBoxSetltemfunction returns no value.

Related Information

XmComboBoxAddItem(3), XmComboBoxDeletePog3),
XmComboBoxSelectlten{3); XtWarning (3). in the CAE Specification, Window
Management: X Toolkit Intrinsics.

829

Motif 2.1—Programmer’s Reference

XmComboBoxUpdate(library call)

XmComboBoxUpdate

Purpose A ComboBox function that resynchronizes data

Synopsis #include <Xm/ComboBox.h>

void XmComboBoxUpdate(
Widget widge);

Description

XmComboBoxUpdate resynchronizes the internal data structures of a specified
ComboBox widget. This function is useful when an application manipulates
ComboBox’s child widgets, possibly changing data structures. For example, you
might want to use th&mComboBoxUpdate function after a ComboBox List child
selection has been changed without notification.

widget Specifies the ComboBox widget ID.

Related Information
XmComboBox(3).

830

Xm Functions

XmCommandAppendValue(library call)

XmCommandAppendValue

Purpose A Command function that appends the passed XmString to the end of the string
displayed in the command area of the widget

Synopsis #include <Xm/Command.h>

void XmCommandAppendValue(
Widget widget
XmString commandt

Description

XmCommandAppendValue appends the passetinString to the end of the string
displayed in the command area of the Command widget.

widget Specifies the Command widget ID
command Specifies the passedinString

For a complete definition of Command and its associated resources, see
XmCommand(3).

Related Information
XmCommand(3).

831

Motif 2.1—Programmer’s Reference

XmCommandError(library call)

XmCommandError

Purpose A Command function that displays an error message

Synopsis #include <Xm/Command.h>

void XmCommandError(
Widget widget
XmString error);

Description

XmCommandError displays an error message in the history area of the Command
widget. TheXmString error is displayed until the next command entered occurs.

widget Specifies the Command widget ID
error Specifies the passeXinString

For a complete definition of Command and its associated resources, see
XmCommand(3).

Related Information
XmCommand(3).

832

Xm Functions
XmCommandGetChild(library call)

XmCommandGetChild

Purpose A Command function that is used to access a component

Synopsis #include <Xm/Command.h>

Widget XmCommandGetChild(
Widget widget
unsigned char child);

Description

XmCommandGetChild is used to access a component within a Command. The
parameters given to the function are the Command widget and a value indicating
which component to access.

widget Specifies the Command widget ID.

child Specifies a component within the Command. The following values are
legal for this parameter:

* XmDIALOG_COMMAND_TEXT
» XmDIALOG_PROMPT_LABEL
* XmMDIALOG_HISTORY_LIST

* XmDIALOG_WORK_AREA

For a complete definition of Command and its associated resources, see
XmCommand(3).

Return Values

Returns the widget ID of the specified Command component. An application should
not assume that the returned widget will be of any particular class.

833

Motif 2.1—Programmer’s Reference

XmCommandGetChild(library call)

Related Information
XmCommand(3).

834

Xm Functions

XmCommandSetValue(library call)

XmCommandSetValue

Purpose A Command function that replaces a displayed string

Synopsis #include <Xm/Command.h>

void XmCommandSetValue(
Widget widget
XmString command

Description

XmCommandSetValue replaces the string displayed in the command area of the
Command widget with the passéanString.

widget Specifies the Command widget ID
command Specifies the passedinString

For a complete definition of Command and its associated resources, see
XmCommand(3).

Related Information
XmCommand(3).

835

Motif 2.1—Programmer’s Reference

XmContainerCopy(library call)

XmContainerCopy

Purpose Container widget function to copy primary selection to the clipboard

Synopsis #include <Xm/Container.h>

Boolean XmContainerCopy(
Widget container
Time timestamipy

Description

XmContainerCopy copies the primary selected container items to the clipboard. This
routine calls theXmNconvertCallback procedures, possibly multiple times, with the
selectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with the
parm member set tomCOPY .

container Specifies the Container widget ID.
timestamp Specifies the server time at which to modify the selection value.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

The function returns False in the following cases: if the primary selection is NULL,
if the widget does not own the primary selection, or if the function is unable to gain
ownership of the clipboard selection. Otherwise, it returns True.

Related Information
XmContainer(3).

836

Xm Functions

XmContainerCopyLink(library call)

XmContainerCopyLink

Purpose Container widget function to copy links to the clipboard

Synopsis #include <Xm/Container.h>

Boolean XmContainerCopyLink(
Widget container
Time timestamipy

Description

XmContainerCopyLink copies links to the primary selected items to the clipboard.
This routine calls th&XmNconvertCallback procedures, possibly multiple times, with
the selectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with

the parm member set toXmLINK . The Container widget itself does not copy any
links; XmNconvertCallback procedures are responsible for copying the link to the
clipboard and for taking any related actions.

container Specifies the Container widget ID.
timestamp Specifies the server time at which to modify the selection value.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

The function returns False in the following cases: if the primary selection is NULL,
if the widget does not own the primary selection, or if the function is unable to gain
ownership of the clipboard selection. Otherwise, it returns True.

837

Motif 2.1—Programmer’s Reference

XmContainerCopyLink(library call)

Related Information

XmContainer(3).

838

Xm Functions

XmContainerCut(library call)

XmContainerCut

Purpose Container widget function to move items to the clipboard

Synopsis #include <Xm/Container.h>

Boolean XmContainerCut(
Widget container
Time timestamipy

Description

XmContainerCut cuts the primary selected items to the clipboard. This routine calls
the XmNconvertCallback procedures, possibly multiple times, with tiselection
member of theXmConvertCallbackStruct set to CLIPBOARDand with theparm
member set toXmMOVE . If the transfer is successful, this routine then calls the
XmNconvertCallback procedures for theCLIPBOARD selection and théDELETE
target.

container Specifies the Container widget ID.
timestamp Specifies the server time at which to modify the selection value.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

The function returns False in the following cases: if the primary selection is NULL,
if the widget does not own the primary selection, or if the function is unable to gain
ownership of the clipboard selection. Otherwise, it returns True.

839

Motif 2.1—Programmer’s Reference

XmContainerCut(library call)

Related Information

XmContainer(3).

840

Xm Functions

XmContainerGetltemChildren(library call)

XmContainerGetltemChildren

Purpose Container widget function to find all children of an item

Synopsis #include <Xm/Container.h>

int XmContainerGetltemChildren(
Widget container
Widget item,
WidgetList * item_children;

Description

XmContainerGetltemChildren allocates a WidgetList and stores within it the widget
IDs of all widgets that havétem specified as the value of theKmNentryParent
resource. The application programmer is responsible for freeing the allocated
WidgetList using XtFree. The number of widget IDs returned itiem_children

is returned by the function. If no widgets specifiem as the value of their
XmNentryParent resource, the function returns zero aitém_children is left
unchanged.

container Specifies the Container widget ID.
item Specifies a widgetID withircontainet

item_children
Returned array of Widgets.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

This function returns a count of all widgets that hatesn specified as the value of
their XmNentryParent resource.

841

Motif 2.1—Programmer’s Reference

XmContainerGetltemChildren(library call)

Related Information

XmContainer(3).

842

Xm Functions

XmContainerPaste(library call)

XmContainerPaste

Purpose Container widget function to insert items from the clipboard

Synopsis #include <Xm/Container.h>

Boolean XmContainerPaste(
Widget containej;

Description

XmContainerPaste requests data transfer from the clipboard selection to the
Container. This routine calls the widge#snNdestinationCallback procedures with
the selectionmember of theXmDestinationCallbackStruct set to CLIPBOARDand
with the operationmember set tomCOPY. The Container widget itself performs
no transfers; theXmNdestinationCallback procedures are responsible for inserting
the clipboard selection and for taking any related actions.

container Specifies the Container widget ID.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

The function returns False if no data transfer takes place. Otherwise, it returns True.

Related Information
XmContainer(3).

843

Motif 2.1—Programmer’s Reference

XmContainerPasteLink(library call)

XmContainerPasteLink

Purpose Container widget function to insert links from the clipboard

Synopsis #include <Xm/Container.h>

Boolean XmContainerPasteLink(
Widget containej;

Description

XmContainerPasteLink requests data transfer from the clipboard selection to the
Container. This routine calls the widge#snNdestinationCallback procedures with
the selectionmember of theXmDestinationCallbackStruct set to CLIPBOARDand
with the operationmember set t&mLINK . The Container widget itself performs no
transfers; theXmNdestinationCallback procedures are responsible for inserting the
link to the clipboard selection and for taking any related actions.

container Specifies the Container widget ID.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

The function returns False if no data transfer takes place. Otherwise, it returns True.

Related Information

844

XmContainer(3).

Xm Functions

XmContainerRelayout(library call)

XmContainerRelayout

Purpose Container widget relayout function

Synopsis #include <Xm/Container.h>

void XmContainerRelayout(
Widget containej;

Description

XmContainerRelayout forces a layout of all items in the Container using the

XmNpositionIndex and XmNentryParent constraint resources associated with each
item.

container Specifies the Container widget ID.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Related Information
XmContainer(3).

845

Motif 2.1—Programmer’s Reference

XmContainerReorder(library call)

XmContainerReorder

Purpose Container widget function to reorder children

Synopsis #include <Xm/Container.h>

void XmContainerReorder(
Widget container
WidgetList widgets
int num_widgets

Description

XmContainerReorder obtains the XmNpositionindex constraint resources of
each widget specified imvidgets sorts them in ascending order, and inserts the
XmNpositionIndex constraint resources in the new order into each widget. If
the XmNlayoutType resource of Container iSKMOUTLINE or XmDETAIL ,
XmContainerReorder will force a layout of all items.

container Specifies the Container widget ID.
widgets Specifies an array of widget children cbntainet
num_widgetsSpecifies the number of items in thédgetsarray.

For a complete definition of Container and its associated resources, see
XmContainer(3).

Related Information

846

XmContainer(3).

Xm Functions
XmConvertStringToUnits(library call)

XmConvertStringToUnits

Purpose A function that converts a string specification to a unit value

Synopsis #include <Xm/Xm.h>

int XmConvertStringToUnits(
Screen *screen
String speg
int orientation
int to_type
XtEnum * parse_erro};

Description

XmConvertStringToUnits converts a string specification value and returns the
converted value as the return value from the function. This function uses the specified
screen’s resolution to compute the number of units for the string specification.

screen Specifies the screen whose resolution is to be used for the computation.
spec Specifies the string, irfloating value><unit> format, to be converted.

orientation Specifies whether the converter uses the horizontal or vertical screen
resolution when performing the conversion. Tdmentation parameter
can have values ofmHORIZONTAL or XmVERTICAL .

to_type Converts the value to the unit type specified. Refer tadimNunitType
resource of theXmGadget, XmManager, or XmPrimitive reference
page. This parameter can have one of the following values:

XmPIXELS The returned value will be the number of pixels.

XMMILLIMETERS
The returned value will be the number of millimeters.

847

Motif 2.1—Programmer’s Reference

XmConvertStringToUnits(library call)

Xm100TH_MILLIMETERS
The returned values will be the number of 1/100
millimeters.

XMCENTIMETERS
The returned values will be the number of centimeters.

XmMINCHES
The returned values will be the number of inches.

Xm1000TH_INCHES
The returned values will be the number of 1/100 inches.

XmPOINTS
The returned values will be the number of points. A point
is a text processing unit defined as 1/72 of an inch.

Xm100TH_POINTS
The returned values will be the number of 1/100 points.

XmFONT_UNITS
All values provided to the widget are treated as font
units. A font unit has horizontal and vertical components.
These are the values of the XmScreen resources
XmNhorizontalFontUnit and XmNverticalFontUnit .

Xm100TH_FONT_UNITS
All values provided to the widget are treated as 1/
100 of a font unit. A font unit has horizontal and
vertical components. These are the values of the
XmScreen resources XmNhorizontalFontUnit and
XmNverticalFontUnit .

parse_error
Specifies if a parsing error occurred. This is set to a value of True
indicates that an error occurred, a value of False to indicate no error.

Return Values

Returns the converted value. If a NULL screen, incorregéntation or incorrect
unit_typeis supplied as parameter data, or if a parsing error occurred, 0 (zero) is
returned.

848

Xm Functions

XmConvertStringToUnits(library call)

Related Information
XmConvertUnits(3), XmSetFontUnits(3), andXmScreen(3).

849

Motif 2.1—Programmer’s Reference

XmConvertUnits(library call)

XmConvertUnits

Purpose A function that converts a value in one unit type to another unit type

Synopsis #include <Xm/Xm.h>

int XmConvertUnits(
Widget widget
int orientation
int from_unit_type
int from_value
int to_unit_type;

Description

XmConvertUnits converts the value and returns it as the return value from the
function. For resources of type, dimension, or position, you can specify units using the
syntax described in thEmNunitType resource of theXmPrimitive reference page.

widget Specifies the widget for which the data is to be converted.

orientation Specifies whether the converter uses the horizontal or vertical screen
resolution when performing the conversions. Trntation parameter
can have values ofmHORIZONTAL or XmVERTICAL .

from_unit_type
Specifies the current unit type of the supplied value

from_value Specifies the value to be converted
to_unit_type Converts the value to the unit type specified
The parameterfom_unit_typeandto_unit_typecan have the following values:

XmPIXELS
All values provided to the widget are treated as pixel values. This is the
default for the resource.

850

Xm Functions

XmConvertUnits(library call)

XmMILLIMETERS
All values provided to the widget are treated as millimeter values.

Xm100TH_MILLIMETERS
All values provided to the widget are treated as 1/100 of a millimeter.

XmCENTIMETERS
All values provided to the widget are treated as centimeter values.

XmINCHES
All values provided to the widget are treated as inch values.

Xm1000TH_INCHES
All values provided to the widget are treated as 1/1000 of an inch.

XmPOINTS
All values provided to the widget are treated as point values. A point is
a unit used in text processing applications and is defined as 1/72 of an
inch.

Xm100TH_POINTS
All values provided to the widget are treated as 1/100 of a point. A point
is a unit typically used in text processing applications and is defined as
1/72 of an inch.

XmFONT_UNITS
All values provided to the widget are treated as normal font units.
A font unit has horizontal and vertical components. These are the
values of the XmScreen resourcésmNhorizontalFontUnit and
XmNverticalFontUnit .

Xm100TH_FONT_UNITS
All values provided to the widget are treated as 1/100 of a font
unit. A font unit has horizontal and vertical components. These are
the values of the XmScreen resourcésNhorizontalFontUnit and
XmNverticalFontUnit .

Return Values

Returns the converted value. If a NULL widget, incorrectentation or incorrect
unit_typeis supplied as parameter data, O (zero) is returned.

851

Motif 2.1—Programmer’s Reference

XmConvertUnits(library call)

Related Information
XmPrimitive , XmSetFontUnits(3), andXmScreen(3).

852

Xm Functions

XmCreateArrowButton(library call)

XmCreateArrowButton

Purpose The ArrowButton widget creation function

Synopsis #include <Xm/ArrowB.h>

Widget XmCreateArrowButton(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateArrowButton creates an instance of an ArrowButton widget and returns
the associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of ArrowButton and its associated resources, see
XmArrowButton (3).

Return Values

Returns the ArrowButton widget ID.

Related Information
XmArrowButton (3).

853

Motif 2.1—Programmer’s Reference

XmCreateArrowButtonGadget(library call)

XmCreateArrowButtonGadget

Purpose The ArrowButtonGadget creation function

Synopsis #include <Xm/ArrowBG.h>

Widget XmCreateArrowButtonGadget(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateArrowButtonGadget creates an instance of an ArrowButtonGadget widget
and returns the associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of ArrowButtonGadget and its associated resources, see
XmArrowButtonGadget (3).

Return Values
Returns the ArrowButtonGadget widget ID.

Related Information
XmArrowButtonGadget (3).

854

Xm Functions
XmCreateBulletinBoard(library call)

XmCreateBulletinBoard

Purpose The BulletinBoard widget creation function

Synopsis #include <Xm/BulletinB.h>

Widget XmCreateBulletinBoard(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateBulletinBoard creates an instance of a BulletinBoard widget and returns
the associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of BulletinBoard and its associated resources, see
XmBulletinBoard (3).

Return Values
Returns the BulletinBoard widget ID.

Related Information
XmBulletinBoard (3).

855

Motif 2.1—Programmer’s Reference

XmCreateBulletinBoardDialog(library call)

XmCreateBulletinBoardDialog

Purpose The BulletinBoard BulletinBoardDialog convenience creation function

Synopsis #include <Xm/BulletinB.h>

Widget XmCreateBulletinBoardDialog(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

856

XmCreateBulletinBoardDialog is a convenience creation function that creates

a DialogShell and an unmanaged BulletinBoard child of the DialogShell. A
BulletinBoardDialog is used for interactions not supported by the standard dialog
set. This function does not automatically create any labels, buttons, or other
dialog components. Such components should be added by the application after the
BulletinBoardDialog is created.

Use XtManageChild to pop up the BulletinBoardDialog (passing the BulletinBoard
as the widget parameter); u¥¢UnmanageChild to pop it down.

XmCreateBulletinBoardDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of BulletinBoard and its associated resources, see
XmBulletinBoard (3).

Xm Functions

XmCreateBulletinBoardDialog(library call)

Return Values
Returns the BulletinBoard widget ID.

Related Information
XmBulletinBoard (3).

857

Motif 2.1—Programmer’s Reference

XmCreateCascadeButton(library call)

XmCreateCascadeButton

Purpose The CascadeButton widget creation function

Synopsis #include <Xm/CascadeB.h>

Widget XmCreateCascadeButton(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateCascadeButtoncreates an instance of a CascadeButton widget and returns
the associated widget ID.

parent Specifies the parent widget ID. The parent must be a RowColumn
widget.

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of CascadeButton and its associated resources, see
XmCascadeButtor(3).

Return Values

Returns the CascadeButton widget ID.

858

Xm Functions

XmCreateCascadeButton(library call)

Related Information
XmCascadeButton(3).

859

Motif 2.1—Programmer’s Reference

XmCreateCascadeButtonGadget(library call)

XmCreateCascadeButtonGadget

Purpose The CascadeButtonGadget creation function

Synopsis #include <Xm/CascadeBG.h>

Widget XmCreateCascadeButtonGadget(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateCascadeButtonGadgetreates an instance of a CascadeButtonGadget and
returns the associated widget ID.

parent Specifies the parent widget ID. The parent must be a RowColumn
widget.

name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of CascadeButtonGadget and its associated resources, see
XmCascadeButtonGadgef3).

Return Values
Returns the CascadeButtonGadget widget ID.

860

Xm Functions

XmCreateCascadeButtonGadget(library call)

Related Information
XmCascadeButtonGadgef3).

861

Motif 2.1—Programmer’s Reference

XmCreateComboBox(library call)

XmCreateComboBox

Purpose The default ComboBox widget creation function

Synopsis #include <Xm/ComboBox.h>

Widget XmCreateComboBox(
Widget parent
String name
ArglList arglist,
Cardinal arg_couny;

Description

XmCreateComboBox creates an instance of a ComboBox widget of
XmNcomboBoxType XmCOMBO_B@id returns the associated widget ID.

parent Specifies the parent widget ID.
name Specifies the name of the created widget.
arglist Specifies the argument list.

arg_count Specifies the number of attribute/value pairs in the argumenaligligt).

For a complete definition of ComboBox and its associated resources, see
XmComboBox(3).

Return Values
Returns the ComboBox widget ID.

Related Information
XmComboBox(3).

862

Xm Functions

XmCreateCommand(library call)

XmCreateCommand

Purpose The Command widget creation function

Synopsis #include <Xm/Command.h>

Widget XmCreateCommand(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateCommand creates an instance of a Command widget and returns the
associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of Command and its associated resources, see
XmCommand(3).

Return Values

Returns the Command widget ID.

Related Information
XmCommand(3).

863

Motif 2.1—Programmer’s Reference

XmCreateContainer(library call)

XmCreateContainer

Purpose The Container widget creation function

Synopsis #include <Xm/Container.h>

Widget XmCreateContainer(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateContainer creates an instance of a Container widget and returns the
associated widget ID.

parent Specifies the parent widget ID.
name Specifies the name of the created widget.
arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argumenaligli$t).

For a complete definition of Container and its associated resources, see
XmContainer(3).

Return Values

This function returns the Container widget ID.

Related Information
XmContainer(3).

864

Xm Functions
XmCreateDialogShell(library call)

XmCreateDialogShell

Purpose The DialogShell widget creation function

Synopsis #include <Xm/DialogS.h>

Widget XmCreateDialogShell(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateDialogShell creates an instance of a DialogShell widget and returns the
associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of DialogShell and its associated resources, see
XmDialogShell(3).

Return Values
Returns the DialogShell widget ID.

Related Information
XmDialogShell(3).

865

Motif 2.1—Programmer’s Reference

XmCreateDraglcon(library call)

XmCreateDraglcon

Purpose A Drag and Drop function that creates a Draglcon widget

Synopsis #include <Xm/Draglcon.h>

Widget XmCreateDraglcon(
Widget widget
String name
ArglList arglist,
Cardinal argcounj;

Description
XmCreateDraglcon creates a Draglcon and returns the associated widget ID.

widget Specifies the ID of the widget that the function uses to access default
values for visual attributes of the Draglcon. This widget may be different
than the actual parent of the Draglcon.

name Specifies the name of the Draglcon widget.
arglist Specifies the argument list.
argcount Specifies the number of attribute/value pairs in the argumenaligli$t).

For a complete definition of Draglcon and its associated resources, see
XmDraglcon(3).

Return Values

The function creates a Draglcon and returns the associated widget ID.

866

Xm Functions

XmCreateDraglcon(library call)

Related Information
XmDragContext(3), XmDraglcon(3), andXmScreen(3).

867

Motif 2.1—Programmer’s Reference

XmCreateDrawingArea(library call)

XmCreateDrawingArea

Purpose The DrawingArea widget creation function

Synopsis #include <Xm/DrawingA.h>

Widget XmCreateDrawingArea(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateDrawingArea creates an instance of a DrawingArea widget and returns the
associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of DrawingArea and its associated resources, see
XmDrawingArea (3).

Return Values

Returns the DrawingArea widget ID.

Related Information
XmDrawingArea (3).

868

Xm Functions

XmCreateDrawnButton(library call)

XmCreateDrawnButton

Purpose The DrawnButton widget creation function

Synopsis #include <Xm/DrawnB.h>

Widget XmCreateDrawnButton(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateDrawnButton creates an instance of a DrawnButton widget and returns
the associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of DrawnButton and its associated resources, see
XmDrawnButton (3).

Return Values

Returns the DrawnButton widget ID.

Related Information
XmDrawnButton (3).

869

Motif 2.1—Programmer’s Reference

XmCreateDropDownComboBox(library call)

XmCreateDropDownComboBox

Purpose The Drop-down ComboBox widget creation function

Synopsis #include <Xm/ComboBox.h>

Widget XmCreateDropDownComboBox(
Widget parent
String name
ArglList arglist,
Cardinal arg_couny;

Description

XmCreateDropDownComboBox creates an instance of a ComboBox widget of
XmNcomboBoxType XmDROP_DOWN_COMBO_B&x returns the associated
widget ID.

parent Specifies the parent widget ID.
name Specifies the name of the created widget.
arglist Specifies the argument list.

arg_count Specifies the number of attribute/value pairs in the argumenaligligt).

For a complete definition of ComboBox and its associated resources, see
XmComboBox(3).

Return Values

870

Returns the ComboBox widget ID.

Xm Functions

XmCreateDropDownComboBox(library call)

Related Information
XmComboBox(3).

871

Motif 2.1—Programmer’s Reference

XmCreateDropDownlList(library call)

XmCreateDropDownList

Purpose The Drop-down list ComboBox widget creation function

Synopsis #include <Xm/ComboBox.h>

Widget XmCreateDropDownList(
Widget parent
String name
ArglList arglist,
Cardinal arg_couny;

Description

XmCreateDropDownlList creates an instance of a ComboBox widget of
XmNcomboBoxType XmDROP_DOWN_ Ll returns the associated widget ID.

parent Specifies the parent widget ID.
name Specifies the name of the created widget.
arglist Specifies the argument list.

arg_count Specifies the number of attribute/value pairs in the argumenaligligt).

For a complete definition of ComboBox and its associated resources, see
XmComboBox(3).

Return Values
Returns the ComboBox widget ID.

Related Information
XmComboBox(3).

872

Xm Functions

XmCreateErrorDialog(library call)

XmCreateErrorDialog

Purpose The MessageBox ErrorDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateErrorDialog(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateErrorDialog is a convenience creation function that creates a DialogShell
and an unmanaged MessageBox child of the DialogShell. An ErrorDialog warns the
user of an invalid or potentially dangerous condition. It includes a symbol, a message,
and three buttons. The default symbol is an octagon with a diagonal slash. The default
button labels ar®©K, Cancel andHelp.

Use XtManageChild to pop up the ErrorDialog (passing the MessageBox as the
widget parameter); usEtUnmanageChild to pop it down.

XmCreateErrorDialog forces the value of the Shell resourkmNallowShellResize

to True.

parent Specifies the parent widget ID

name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox3).

873

Motif 2.1—Programmer’s Reference

XmCreateErrorDialog(library call)

Return Values

Returns the MessageBox widget ID.

Related Information
XmMessageBox3).

874

Xm Functions

XmCreateFileSelectionBox(library call)

XmCreateFileSelectionBox

Purpose The FileSelectionBox widget creation function

Synopsis #include <Xm/FileSB.h>

Widget XmCreateFileSelectionBox(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateFileSelectionBox creates an unmanaged FileSelectionBox. A
FileSelectionBox is used to select a file and includes the following:

» An editable text field for the directory mask
* A scrolling list of filenames

» An editable text field for the selected file

* Labels for the list and text fields

 Four buttons

The default button labels af@K, Filter, Cancel and Help. Additional work area
children may be added to the FileSelectionBox after creation. FileSelectionBox
inherits the layout functionality provided by SelectionBox for any additional work
area children.

If the parent of the FileSelectionBox is a DialogShell, X$®anageChild to pop up
the FileSelectionDialog (passing the FileSelectionBox as the widget parameter); use
XtUnmanageChild to pop it down.

parent Specifies the parent widget ID

name Specifies the name of the created widget

875

Motif 2.1—Programmer’s Reference

XmCreateFileSelectionBox(library call)

arglist Specifies the argument list
argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of FileSelectionBox and its associated resources, see
XmFileSelectionBox3).

Return Values

Returns the FileSelectionBox widget ID.

Related Information
XmFileSelectionBox3).

876

Xm Functions

XmCreateFileSelectionDialog(library call)

XmCreateFileSelectionDialog

Purpose The FileSelectionBox FileSelectionDialog convenience creation function

Synopsis #include <Xm/FileSB.h>

Widget XmCreateFileSelectionDialog(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateFileSelectionDialog is a convenience creation function that creates
a DialogShell and an unmanaged FileSelectionBox child of the DialogShell. A
FileSelectionDialog selects a file. It includes the following:

» An editable text field for the directory mask

A scrolling list of filenames

An editable text field for the selected file
» Labels for the list and text fields
* Four buttons

The default button labels af@K, Filter, Cancel andHelp. One additionalWorkArea
child may be added to the FileSelectionBox after creation.

UseXtManageChild to pop up the FileSelectionDialog (passing the FileSelectionBox
as the widget parameter); u¥¢UnmanageChild to pop it down.

XmCreateFileSelectionDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID

name Specifies the name of the created widget

877

Motif 2.1—Programmer’s Reference

XmCreateFileSelectionDialog(library call)

arglist Specifies the argument list
argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of FileSelectionBox and its associated resources, see
XmFileSelectionBox3).

Return Values

Returns the FileSelectionBox widget ID.

Related Information
XmFileSelectionBox3).

878

Xm Functions

XmCreateForm(library call)

XmCreateForm

Purpose The Form widget creation function

Synopsis #include <Xm/Form.h>

Widget XmCreateForm(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description
XmCreateForm creates an instance of a Form widget and returns the associated
widget ID.
parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of Form and its associated resources{raéerm(3).

Return Values

Returns the Form widget ID.

Related Information
XmForm (3).

879

Motif 2.1—Programmer’s Reference

XmCreateFormDialog(library call)

XmCreateFormDialog

Purpose A Form FormDialog convenience creation function

Synopsis #include <Xm/Form.h>

Widget XmCreateFormDialog(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateFormDialog is a convenience creation function that creates a DialogShell
and an unmanaged Form child of the DialogShell. A FormDialog is used for
interactions not supported by the standard dialog set. This function does not
automatically create any labels, buttons, or other dialog components. Such components
should be added by the application after the FormDialog is created.

Use XtManageChild to pop up the FormDialog (passing the Form as the widget
parameter); usXtUnmanageChild to pop it down.

XmCreateFormDialog forces the value of the Shell resourkenNallowShellResize

to True.

parent Specifies the parent widget ID

name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of Form and its associated resources{raéerm(3).

880

Xm Functions

XmCreateFormDialog(library call)

Return Values

Returns the Form widget ID.

Related Information
XmForm (3).

881

Motif 2.1—Programmer’s Reference

XmCreateFrame(library call)

XmCreateFrame

Purpose The Frame widget creation function

Synopsis #include <Xm/Frame.h>

Widget XmCreateFrame(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description
XmCreateFrame creates an instance of a Frame widget and returns the associated
widget ID.
parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of Frame and its associated resourceXnsemme(3).

Return Values

Returns the Frame widget ID.

Related Information
XmFrame(3).

882

Xm Functions

XmCreatelconGadget(library call)

XmCreatelconGadget

Purpose The IconGadget widget creation function

Synopsis #include <Xm/lconG.h>

Widget XmCreatelconGadget(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreatelconGadget creates an instance of an IconGadget widget and returns the
associated widget ID.

parent Specifies the parent widget ID.
name Specifies the name of the created widget.
arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argumenaligli$t).

For a complete definition of IconGadget and its associated resources, see
XmlconGadget(3).

Return Values
Returns the IconGadget widget ID.

Related Information
XmlconGadget(3).

883

Motif 2.1—Programmer’s Reference

XmCreatelnformationDialog(library call)

XmCreatelnformationDialog

Purpose The MessageBox InformationDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreatelnformationDialog(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreatelnformationDialog is a convenience creation function that creates
a DialogShell and an unmanaged MessageBox child of the DialogShell. An
InformationDialog gives the user information, such as the status of an action. It
includes a symbol, a message, and three buttons. The default symb®his default
button labels ar®©K, Cancel andHelp.

Use XtManageChild to pop up the InformationDialog (passing the MessageBox as
the widget parameter); uséUnmanageChild to pop it down.

XmCreatelnformationDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox3).

884

Xm Functions

XmCreatelnformationDialog(library call)

Return Values

Returns the MessageBox widget ID.

Related Information
XmMessageBox3).

885

Motif 2.1—Programmer’s Reference

XmCreatelLabel(library call)

XmCreatelLabel

Purpose The Label widget creation function

Synopsis #include <Xm/Label.h>

Widget XmCreateLabel(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description
XmCreatelLabel creates an instance of a Label widget and returns the associated
widget ID.
parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of Label and its associated resources{rakabel(3).

Return Values
Returns the Label widget ID.

Related Information
XmLabel(3).

886

Xm Functions
XmCreatelLabelGadget(library call)

XmCreatelLabelGadget

Purpose The LabelGadget creation function

Synopsis #include <Xm/LabelG.h>

Widget XmCreatelLabelGadget(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreatelLabelGadgetcreates an instance of a LabelGadget widget and returns the
associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of LabelGadget and its associated resources, see
XmLabelGadget(3).

Return Values
Returns the LabelGadget widget ID.

Related Information
XmLabelGadget(3).

887

Motif 2.1—Programmer’s Reference

XmCreateList(library call)

XmCreatelList

Purpose The List widget creation function

Synopsis #include <Xm/List.h>

Widget XmCreateList(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description
XmCreatelList creates an instance of a List widget and returns the associated widget
ID.
parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of List and its associated resourcesXsgést (3).

Return Values
Returns the List widget ID.

Related Information
XmList (3).

888

Xm Functions
XmCreateMainWindow(library call)

XmCreateMainWindow

Purpose The Mainwindow widget creation function

Synopsis #include <Xm/MainW.h>

Widget XmCreateMainWindow(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateMainWindow creates an instance of a MainWindow widget and returns
the associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of MainWindow and its associated resources, see
XmMainWindow (3).

Return Values
Returns the MainWindow widget ID.

Related Information
XmMainWindow (3).

889

Motif 2.1—Programmer’s Reference

XmCreateMenuBar(library call)

XmCreateMenuBar

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateMenuBar(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

890

XmCreateMenuBar creates an instance of a RowColumn widget of type
XmMENU_BAR and returns the associated widget ID. It is provided as a
convenience function for creating RowColumn widgets configured to operate as a
MenuBar and is not implemented as a separate widget class.

The MenuBar widget is generally used for building a Pulldown menu system.
Typically, a MenuBar is created and placed along the top of the application window,
and several CascadeButtons are inserted as the children. Each of the CascadeButtons
has a Pulldown menu pane associated with it. These Pulldown menu panes must have
been created as children of the MenuBar. The user interacts with the MenuBar by
using either the mouse or the keyboard.

The MenuBar displays a 3-D shadow along its border. The application controls the
shadow attributes using the visual-related resources support¥thManager.

The MenuBar widget is homogeneous in that it accepts only children that are a subclass
of XmCascadeButtonor XmCascadeButtonGadget Attempting to insert a child of
a different class results in a warning message.

If the MenuBar does not have enough room to fit all of its subwidgets on a single line,
the MenuBar attempts to wrap the remaining entries onto additional lines if allowed
by the geometry manager of the parent widget.

Xm Functions

XmCreateMenuBar(library call)

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCascadeButtor(3), XmCascadeButtonGadgef3),
XmCreatePulldownMenu(3), XmCreateSimpleMenuBar(3), XmManager(3),
XmRowColumn(3), andXmVaCreateSimpleMenuBar(3).

891

Motif 2.1—Programmer’s Reference

XmCreateMenuShell(library call)

XmCreateMenuShell

Purpose The MenuShell widget creation function

Synopsis #include <Xm/MenuShell.h>

Widget XmCreateMenuShell(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateMenuShell creates an instance of a MenuShell widget and returns the
associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of MenuShell and its associated resources, see
XmMenuShell(3).

Return Values
Returns the MenuShell widget ID.

Related Information
XmMenuShell(3).

892

Xm Functions

XmCreateMessageBox(library call)

XmCreateMessageBox

Purpose The MessageBox widget creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateMessageBox(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateMessageBoxcreates an unmanaged MessageBox. A MessageBox is used
for common interaction tasks, which include giving information, asking questions, and
reporting errors. It includes an optional symbol, a message, and three buttons.

By default, there is no symbol. The default button labels@kg Cancel andHelp.

If the parent of the MessageBox is a DialogShell, v&danageChild to pop
up the MessageBox (passing the MessageBox as the widget parameter); use
XtUnmanageChild to pop it down.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox3).

893

Motif 2.1—Programmer’s Reference

XmCreateMessageBox(library call)

Return Values

Returns the MessageBox widget ID.

Related Information
XmMessageBox3).

894

Xm Functions

XmCreateMessageDialog(library call)

XmCreateMessageDialog

Purpose The MessageBox MessageDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateMessageDialog(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateMessageDialog is a convenience creation function that creates a
DialogShell and an unmanaged MessageBox child of the DialogShell. A
MessageDialog is used for common interaction tasks, which include giving
information, asking questions, and reporting errors. It includes a symbol, a message,
and three buttons. By default, there is no symbol. The default button labeBkgre
Cancel andHelp.

Use XtManageChild to pop up the MessageDialog (passing the MessageBox as the
widget parameter); usEtUnmanageChild to pop it down.

XmCreateMessageDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox3).

895

Motif 2.1—Programmer’s Reference

XmCreateMessageDialog(library call)

Return Values

Returns the MessageBox widget ID.

Related Information
XmMessageBox3).

896

Xm Functions

XmCreateNotebook(library call)

XmCreateNotebook

Purpose The Notebook widget creation function

Synopsis #include <Xm/Notebook.h>

void XmCreateNotebook(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateNotebook creates an instance of a Notebook widget and returns the
associated widget ID.

parent Specifies the parent widget ID.
name Specifies the name of the created widget.
arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argumenaligli$t).

For a complete definition of Notebook and its associated resources, see
XmNotebook(3).

Return Values
Returns the Notebook widget ID.

Related Information
XmNotebook(3).

897

Motif 2.1—Programmer’s Reference

XmCreateOptionMenu(library call)

XmCreateOptionMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateOptionMenu(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

898

XmCreateOptionMenu creates an instance of a RowColumn widget of type
XmMENU_OPTION and returns the associated widget ID.

It is provided as a convenience function for creating a RowColumn widget configured
to operate as an OptionMenu and is not implemented as a separate widget class.

The OptionMenu widget is a specialized RowColumn manager composed of a label,
a selection area, and a single Pulldown menu pane. When an application creates
an OptionMenu widget, it supplies the label string and the Pulldown menu pane.
In order for the operation to be successful, there must be a ¥atitisubMenuld
resource set when this function is called. The LabelGadget and the selection area (a
CascadeButtonGadget) are created by the OptionMenu.

The OptionMenu’s Pulldown menu pane must not contain any ToggleButtons
or ToggleButtonGadgets. The results of including CascadeButtons or
CascadeButtonGadgets in the OptionMenu’s Pulldown menu pane are undefined.

An OptionMenu is laid out with the label displayed on one side of the widget and
the selection area on the other side whémNorientation is XmHORIZONTAL

The layout of the label with respect to the selection area depends on the
XmNlayoutDirection resource in the horizontal orientation. If the value is
XmVERTICAL , the label is above the selection area. The selection area has a dual

Xm Functions

XmCreateOptionMenu(library call)

purpose; it displays the label of the last item selected from the associated Pulldown
menu pane, and it provides the means for posting the Pulldown menu pane.

The OptionMenu typically does not display any 3-D visuals around itself or the
internal LabelGadget. By default, the internal CascadeButtonGadget has a visible
3-D shadow. The application may change this by getting the CascadeButtonGadget
ID using XmOptionButtonGadget, and then calling{tSetValuesusing the standard
visual-related resources.

The Pulldown menu pane is posted when the mouse pointer is moved over the selection
area and a mouse button that is defined by OptionMenu’s RowColumn parent is
pressed. The Pulldown menu pane is posted and positioned so that the last selected
item is directly over the selection area. The mouse is then used to arm the desired
menu item. When the mouse button is released, the armed menu item is selected and
the label within the selection area is changed to match that of the selected item. By
default,BSelectis used to interact with an OptionMenu. The default can be changed
with the RowColumn resourcémNmenuPost

The OptionMenu also operates with the keyboard interface mechanism. If the
application has established a mnemonic with the OptionMenu, pre{Alt Jwith

the mnemonic causes the Pulldown menu pane to be posted with traversal enabled.
The standard traversal keys can then be used to move within the menu pane. Pressing
or typing a mnemonic or accelerator for one of the menu items selects that
item.

An application may use th&kmNmenuHistory resource to indicate which item in

the Pulldown menu pane should be treated as the current choice and have its label
displayed in the selection area. By default, the first selectable item in the Pulldown
menu pane is used.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

The user can specify resources in a resource file for the automatically created
widgets and gadgets of an OptionMenu. These widgets (or gadgets) and the associated
OptionMenu areas are

Option Menu Label Gadget
OptionLabel

899

Motif 2.1—Programmer’s Reference

XmCreateOptionMenu(library call)

Option Menu Cascade Button
OptionButton

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCascadeButtonGadget3), XmCreatePulldownMenu(3),
XmCreateSimpleOptionMenu(3), XmLabelGadget(3),
XmOptionButtonGadget(3), XmOptionLabelGadget(3), XmRowColumn(3), and
XmVaCreateSimpleOptionMenu(3).

900

Xm Functions
XmCreatePanedWindow(library call)

XmCreatePanedWindow

Purpose The PanedWindow widget creation function

Synopsis #include <Xm/PanedW.h>

Widget XmCreatePanedWindow(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreatePanedWindowcreates an instance of a PanedWindow widget and returns
the associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of PanedWindow and its associated resources, see
XmPanedWindow(3).

Return Values
Returns the PanedWindow widget ID.

Related Information
XmPanedWindow(3).

901

Motif 2.1—Programmer’s Reference

XmCreatePopupMenu(library call)

XmCreatePopupMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreatePopupMenu(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

902

XmCreatePopupMenu creates an instance of a RowColumn widget of type
XmMENU_POPUP and returns the associated widget ID. When this function is
used to create the Popup menu pane, a MenuShell widget is automatically created
as the parent of the menu pane. The parent of the MenuShell widget is the widget
indicated by theparentparameter.

XmCreatePopupMenu is provided as a convenience function for creating
RowColumn widgets configured to operate as Popup menu panes and is not
implemented as a separate widget class.

The PopupMenu is used as the first menu pane within a PopupMenu system; all other
menu panes are of the Pulldown type. A Popup menu pane displays a 3-D shadow,
unless the feature is disabled by the application. The shadow appears around the edge
of the menu pane.

The Popup menu pane must be created as the child of a MenuShell widget in order
to function properly when it is incorporated into a menu. If the application uses this
convenience function for creating a Popup menu pane, the MenuShell is automatically
created as the real parent of the menu pane. If the application does not use this
convenience function to create the RowColumn to function as a Popup menu pane, it
is the application’s responsibility to create the MenuShell widget.

Xm Functions

XmCreatePopupMenu(library call)

To access the PopupMenu, the application must first position the widget using the
XmMenuPosition function and then manage it usidgManageChild.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

Popup menu panes support tear-off capabilities for tear-off menus through
XmRowColumn resources. For a complete definition of RowColumn and its
associated resources, ssmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateSimplePopupMeny3), XmMenuPosition(3), XmMenuShell(3),
XmRowColumn(3), andXmVaCreateSimplePopupMeny3).

903

Motif 2.1—Programmer’s Reference

XmCreatePromptDialog(library call)

XmCreatePromptDialog

Purpose The SelectionBox PromptDialog convenience creation function

Synopsis #include <Xm/SelectioB.h>

Widget XmCreatePromptDialog(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

904

XmCreatePromptDialog is a convenience creation function that creates a DialogShell
and an unmanaged SelectionBox child of the DialogShell. A PromptDialog prompts
the user for text input. It includes a message, a text input region, and three managed
buttons. The default button labels abK, Cancel andHelp. An additional button,

with Apply as the default label, is created unmanaged; it may be explicitly managed
if needed. One additionalMorkArea child may be added to the SelectionBox after
creation.

XmCreatePromptDialog forces the value of the SelectionBox resource
XmNdialogType to XmDIALOG_PROMPT .

Use XtManageChild to pop up the PromptDialog (passing the SelectionBox as the
widget parameter); usEtUnmanageChild to pop it down.

XmCreatePromptDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

Xm Functions

XmCreatePromptDialog(library call)

For a complete definition of SelectionBox and its associated resources, see
XmSelectionBox3).

Return Values

Returns the SelectionBox widget ID.

Related Information
XmSelectionBox3).

905

Motif 2.1—Programmer’s Reference

XmCreatePulldownMenu(library call)

XmCreatePulldownMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreatePulldownMenu(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

906

XmCreatePulldownMenu creates an instance of a RowColumn widget of type
XmMENU_PULLDOWN and returns the associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

Specifies the number of attribute/value pairs in the argument digfligt). When

this function is used to create the Pulldown menu pane, a MenuShell widget is
automatically created as the parent of the menu pane. If the widget specified by
the parent parameter is a Popup or a Pulldown menu pane, the MenuShell widget is
created as a child of thparent MenuShell; otherwise, it is created as a child of the
specifiedparentwidget.

XmCreatePulldownMenu is provided as a convenience function for creating
RowColumn widgets configured to operate as Pulldown menu panes and is not
implemented as a separate widget class.

A Pulldown menu pane displays a 3-D shadow, unless the feature is disabled by the
application. The shadow appears around the edge of the menu pane.

Xm Functions

XmCreatePulldownMenu(library call)

A Pulldown menu pane is used with submenus that are to be attached to a
CascadeButton or a CascadeButtonGadget. This is the case for all menu panes that
are part of a PulldownMenu system (a MenuBar), the menu pane associated with an
OptionMenu, and any menu panes that cascade from a Popup menu pane. Pulldown
menu panes that are to be associated with an OptionMenu must be created before the
OptionMenu is created.

The Pulldown menu pane must be attached to a CascadeButton or
CascadeButtonGadget that resides in a MenuBar, a Popup menu pane, a
Pulldown menu pane, or an OptionMenu. It is attached with the button resource
XmNsubMenuld.

A MenuShell widget is required between the Pulldown menu pane and its parent. If
the application uses this convenience function for creating a Pulldown menu pane, the
MenuShell is automatically created as the real parent of the menu pane; otherwise, it
is the application’s responsibility to create the MenuShell widget.

To function correctly when incorporated into a menu, the Pulldown menu pane’s
hierarchy must be considered. This hierarchy depends on the type of menu system
that is being built, as follows:

« If the Pulldown menu pane is to be pulled down from a MenuBapatentmust
be the MenuBar.

« If the Pulldown menu pane is to be pulled down from a Popup or another Pulldown
menu pane, itparentmust be that Popup or Pulldown menu pane.

« If the Pulldown menu pane is to be pulled down from an OptionMentpdtent
must be the same as the OptionMenu parent.

PullDown menu panes support tear-off capabilities for tear-off menus through
XmRowColumn resources. For a complete definition of RowColumn and its
associated resources, s¢mRowColumn(3).

Return Values

Returns the RowColumn widget ID.

907

Motif 2.1—Programmer’s Reference

XmCreatePulldownMenu(library call)

Related Information

XmCascadeButtor(3), XmCascadeButtonGadget3), XmCreateOptionMenu(3),
XmCreatePopupMenu(3), XmCreateSimplePulldownMenu3), XmMenuShell(3),
XmRowColumn(3), andXmVaCreateSimplePulldownMenu(3).

908

Xm Functions
XmCreatePushButton(library call)

XmCreatePushButton

Purpose The PushButton widget creation function

Synopsis #include <Xm/PushB.h>

Widget XmCreatePushButton(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreatePushButton creates an instance of a PushButton widget and returns the
associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of PushButton and its associated resources, see
XmPushButton(3).

Return Values
Returns the PushButton widget ID.

Related Information
XmPushButton(3).

909

Motif 2.1—Programmer’s Reference

XmCreatePushButtonGadget(library call)

XmCreatePushButtonGadget

Purpose The PushButtonGadget creation function

Synopsis #include <Xm/PushBG.h>

Widget XmCreatePushButtonGadget(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreatePushButtonGadgetcreates an instance of a PushButtonGadget widget and
returns the associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of PushButtonGadget and its associated resources, see
XmPushButtonGadge(3).

Return Values
Returns the PushButtonGadget widget ID.

Related Information
XmPushButtonGadget(3).

910

Xm Functions

XmCreateQuestionDialog(library call)

XmCreateQuestionDialog

Purpose The MessageBox QuestionDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateQuestionDialog(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateQuestionDialog is a convenience creation function that creates

a DialogShell and an unmanaged MessageBox child of the DialogShell. A
QuestionDialog is used to get the answer to a question from the user. It includes a
symbol, a message, and three buttons. The default symbol is a question mark. The
default button labels ar®K, Cancel andHelp.

Use XtManageChild to pop up the QuestionDialog (passing the MessageBox as the
widget parameter); usEtUnmanageChild to pop it down.

XmCreateQuestionDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox3).

911

Motif 2.1—Programmer’s Reference

XmCreateQuestionDialog(library call)

Return Values

Returns the MessageBox widget ID.

Related Information
XmMessageBox3).

912

Xm Functions

XmCreateRadioBox(library call)

XmCreateRadioBox

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateRadioBox(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateRadioBox creates an instance of a RowColumn widget of type
XmWORK_AREA and returns the associated widget ID. Typically, this is a
composite widget that contains multiple ToggleButtonGadgets. The RadioBox
arbitrates and ensures that at most one ToggleButtonGadget is on at any time.

Unless the application supplies other values in #rglist, this function provides
initial values for several RowColumn resources. It initializEsnNpacking to

XmPACK_COLUMN , XmNradioBehavior to True, XmNisHomogeneouso True,

and XmNentryClass to XmToggleButtonGadgetClass

In a RadioBox, the ToggleButton or ToggleButtonGadget resource
XmNindicatorType defaults to XmONE_OF_MANY, and the ToggleButton
or ToggleButtonGadget resoudXmNvisibleWhenOff defaults to True.

This routine is provided as a convenience function for creating RowColumn widgets.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

913

Motif 2.1—Programmer’s Reference

XmCreateRadioBox(library call)

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateRowColumn(3), XmCreateSimpleCheckBox3),
XmCreateSimpleRadioBoX3), XmCreateWorkArea (3), XmRowColumn(3),
XmVaCreateSimpleCheckBoxX3), andXmVaCreateSimpleRadioBoX3).

914

Xm Functions

XmCreateRowColumn(library call)

XmCreateRowColumn

Purpose The RowColumn widget creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateRowColumn(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateRowColumn creates an instance of a RowColumn widget and returns the
associated widget ID. KmNrowColumnType is not specified, then it is created with
XmMWORK_AREA , which is the default.

If this function is used to create a Popup Menu of tydmMENU_POPUP or

a Pulldown Menu of typeXmMENU_PULLDOWN , a MenuShell widget is not
automatically created as the parent of the menu pane. The application must first create
the MenuShell by using eithexmCreateMenuShell or the standard toolkit create

function.

parent Specifies the parent widget ID

name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

915

Motif 2.1—Programmer’s Reference

XmCreateRowColumn(library call)

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateMenuBar(3), XmCreateMenuShel[3), XmCreateOptionMenu(3),
XmCreatePopupMenu(3), XmCreatePulldownMenu(3), XmCreateRadioBox3),
XmCreateSimpleCheckBoxX3), XmCreateSimpleMenuBar(3),
XmCreateSimpleOptionMenu(3), XmCreateSimplePopupMeny3),
XmCreateSimplePulldownMenu(3), XmCreateSimpleRadioBox3),
XmCreateWorkArea (3), XmRowColumn(3), XmVaCreateSimpleCheckBoxX3),
XmVaCreateSimpleMenuBar(3), XmVaCreateSimpleOptionMenu(3),
XmVaCreateSimplePopupMeny3), XmVaCreateSimplePulldownMenu3), and
XmVaCreateSimpleRadioBox3).

916

Xm Functions

XmCreateScale(library call)

XmCreateScale

Purpose The Scale widget creation function

Synopsis #include <Xm/Scale.h>

Widget XmCreateScale(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description
XmCreateScalecreates an instance of a Scale widget and returns the associated widget
ID.
parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of Scale and its associated resourceXns8ealg3).

Return Values
Returns the Scale widget ID.

Related Information
XmScalg3).

917

Motif 2.1—Programmer’s Reference

XmCreateScrollBar(library call)

XmCreateScrollBar

Purpose The ScrollBar widget creation function

Synopsis #include <Xm/ScrollBar.h>

Widget XmCreateScrollBar(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateScrollBar creates an instance of a ScrollBar widget and returns the
associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of ScrollBar and its associated resources, see
XmScrollBar (3).

Return Values
Returns the ScrollBar widget ID.

Related Information
XmScrollBar (3).

918

Xm Functions

XmCreateScrolledList(library call)

XmCreateScrolledList

Purpose The List ScrolledList convenience creation function

Synopsis #include <Xm/List.h>

Widget XmCreateScrolledList(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateScrolledList creates an instance of a List widget that is contained

within a ScrolledWindow. The ScrolledWindow parent is created managed. All

ScrolledWindow subarea widgets are automatically created by this function. The 1D
returned by this function is that of the List widget (not the ScrolledWindow widget).

Use this widget ID for all operations on the List widget. Use the widget ID of the

List widget's parent for all operations on the ScrolledWindow. To obtain the ID of

the ScrolledWindow widget associated with the List widget, use the Xt Intrinsics
XtParent function. The name of the ScrolledWindow created by this function is

formed by concatenatin§Wonto the end of th@eamespecified in the parameter list.

All arguments to either the List or the ScrolledWindow widget can be specified
at creation time using this function. Changes to initial position and size are
sent only to the ScrolledWindow widget. Other resources are sent to the List or
the ScrolledWindow widget as appropriate. Note that the result of providing the
XmNdestroyCallback resource in the creaticarglist is unspecified. The application
should use theXtAddCallback function to add callbacks to the appropriate widget
(List or ScrolledWindow) after creating it.

This function forces the following initial values for ScrolledWindow resources:
» XmNscrollingPolicy is set toXmAPPLICATION_DEFINED .
» XmNuvisualPolicy is set toXmVARIABLE .

919

Motif 2.1—Programmer’s Reference

XmCreateScrolledList(library call)

» XmNscrollBarDisplayPolicy is set toXmSTATIC . (No initial value is forced for
the List’s XmNscrollBarDisplayPolicy.)

» XmNshadowThicknessis set to O (zero).

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of List and its associated resourcesXsgést (3).

Return Values
Returns the List widget ID.

Related Information
XmList (3) andXmScrolledWindow(3).

920

Xm Functions

XmCreateScrolledText(library call)

XmCreateScrolledText

Purpose The Text ScrolledText convenience creation function

Synopsis #include <Xm/Text.h>

Widget XmCreateScrolledText(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateScrolledText creates an instance of a Text widget that is contained
within a ScrolledWindow. The ScrolledWindow parent is created managed. All
ScrolledWindow subarea widgets are automatically created by this function. The 1D
returned by this function is that of the Text widget (not the ScrolledWindow widget).
Use this widget ID for all operations on the Text widget. Use the widget ID of the
Text widget's parent for all operations on the ScrolledWindow. To obtain the ID of
the ScrolledWindow widget associated with the Text widget, use the Xt Intrinsics
XtParent function. The name of the ScrolledWindow created by this function is
formed by concatenating the lette®N onto the end of thenamespecified in the
parameter list.

The Text widget defaults to single-line text edit; therefore, no ScrollBars are displayed.
The Text resourc&mNeditMode must be set tmMULTI_LINE_EDIT to display

the ScrollBars. The results of placing a Text widget inside a ScrolledWindow when
the Text'sXmNeditMode is XmSINGLE_LINE_EDIT are undefined.

All arguments to either the Text or the ScrolledWindow widget can be specified
at creation time with this function. Changes to initial position and size are sent
only to the ScrolledWindow widget. Other resources are sent to the Text or
the ScrolledWindow widget as appropriate. Note that the result of providing the
XmNdestroyCallback resource in the creatioarglist is unspecified. The application

921

Motif 2.1—Programmer’s Reference

XmCreateScrolledText(library call)

should use theXtAddCallback function to add callbacks to the appropriate widget
(Text or ScrolledWindow) after creating it.

This function forces the following initial values for ScrolledWindow resources:
» XmNscrollingPolicy is set toXmAPPLICATION_DEFINED .
» XmNvisualPolicy is set toXmVARIABLE .
» XmNscrollBarDisplayPolicy is set toXmSTATIC .

» XmNshadowThicknessis set to O (zero).

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of Text and its associated resources{radext(3).

Return Values
Returns the Text widget ID.

Related Information
XmScrolledWindow(3) andXmText(3).

922

Xm Functions

XmCreateScrolledWindow(library call)

XmCreateScrolledWindow

Purpose The ScrolledWindow widget creation function

Synopsis #include <Xm/ScrolledW.h>

Widget XmCreateScrolledWindow(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateScrolledWindow creates an instance of a ScrolledWindow widget and
returns the associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of ScrolledWindow and its associated resources, see
XmScrolledWindow(3).

Return Values
Returns the ScrolledWindow widget ID.

Related Information
XmScrolledWindow(3).

923

Motif 2.1—Programmer’s Reference

XmCreateSelectionBox(library call)

XmCreateSelectionBox

Purpose The SelectionBox widget creation function

Synopsis #include <Xm/SelectioB.h>

Widget XmCreateSelectionBox(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateSelectionBoxcreates an unmanaged SelectionBox. A SelectionBox is used
to get a selection from a list of alternatives from the user and includes the following:

A scrolling list of alternatives

» An editable text field for the selected alternative
* Labels for the list and text field

» Three or four buttons

The default button labels af®K, Cancel and Help. By default, anApply button

is also created. If the parent of the SelectionBox is a DialogShell, it is managed;
otherwise it is unmanaged. Additional work area children may be added to the
SelectionBox after creation.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of SelectionBox and its associated resources, see
XmSelectionBox3).

924

Xm Functions

XmCreateSelectionBox(library call)

Return Values

Returns the SelectionBox widget ID.

Related Information
XmSelectionBox3).

925

Motif 2.1—Programmer’s Reference

XmCreateSelectionDialog(library call)

XmCreateSelectionDialog

Purpose The SelectionBox SelectionDialog convenience creation function

Synopsis #include <Xm/SelectioB.h>

Widget XmCreateSelectionDialog(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

926

XmCreateSelectionDialog is a convenience creation function that creates a
DialogShell and an unmanaged SelectionBox child of the DialogShell. A
SelectionDialog offers the user a choice from a list of alternatives and gets a
selection. It includes the following:

» A scrolling list of alternatives

» An editable text field for the selected alternative
* Labels for the text field

» Four buttons

The default button labels af@K, Cancel Apply, andHelp. One additionalWorkArea
child may be added to the SelectionBox after creation.

XmCreateSelectionDialog forces the value of the SelectionBox resource
XmNdialogType to XmDIALOG_SELECTION .

XmCreateSelectionDialog forces the value of the Shell resource
XmNallowShellResizeto True.

Use XtManageChild to pop up the SelectionDialog (passing the SelectionBox as the
widget parameter); usEtUnmanageChild to pop it down.

Xm Functions

XmCreateSelectionDialog(library call)

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of SelectionBox and its associated resources, see
XmSelectionBox3).

Return Values

Returns the SelectionBox widget ID.

Related Information
XmSelectionBox3).

927

Motif 2.1—Programmer’s Reference

XmCreateSeparator(library call)

XmCreateSeparator

Purpose The Separator widget creation function

Synopsis #include <Xm/Separator.h>

Widget XmCreateSeparator(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateSeparator creates an instance of a Separator widget and returns the
associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of Separator and its associated resources, see
XmSeparator(3).

Return Values

Returns the Separator widget ID.

Related Information
XmSeparator(3).

928

Xm Functions
XmCreateSeparatorGadget(library call)

XmCreateSeparatorGadget

Purpose The SeparatorGadget creation function

Synopsis #include <Xm/SeparatoG.h>

Widget XmCreateSeparatorGadget(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateSeparatorGadget creates an instance of a SeparatorGadget widget and
returns the associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of SeparatorGadget and its associated resources, see
XmSeparatorGadge(3).

Return Values
Returns the SeparatorGadget widget ID.

Related Information
XmSeparatorGadge(3).

929

Motif 2.1—Programmer’s Reference

XmCreateSimpleCheckBox(library call)

XmCreateSimpleCheckBox

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateSimpleCheckBox(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

930

XmCreateSimpleCheckBox creates an instance of a RowColumn widget of type
XmWORK_AREA and returns the associated widget ID.

This routine creates a CheckBox and its ToggleButtonGadget children. A CheckBox
is similar to a RadioBox, except that more than one button can be selected at a time.
The name of each button isutton_n, wheren is an integer from O (zero) to the
number of buttons in the menu minus 1. Buttons are named and created in the order
they are specified in the RowColumn simple menu creation resources supplied in the
argument list.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

A number of resources exist specifically for use with this and other simple menu
creation routines. The only button type allowed in eNbuttonType resource is
XmCHECKBUTTON . For a complete definition of RowColumn and its associated
resources, seEmRowColumn(3).

Xm Functions

XmCreateSimpleCheckBox(library call)

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateRadioBox3), XmCreateRowColumn(3),
XmCreateSimpleRadioBox3), XmRowColumn(3),
XmVaCreateSimpleCheckBoX3), andXmVaCreateSimpleRadioBoxX3).

931

Motif 2.1—Programmer’s Reference

XmCreateSimpleMenuBar(library call)

XmCreateSimpleMenuBar

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateSimpleMenuBar(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateSimpleMenuBar creates an instance of a RowColumn widget of type
XmMENU_BAR and returns the associated widget ID.

This routine creates a MenuBar and its CascadeButtonGadget children. The name of
each button idbutton_n, wheren is an integer from 0 (zero) to the number of buttons
in the menu minus 1. Buttons are named and created in the order they are specified
in the RowColumn simple menu creation resources supplied in the argument list.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

A number of resources exist specifically for use with this and other simple menu
creation routines. The only button type allowed in eNbuttonType resource is
XmCASCADEBUTTON. For a complete definition of RowColumn and its associated
resources, seEmRowColumn(3).

932

Xm Functions

XmCreateSimpleMenuBar(library call)

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateMenuBar(3), XmCreateRowColumn(3), XmRowColumn(3), and
XmVaCreateSimpleMenuBar(3).

933

Motif 2.1—Programmer’s Reference

XmCreateSimpleOptionMenu(library call)

XmCreateSimpleOptionMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateSimpleOptionMenu(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

934

XmCreateSimpleOptionMenu creates an instance of a RowColumn widget of type
XmMENU_OPTION and returns the associated widget ID.

This routine creates an OptionMenu and its submenu containing PushButtonGadget
or CascadeButtonGadget children. The name of each buttbatisn_n, wheren is

an integer from O (zero) to the number of buttons in the menu minus 1. The name of
each separator iseparator_n, wheren is an integer from O (zero) to the number of
separators in the menu minus 1. Buttons and separators are named and created in the
order they are specified in the RowColumn simple menu creation resources supplied
in the argument list.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

The user can specify resources in a resource file for the automatically created
widgets and gadgets of an OptionMenu. These widgets (or gadgets) and the associated
OptionMenu areas are

Xm Functions

XmCreateSimpleOptionMenu(library call)

Option Menu Label Gadget
OptionLabel

Option Menu Cascade Button
OptionButton

A number of resources exist specifically for use with this and other simple
menu creation routines. The only button types allowed in XmeNbuttonType
resource arkmPUSHBUTTON, XmCASCADEBUTTON , XmSEPARATOR, and
XmDOUBLE_SEPARATOR. For a complete definition of RowColumn and its
associated resources, s¢mRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateOptionMenu(3), XmCreateRowColumn(3), XmRowColumn(3), and
XmVaCreateSimpleOptionMenu(3).

935

Motif 2.1—Programmer’s Reference

XmCreateSimplePopupMenu(library call)

XmCreateSimplePopupMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateSimplePopupMenu(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

936

XmCreateSimplePopupMenu creates an instance of a RowColumn widget of type
XmMENU_POPUP and returns the associated widget ID.

This routine creates a Popup menu pane and its button children. The name of each
button isbutton_n, wheren is an integer from O (zero) to the number of buttons in
the menu minus 1. The name of each separateearator_n, wheren is an integer

from O (zero) to the number of separators in the menu minus 1. The name of each
title is label_n, wheren is an integer from 0 (zero) to the number of titles in the menu
minus 1. Buttons, separators, and titles are named and created in the order in which
they are specified in the RowColumn simple menu creation resources supplied in the
argument list.

parent Specifies the widget ID of the parent of the MenuShell
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

A number of resources exist specifically for use with this and other
simple menu creation routines. The only button types allowed in the
XmNbuttonType resource are XmCASCADEBUTTON, XmPUSHBUTTON,
XmRADIOBUTTON , XmMCHECKBUTTON , XmTITLE , XmSEPARATOR, and

Xm Functions

XmCreateSimplePopupMenu(library call)

XmDOUBLE_SEPARATOR. For a complete definition of RowColumn and its
associated resources, s¢mRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreatePopupMenu(3), XmCreateRowColumn(3), XmRowColumn(3), and
XmVaCreateSimplePopupMeny3).

937

Motif 2.1—Programmer’s Reference

XmCreateSimplePulldownMenu(library call)

XmCreateSimplePulldownMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateSimplePulldownMenu(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

938

XmCreateSimplePulldownMenucreates an instance of a RowColumn widget of type
XmMENU_PULLDOWN and returns the associated widget ID.

This routine creates a Pulldown menu pane and its button children. The name of each

button isbutton_n, wheren is an integer from O (zero) to the number of buttons in
the menu minus 1. The name of each separateearator_n, wheren is an integer

from O (zero) to the number of separators in the menu minus 1. The name of each
title is label_n, wheren is an integer from 0 (zero) to the number of titles in the menu

minus 1. Buttons, separators, and titles are named and created in the order they are
specified in the RowColumn simple menu creation resources supplied in the argument

list.

parent Specifies the widget ID of the parent of the MenuShell
name Specifies the name of the created widget

arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

A number of resources exist specifically for use with this and other
simple menu creation routines. The only button types allowed in the
XmNbuttonType resource are XmCASCADEBUTTON, XmPUSHBUTTON,
XmRADIOBUTTON , XmMCHECKBUTTON , XmTITLE , XmSEPARATOR, and

Xm Functions

XmCreateSimplePulldownMenu(library call)

XmDOUBLE_SEPARATOR. For a complete definition of RowColumn and its
associated resources, s¢mRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreatePulldownMenu(3), XmCreateRowColumn(3), XmRowColumn(3), and
XmVaCreateSimplePulldownMenu(3).

939

Motif 2.1—Programmer’s Reference

XmCreateSimpleRadioBox(library call)

XmCreateSimpleRadioBox

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateSimpleRadioBox(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateSimpleRadioBox creates an instance of a RowColumn widget of type
XmWORK_AREA and returns the associated widget ID.

This routine creates a RadioBox and its ToggleButtonGadget children. The name of
each button idbutton_n, wheren is an integer from 0 (zero) to the number of buttons
in the menu minus 1. Buttons are named and created in the order they are specified
in the RowColumn simple menu creation resources supplied in the argument list.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

A number of resources exist specifically for use with this and other simple menu
creation routines. The only button type allowed in eNbuttonType resource is
XmRADIOBUTTON . For a complete definition of RowColumn and its associated
resources, seEmRowColumn(3).

940

Xm Functions

XmCreateSimpleRadioBox(library call)

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateRadioBox3), XmCreateRowColumn(3),
XmCreateSimpleCheckBox3), XmRowColumn(3), and
XmVaCreateSimpleRadioBoxX3).

941

Motif 2.1—Programmer’s Reference

XmCreateSimpleSpinBox(library call)

XmCreateSimpleSpinBox

Purpose the SimpleSpinBox widget creation function

Synopsis #include <Xm/SSpinB.h>

Widget XmCreateSimpleSpinBox(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

The XmCreateSimpleSpinBoxfunction creates an instance of a SpinBox widget and
returns the associated widget ID.

The parentargument specifies the parent widget ID.
The nameargument specifies the name of the created widget.
The arglist argument specifies the argument list.

The argcountargument specifies the number of attribute/value pairs in the argument
list.

Return Values

Upon successful completion, th¥mCreateSimpleSpinBox function returns the
SimpleSpinBox widget ID.

Related Information
XmSimpleSpinBox3).

942

Xm Functions

XmCreateSpinBox(library call)

XmCreateSpinBox

Purpose The SpinBox creation function

Synopsis #include <Xm/SpinB.h>

Widget XmCreateSpinBox(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description
XmCreateSpinBox creates a SpinBox widget.

This function creates a SpinBox with two arrows, but without any traversable children
(choices to spin). The application can create text children to go with this parent
SpinBox usingKmCreateTextField or XmCreateText.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of SpinBox and its associated resourceXns8pinBox(3).

Return Values
Returns the SpinBox widget ID.

943

Motif 2.1—Programmer’s Reference

XmCreateSpinBox(library call)

Related Information
XmSpinBox(3)

944

Xm Functions

XmCreateTemplateDialog(library call)

XmCreateTemplateDialog

Purpose A MessageBox TemplateDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateTemplateDialog(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateTemplateDialog is a convenience creation function that
creates a DialogShell and an unmanaged MessageBox child of the
DialogShell. The MessageBox widget'XmNdialogType resource is set to
XmDIALOG_TEMPLATE . By default, the TemplateDialog widget contains only
the separator child. You can build a customized dialog by adding children to the
TemplateDialog.

You can create the standard MessageBox pushbutt@encel Help, and
OK, by specifying the associated callback and label string resources. Setting
XmNsymbolPixmap or XmNmessageStringcreates a symbol or message label.

Use XtManageChild to pop up the TemplateDialog (passing the MessageBox as the
widget parameter); usEtUnmanageChild to pop it down.

XmCreateTemplateDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

945

Motif 2.1—Programmer’s Reference

XmCreateTemplateDialog(library call)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox3).

Return Values

Returns the MessageBox widget ID.

Related Information
XmMessageBox3).

946

Xm Functions

XmCreateText(library call)

XmCreateText

Purpose The Text widget creation function

Synopsis #include <Xm/Text.h>

Widget XmCreateText(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description
XmCreateText creates an instance of a Text widget and returns the associated widget
ID.
parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of Text and its associated resources{radext(3).

Return Values
Returns the Text widget ID.

Related Information
XmText(3).

947

Motif 2.1—Programmer’s Reference

XmCreateTextField(library call)

XmCreateTextField

Purpose The TextField widget creation function

Synopsis #include <Xm/TextF.h>

Widget XmCreateTextField(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateTextField creates an instance of a TextField widget and returns the
associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values
Returns the TextField widget ID.

Related Information
XmTextField(3).

948

Xm Functions

XmCreateToggleButton(library call)

XmCreateToggleButton

Purpose The ToggleButton widget creation function

Synopsis #include <Xm/ToggleB.h>

Widget XmCreateToggleButton(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateToggleButton creates an instance of a ToggleButton widget and returns the
associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of ToggleButton and its associated resources, see
XmToggleButton(3).

Return Values
Returns the ToggleButton widget ID.

Related Information
XmToggleButton(3).

949

Motif 2.1—Programmer’s Reference

XmCreateToggleButtonGadget(library call)

XmCreateToggleButtonGadget

Purpose The ToggleButtonGadget creation function

Synopsis #include <Xm/ToggleBG.h>

Widget XmCreateToggleButtonGadget(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateToggleButtonGadget creates an instance of a ToggleButtonGadget and
returns the associated widget ID.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of ToggleButtonGadget and its associated resources, see
XmToggleButtonGadget3).

Return Values
Returns the ToggleButtonGadget widget ID.

Related Information
XmToggleButtonGadget3).

950

Xm Functions

XmCreateWarningDialog(library call)

XmCreateWarningDialog

Purpose The MessageBox WarningDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateWarningDialog(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateWarningDialog is a convenience creation function that creates

a DialogShell and an unmanaged MessageBox child of the DialogShell. A
WarningDialog warns users of action consequences and gives them a choice of
resolutions. It includes a symbol, a message, and three buttons. The default symbol
is an exclamation point. The default button labels @t Cancel andHelp.

Use XtManageChild to pop up the WarningDialog (passing the MessageBox as the
widget parameter); usEtUnmanageChild to pop it down.

XmCreateWarningDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox3).

951

Motif 2.1—Programmer’s Reference

XmCreateWarningDialog(library call)

Return Values

Returns the MessageBox widget ID.

Related Information
XmMessageBox3).

952

Xm Functions

XmCreateWorkArea(library call)

XmCreateWorkArea

Purpose A function that creates a RowColumn WorkArea

Synopsis #include <Xm/RowColumn.h>

Widget XmCreateWorkArea(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateWorkArea creates an instance of a RowColumn widget and returns the
associated widget ID. The widget is created wXimNrowColumnType set to
XmWORK_AREA .

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

953

Motif 2.1—Programmer’s Reference

XmCreateWorkArea(library call)

Related Information

XmCreateRadioBox3), XmCreateSimpleCheckBoxX3),
XmCreateSimpleRadioBox3), XmRowColumn(3),
XmVaCreateSimpleCheckBoxX3), andXmVaCreateSimpleRadioBoxX3).

954

Xm Functions

XmCreateWorkingDialog(library call)

XmCreateWorkingDialog

Purpose The MessageBox WorkingDialog convenience creation function

Synopsis #include <Xm/MessageB.h>

Widget XmCreateWorkingDialog(
Widget parent
String name
ArglList arglist,
Cardinal argcounj;

Description

XmCreateWorkingDialog is a convenience creation function that creates

a DialogShell and an unmanaged MessageBox child of the DialogShell. A
WorkingDialog informs users that there is a time-consuming operation in progress
and allows them to cancel the operation. It includes a symbol, a message, and three
buttons. The default symbol is an hourglass. The default button label©Kre
Cancel andHelp.

Use XtManageChild to pop up the WorkingDialog (passing the MessageBox as the
widget parameter); usEtUnmanageChild to pop it down.

XmCreateWorkingDialog forces the value of the Shell resource
XmNallowShellResizeto True.

parent Specifies the parent widget ID
name Specifies the name of the created widget
arglist Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox3).

955

Motif 2.1—Programmer’s Reference

XmCreateWorkingDialog(library call)

Return Values

Returns the MessageBox widget ID.

Related Information
XmMessageBox3).

956

Xm Functions

XmCvtByteStreamToXmString(library call)

XmCvtByteStreamToXmString

Purpose A compound string function that converts from a compound string in Byte Stream
format to a compound string

Synopsis #include <Xm/Xm.h>

XmString XmCvtByteStreamToXmString(
unsigned char *property);

Description

XmCvtByteStreamToXmString converts a stream of bytes representing a compound
string in Byte Stream format to a compound string. This routine is typically used
by the destination of a data transfer operation to produce a compound string from a
transferred Byte Stream representation.

property Specifies a compound string representation in Byte Stream format.

Return Values

Returns a compound string. The function allocates space to hold the returned
compound string. The application is responsible for managing this allocated space.
The application can recover this allocated space by cakimtringFree.

Related Information
XmString (3), XmCvtXmStringToByteStream(3), andXmStringFree(3).

957

Motif 2.1—Programmer’s Reference

XmCvtCTToXmString(library call)

XmCvtCTToXmString

Purpose A compound string function that converts compound text to a compound string

Synopsis #include <Xm/Xm.h>

XmString XmCvtCTToXmString(
char * text);

Description

XmCvtCTToXmString converts a ¢har *) string in compound text format to a
compound string. The application must cadtApplinitialize before calling this
function. Conversion of compound text to compound strings is implementation
dependent.

text Specifies a string in compound text format to be converted to a
compound string.

Return Values

Returns a compound string derived from the compound text. The function allocates
space to hold the returned compound string. The application is responsible for
managing the allocated space. The application can recover the allocated space by
calling XmStringFree. The compound text is assumed to be NULL-terminated;
NULLs within the compound text are handled correctly. The handling of
HORIZONTAL TABULATION (HT) control characters within the compound text is
undefined. The compound text format is described in the X Consortium Standard
Compound Text Encoding

Related Information

958

XmCvtXmStringToCT (3).

Xm Functions

XmCvtStringToUnitType(library call)

XmCvtStringToUnitType

Purpose A function that converts a string to a unit-type value

Synopsis #include <Xm/Xm.h>

void XmCvtStringToUnitType(
XrmValuePtr args
Cardinal * num_args
XrmValue * from_val,
XrmValue * to_val);

Description

XmCvtStringToUnitType converts a string to a unit type. Refer to the reference
pages forXmGadget, XmManager, or XmPrimitive for a description of the valid

unit types. Use of this function as a resource converter is obsolete. It has been replaced
by a new resource converter that uses the RepType facility.

args Specifies a list of additionaKrmValue arguments to the converter if
additional context is needed to perform the conversion. For example,
the string-to-font converter needs the widget's screen and the string-to-
pixel converter needs the widget's screen and color map. This argument
is often NULL.

num_args Specifies the number of additiondtmValuearguments. This argument
is often zero.

from_val Specifies the value to convert

to_val Specifies the descriptor to use to return the converted value

Related Information
XmGadget(3), XmManager(3), andXmPrimitive (3).

959

Motif 2.1—Programmer’s Reference

XmCvtTextPropertyToXmStringTable(library call)

XmCvtTextPropertyToXmStringTable

Purpose A function that converts from a TextProperty Structure to a StringTable

Synopsis #include <Xm/Xm.h>
int XmCvtTextPropertyToXmStringTable (display, text_prop, string_table_return,
count_return
Display *display
XTextProperty *text prop
XmStringTable *string_table_return
int *count_return

Description

XmCvtTextPropertyToXmStringTable converts the specified XTextProperty
structure into arXmsStringTable, as follows:

» If the encoding member ofext_prop is the Atom STRING each returned
XmString has a tag of "ISO8859-1" and a text typeXthCHARSET_TEXT .

 If the encoding member ofext_propis the encoding of the current locale,
and if that encoding is noSTRING each returnedXmsString has a tag of
_MOTIF_DEFAULT_LOCALE and a text type o XmMULTIBYTE_TEXT .

« If the encoding member déxt_propis other tharSTRINGor the encoding of the
current locale, the contents of the returned compound strings are implementation
dependent.

If conversion depends on the locale and the current locale is not supported, the
function returnsXLocaleNotSupported If conversion to the encoding of the current
locale is required and if the locale is supported but no converter is available for
the encoding specified itext_prop the function returnXConverterNotFound. For
supported locales, existence of a converter fGAMPOUND_TEXTSTRING or the
encoding of the current locale is guaranteed §upportsLocale returns True for the
current locale (but the actual text may contain unconvertible characters). Conversion
of other encodings to the encoding of the current locale is implementation dependent.
In all of these error cases, the function does not set any return values.

960

Xm Functions

XmCvtTextPropertyToXmStringTable(library call)

If an element of the value member &éxt_propis not convertible toXmString,
the corresponding entry in the returneXimStringTable will be NULL, and
XmCvtTextPropertyToXmStringTable returns Success.

To free the storage for th¥mStringTable and its count_returncompound strings
returned by this function, first free eadmString in the table usingKmStringFree,
and then free th&mStringTable itself usingXtFree.

display Specifies the connection to the X server.

text prop Specifies a pointer to theXTextProperty The format member of
text_propmust be 8.

string_table_return
Specifies theXmStringTable array into which the converted compound
strings are placed.

count_return Specifies the number ofmStrings returned by this function.

Return Values

Upon success, this function returns the seXofStrings in string_table_returnand
it returns the number aXmStrings in count_return and returns Success. Otherwise,
it returns the following:

XLocaleNotSupported
Returned if conversion depends on the locale and the current locale is
not supported.

XConverterNotFound
Returned if conversion to the encoding of the current locale is required
and if the locale is supported but no converter is available for the
encoding specified itext_prop

Related Information
XmCvtXmStringTableToTextProperty (3), XmText(3), andXmTextGetString(3).

961

Motif 2.1—Programmer’s Reference

XmCvtXmStringTableToTextProperty(library call)

XmCvtXmStringTableToTextProperty

Purpose A function that converts from XmStringTable to an XTextProperty Structure

Synopsis #include <Xm/Xm.h>
int XmCvtXmStringTableToTextProperty (display, string_table, count, style, text_prop_refurn
Display *display
XmStringTable string_table
int count
XmICCEncodingStyle style
XTextProperty *text prop_return

Description

XmCvtXmStringTableToTextProperty converts theXmStrings in the specified
XmStringTable into an XTextPropertystructure.

The function sets the encoding member tekt_prop_returnto an Atom for the
specified display naming the encoding determined by the specified style, and it converts
the firstcountcompound strings in the specifie@nStringTable to this encoding for
storage in theext_prop_returnvalue member. Following are the possible encoding
styles:

XmSTYLE_COMPOUND_STRING
The encoding is _MOTIF_COMPOUND_STRING. The function
converts each specifieXmString to a compound string in Byte Stream
format.

XmSTYLE_COMPOUND_TEXT
The encoding isCOMPOUND_TEXT The function converts each
specifiedXmString to compound text.

XmSTYLE_LOCALE
The encoding is the encoding of the current locale. The function converts
each specifieckmString to the encoding of the current locale.

962

Xm Functions

XmCvtXmStringTableToTextProperty(library call)

XmSTYLE_STRING
The encoding iISTRING(plain C strings encoded in 1SO8859-1), and
the function converts each specifi¥ahString to STRING

XmSTYLE_TEXT
If all specifiedXmStrings are fully convertible to the encoding of the
current locale, the encoding is the encoding of the current locale, and
the function converts each specifiéanString to the encoding of the
current locale. Otherwise, the encodingd®MPOUND_TEXTand the
function converts each specified compound string to compound text.

XmSTYLE_STANDARD_ICC_TEXT
If all specifiedXmStrings are fully convertible t&TRING the encoding
is STRING and the function converts each specifi&thString to
STRING Otherwise, the encoding iI€EOMPOUND_TEXT and the
function converts each specifiédnString to compound text.

display Specifies the connection to the X server.

string_table Specifies a set aKmStrings.

count Specifies the number ofmStrings to be converted istring_table
style Specifies the manner in which the property is encoded.

text_prop_return
Returns theXTextPropertystructure.

To free the storage for the value member of KiEextProperty useXtFree.

Return Values

If conversion depends on the locale and the current locale is not supported, the
function returnsXLocaleNotSupported In both of these cases, the function does
not settext_prop_return

To determine whether the function is guaranteed not to retluotaleNotSupported,
useXSupportsLocale

Related Information

XmCvtXmStringToByteStream(3), XmCvtTextPropertyToXmStringTable (3), and
XmStringTable(3).

963

Motif 2.1—Programmer’s Reference

XmCvtXmStringToByteStream(library call)

XmCvtXmStringToByteStream

Purpose A compound string function that converts a compound string to a Byte Stream format

Synopsis #include <Xm/Xm.h>

unsigned int XmCvtXmStringToByteStream(
XmString string,
unsigned char **prop_returr);

Description

XmCvtXmStringToByteStream converts a compound string to a string of bytes
representing the compound string in Byte Stream format. This routine is typically used
by the source of a data transfer operation to produce a Byte Stream representation for
transferring a compound string to a destination.

If prop_returnis not NULL, this function creates a string of characters in Byte Stream
format and returns it irprop_return The function also returns the number of bytes

in prop_return If prop_returnis NULL, the function does not return the Byte Stream
format string, but it does calculate and return the number of bytes that would appear
in the Byte Stream format string.

string Specifies a compound string to be converted to Byte Stream format

prop_return Specifies a pointer to a string in Byte Stream format that is created
and returned by this function. grop_returnis NULL, no Byte Stream
format string is returned. When a Byte Stream format string is returned,
the function allocates space to hold it. The application is responsible for
managing this allocated space. The application can recover the allocated
space by callingltFree.

964

Xm Functions

XmCvtXmStringToByteStream(library call)

Return Values

Returns the number of bytes in the Byte Stream representation (whether or not the
Byte Stream representation is returned).

Related Information
XmString (3) and XmCvtByteStreamToXmString(3).

965

Motif 2.1—Programmer’s Reference
XmCvtXmStringToCT((library call)

XmCvtXmStringToCT

Purpose A compound string function that converts a compound string to compound text

Synopsis #include <Xm/Xm.h>

char * XmCvtXmStringToCT(
XmString string);

Description

XmCvtXmStringToCT converts a compound string to eh@r *) string in compound

text format. The application must calltApplnitialize before calling this function.

The converter uses the font list tag associated with a given compound string segment to
select a compound text format for that segment. A registry defines a mapping between
font list tags and compound text encoding formats. The converter uses the following
algorithm for each compound string segment:

1. If the compound string segment tag is mapped to
XmFONTLIST_DEFAULT_TAG in the registry, the converter passes the text
of the compound string segment t&mbTextListToTextProperty with an
encoding style oiXCompoundTextStyle and uses the resulting compound text
for that segment.

2. If the compound string segment tag is mapped to an MIT registered charset in
the registry, the converter creates the compound text for that segment using the
charset (from the registry) and the text of the compound string segment as defined
in the X Consortium Standar@ompound Text Encoding

3. If the compound string segment tag is mapped to a charset in the registry that
is neitherXmFONTLIST_DEFAULT_TAG nor an MIT registered charset, the
converter creates the compound text for that segment using the charset (from the
registry) and the text of the compound string segment as an "extended segment"
with a variable number of octets per character.

4. If the compound string segment tag is not mapped in the registry, the result is
implementation dependent.

966

Xm Functions
XmCvtXmStringToCT((library call)

string Specifies a compound string to be converted to compound text.

Return Values

Returns achar *) string in compound text format. This format is described in the X
Consortium Standar@ompound Text Encodinghe function allocates space to hold
the returned string. The application is responsible for managing the allocated space.

The application can recover the allocated space by caXitgee.

Related Information

XmCvtCTToXmString (3), XmFontList (3), XmMapSegmentEncoding?3),
XmRegisterSegmentEncodinB), andXmString.

967

Motif 2.1—Programmer’s Reference

XmDeactivateProtocol(library call)

XmDeactivateProtocol

Purpose A VendorShell function that deactivates a protocol without removing it

Synopsis #include <Xm/Xm.h>

#include <Xm/Protocols.h>

void XmDeactivateProtocol(
Widget shell
Atom property,
Atom protoco);

Description

968

XmDeactivateProtocol deactivates a protocol without removing it. It updates the
handlers and th@roperty if the shell is realized. It is sometimes useful to allow a
protocol’s state information (callback lists, and so on) to persist, even though the client
may choose to temporarily resign from the interaction. The main use of this capability
is to gray/ungrayf.send_msgentries in the MWM system menu. To support this
capability,protocolis allowed to be in one of two states: active or inactivepriitocol

is active andshell is realized,property contains theprotocol Atom. If protocol is
inactive, Atom is not present in th@roperty.

XmDeactivateWMProtocol is a convenience interface. It calls
XmDeactivateProtocol with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
property Specifies the protocol property
protocol Specifies the protocol atom

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Xm Functions

XmDeactivateProtocol(library call)

Related Information

mwm(1), VendorShell(3), XmActivateProtocol(3), XmDeactivateWMProtocol(3),
and XmInternAtom (3).

969

Motif 2.1—Programmer’s Reference

XmDeactivateWMProtocol(library call)

XmDeactivateWMProtocol

Purpose A VendorShell convenience interface that deactivates a protocol without removing it

Synopsis #include <Xm/Xm.h>

#include <Xm/Protocols.h>

void XmDeactivate WMProtocol(
Widget shell
Atom protoco);

Description

XmDeactivateWMProtocol is a convenience interface. It calls
XmDeactivateProtocol with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
protocol Specifies the protocol atom

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

970

VendorShell(3), XmActivateWMProtocol (3), XmDeactivateProtoco(3), and
XminternAtom (3).

Xm Functions

XmDestroyPixmap(library call)

XmDestroyPixmap

Purpose A pixmap caching function that removes a pixmap from the pixmap cache

Synopsis #include <Xm/Xm.h>

Boolean XmDestroyPixmap(
Screen* screen
Pixmap pixmap);

Description

XmDestroyPixmap removes pixmaps that are no longer used. Pixmaps are completely
freed only when there is no further reference to them.

screen Specifies the display screen for which the pixmap was requested

pixmap Specifies the pixmap to be destroyed

Return Values

Returns True when successful; returns False if there is no matching screen and pixmap
in the pixmap cache.

Related Information
Xminstalllmage(3), XmUninstalllmage(3), andXmGetPixmap(3).

971

Motif 2.1—Programmer’s Reference

XmDirectionMatch(library call)

XmDirectionMatch

Purpose A function that checks for a specified direction component

Synopsis #include <Xm/Xm.h>

Boolean XmDirectionMatch (d1, d2
XmbDirection d1;
XmbDirection dz

Description

972

XmDirectionMatch compares twoXmDirection values. The function returns a
Boolean value depending on whether or not the two input values "match." The
simplest match is wherdl and d2 are identical. However, other matches are
possible.XmDirectionMatch attempts to compare specified bits only; nonspecified
bits automatically match.

For example, suppose thdtl equalsXmTOP_TO_BOTTOM_RIGHT_TO_LEFT .
In this case, the function will return True 2 equals eitheXmRIGHT_TO_LEFT
or XmTOP_TO BOTTOM. However, the function will return
False if d2 equals XmTOP_TO_BOTTOM_LEFT_TO_RIGHT ,
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT , or
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT .

Note that direction can be thought of as having three components, a horizontal
component, a vertical component, and the precedence among them. This means
that in addition to the previously mentioned directions, the function will still return
False if d1 equals XmTOP_TO_BOTTOM_RIGHT_TO_LEFT and d2 equals
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM .

dl Specifies arKmDirection value.

d2 Specifies arKmDirection value.

Xm Functions

XmDirectionMatch(library call)

Return Values

Returns True ifd1l "matches"d2; otherwise, returns False.

Related Information

XmbDirection (3), XmDirectionMatchPartial (3),
XmDirectionToStringDirection (3), XmString (3), XmStringDirection (3), and
XmStringDirectionToDirection (3).

973

Motif 2.1—Programmer’s Reference

XmDirectionMatchPartial(library call)

XmDirectionMatchPartial

Purpose A function that checks for a specified direction component

Synopsis #include <Xm/Xm.h>
Boolean XmDirectionMatchPartial (d1, d2, dmask
XmDirection d1;
XmDirection dz;
XmDirection dmask

Description

XmDirectionMatchPartial comparesdl and d2 along the direction component
specified bydmask For example, ifdmaskequalsXmVERTICAL_MASK , then the
function will compare only the vertical componentsaiff andd2.

dl Specifies anKmDirection value to check.

d2 Specifies arKmDirection value to check.

dmask Specifies the direction component along whickdl and
d2 are to be checked. Appropriate values fatmask are
XmHORIZONTAL_MASK , XmVERTICAL_MASK and

XmPRECEDENCE_MASK.

Return Values

Returns True if thell andd2 match in the component specified gnask otherwise,
returns False.

Related Information

XmDirection (3), XmDirectionMatch (3), XmDirectionToStringDirection (3),
XmStringDirection (3), andXmStringDirectionToDirection (3).

974

Xm Functions

XmbDirectionToStringDirection(library call)

XmDirectionToStringDirection

Purpose A function that converts an XmDirection value to an XmStringDirection value

Synopsis #include <Xm/Xm.h>
XmStringDirection XmDirectionToStringDirection (dir)
XmbDirection dir;

Description

XmDirectionToStringDirection converts the specifiemDirection direction value
to its equivalentXmStringDirection value. Basically, if theXmDirection value has
a horizontal direction specification, that horizontal element is used; otherwise, the
XmStringDirection value is interpreted aXmSTRING_DIRECTION_L TO_R.
This function provides backward compatibility with tXenStringDirection data type.

Note that the Motif toolkit also contains axmsStringDirectionToDirection routine
to convert anXmsStringDirection value to itsXmDirection equivalent.

dir Specifies theXmDirection value to be converted.

Return Values
Returns the followingKmStringDirection values:

XmSTRING_DIRECTION_R_TO_L
If the dir argument has a right to left horizontal direction value in it,
for exampleXmRIGHT_TO_LEFT_TOP_TO_BOTTOM .

XmSTRING_DIRECTION_L_TO_R
If the dir argument has a left to right horizontal direction in it,
for example XmLEFT_TO_RIGHT_TOP_TO_BOTTOM , or if the
horizontal direction value in thdir argument is ambiguous, such as in
the XmTOP_TO_BOTTOM value.

975

Motif 2.1—Programmer’s Reference

XmDirectionToStringDirection(library call)

XmSTRING_DIRECTION_DEFAULT
If there was no horizontal direction specified.

Related Information

XmDirection (3), XmDirectionMatch (3), XmDirectionMatchPartial (3),
XmDirectionToStringDirection (3), XmString (3), XmStringDirection (3), and
XmStringDirectionToDirection (3),

976

Xm Functions

XmDragCancel(library call)

XmDragCancel

Purpose A Drag and Drop function that terminates a drag transaction

Synopsis #include <Xm/DragDrop.h>

void XmDragCancel(
Widget dragcontexy,

Description

XmDragCancel terminates a drag operation and cancels any pending actions of the
specified DragContext. This routine can only be called by the initiator client.

dragcontext Specifies the ID of the DragContext widget associated with the drag and
drop transaction to be terminated

For a complete definition of DragContext and its associated resources, see
XmDragContext(3).

Related Information
XmDragContext(3) andXmDragStart(3).

977

Motif 2.1—Programmer’s Reference

XmDragStart(library call)

XmDragStart

Purpose A Drag and Drop function that initiates a drag and drop transaction

Synopsis #include <Xm/DragDrop.h>

Widget XmDragStart(
Widget widget
XEvent *event
ArglList arglist,
Cardinal argcounj;

Description

978

XmDragStart initiates a drag operation. This routine returns the DragContext widget
that it initializes for the associated drag transaction. The toolkit is responsible for
freeing the DragContext when the drag and drop transaction is complete.

widget Specifies the ID of the smallest widget and/or gadget that encloses the
source elements selected for a drag operation.

event Specifies theXxEventthat triggered the drag operation. This event must
be a ButtonPress event.

arglist Specifies the argument list. AnyXmDragContext resources not
specified in the argument list are obtained from the resource database
or are set to their default values.

argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of DragContext and its associated resources, see
XmDragContext(3).

Xm Functions

XmDragStart(library call)

Return Values

Returns the ID of the DragContext widget that controls this drag and drop transaction.
Returns NULL if the drag cannot be initiated.

Related Information
XmDragCancel(3) andXmDragContext(3).

979

Motif 2.1—Programmer’s Reference

XmDropSite(library call)

XmDropSite

Purpose The DropSite Registry

Synopsis #include <Xm/DragDrop.h>

Description

980

A client registers a widget or gadget as a drop site usingdim®ropSiteRegister
function. In addition, this routine defines the behavior and capabilities of a drop
site by specifying appropriate resources. For example XinélimportTargets and
XmNnumimportTargets resources identify respectively the selection target types and
number of types supported by a drop site. The visual animation effects associated with
a drop site are also described with DropSite resources.

Drop site animation effects that occur in response to the pointer entering a valid
drop site are called drag-under effects. A receiver can select from several animation
styles supplied by the toolkit or can provide customized animation effects. Drag-under
effects supplied by the toolkit include border highlighting, shadow in/out drawing, and
pixmap representation.

When a preregister drag protocol style is used, the toolkit generates drag-under visual
effects based on the value of tk@enNanimationStyle resource. In dynamic mode, if

the drop siteXmNdragProc resource is NULL, the toolkit also provides animation
effects based on th€mNanimationStyle resource. Otherwise, if themNdragProc
routine is specified, the receiver can either assume responsibility for animation effects
(through theXmNdragProc routine) or rely on the toolkit to provide animation. An
application can either handle all or none of the animation effects for a particular drop
site. That is, an application should never do a partial job of animation on a particular
drop site.

Drop sites may overlap. The initial stacking order corresponds to the order in which
the drop sites were registered. When a drop site overlaps another drop site, the drag-
under effects of the drop site underneath are clipped by the obscuring drop site(s).

Xm Functions

XmDropSite(library call)

The XmDropSiteUpdate routine sets resources for a widget that is registered as a
drop site XmDropSiteRetrieve gets drop site resource values previously specified for
a registered widget. These routines are used insteXtS#tValuesandXtGetValues.

Classes
XmDropSite does not inherit from any widget class.
New Resources

The following table defines a set of widget resources used by the programmer to
specify data. To reference a resource by name or by classXdedaults file, remove

the XmN or XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in.Xdefaults file, remove theXm prefix and use the remaining
letters (in either lowercase or uppercase, but include any underscores between words).
The codes in the access column indicate if the given resource can be set at creation time
(C), set by usingKmDropSiteUpdate (S), retrieved by usingmDropSiteRetrieve

(G), or is not applicable (N/A).

XmDropSite Resource Set
Name Class Type Default Access
XmNanimationMask XmCAnimationMask Pixmap XmUNSPECIFIED_- CSG
PIXMAP
XmNanimationPixmap XmCAnimationPixmap | Pixmap XmUNSPECIFIED_- CSG
PIXMAP
XmNanimationPixmap- XmCAnimationPixmap-| int 0 CSG
Depth Depth
XmNanimationStyle XmCAnimationStyle unsigned char XmDRAG_UNDER_- CSG
HIGHLIGHT
XmNdragProc XmCDragProc XtCallbackProc NULL CSG
XmNdropProc XmCDropProc XtCallbackProc NULL CSG
XmNdropRectangles XmCDropRectangles XRectangle * dynamic CSG
XmNdropSiteActivity XmCDropSite- Activity | unsigned char XmDROP_SITE_- CSG
ACTIVE
XmNdropSiteOperations XmCDropSite- unsigned char XmDROP_MOVE | - CSG
Operations XmDROP_COPY
XmNdropSiteType XmCDropSiteType unsigned char XmDROP_SITE_- CG
SIMPLE

981

Motif 2.1—Programmer’s Reference

XmDropSite(library call)

982

XmNimportTargets XmClmportTargets Atom * NULL CSG

XmNnumDropRectangles [XmCNumDrop- Cardinal 1 CSG
Rectangles

XmNnumImportTargets XmCNumimport- Cardinal 0 CSG
Targets

XmNanimationMask
Specifies a mask to use with the pixmap specified by
XmNanimationPixmap when the animation style is
XmDRAG_UNDER_PIXMAP .

XmNanimationPixmap
Specifies a pixmap for drag-under animation when the animation style
is XmDRAG_UNDER_PIXMAP . The pixmap is drawn with its origin
at the upper left corner of the bounding box of the drop site. If the
drop site window is larger than the animation pixmap, the portion of
the window not covered by the pixmap will be tiled with the window’s
background color.

XmNanimationPixmapDepth
Specifies the depth of the pixmap specified by the
XmNanimationPixmap resource. When the depth is 1, the
colors are taken from the foreground and background of the drop
site widget. For any other value, drop site animation occurs only if
the XmNanimationPixmapDepth matches the depth of the drop site
window. Colors are derived from the current colormap.

XmNanimationStyle
Specifies the drag-under animation style used when a drag enters a valid
drop site. The possible values are

XmDRAG_UNDER_HIGHLIGHT
The drop site uses highlighting effects.

XmDRAG_UNDER_SHADOW_OUT
The drop site uses an outset shadow.

XmDRAG_UNDER_SHADOW_IN
The drop site uses an inset shadow.

Xm Functions

XmDropSite(library call)

XmDRAG_UNDER_PIXMAP
The drop site uses the pixmap specified by
XmNanimationPixmap to indicate that it can
receive the drop.

XmDRAG_UNDER_NONE
The drop site does not use animation effects. A client
using a dynamic protocol, may provide drag-under effects
in its XmNdragProc routine.

XmNdragProc
Specifies the procedure that is invoked when the drop site receives a
crossing, motion, or operation changed message. This procedure is called
only when a dynamic protocol is used. The type of structure whose
address is passed to this procedureXmDragProcCallbackStruct.
The reason sent to the procedure is one of the following:

« XmCR_DROP_SITE_ENTER_MESSAGE
« XmCR_DROP_SITE_LEAVE_MESSAGE
« XmCR_DRAG_MOTION

« XmMCR_OPERATION_CHANGED

The drag procedure may change the values of some members
of the XmDragProcCallbackStruct passed to it. After the drag
procedure returns, the toolkit uses the final values in initializing some
members of the callback structure passed to the appropriate callbacks
of the initiator (the DragContext'sXmNdropSiteEnterCallback,
XmNdropSiteLeaveCallback XmNdragMotionCallback,, or
XmNoperationChangedCallback callbacks).

XmNdropProc
Specifies the procedure that is invoked when a drop (excluding a cancel
or interrupt action) occurs on a drop site regardless of the status of
the drop site. The type of the structure whose address is passed to
this procedure is<mDropProcCallbackStruct. The reason sent to the
procedure isXMCR_DROP_MESSAGE

The drop procedure may change the values of some members of the
XmDropProcCallbackStruct passed to it. After the drop procedure
returns, the toolkit uses the final values in initializing some members

983

Motif 2.1—Programmer’s Reference

XmDropSite(library call)

of the XmDropStartCallbackStruct passed to the initiator's drop start
callbacks (the DragContext¥mNdropStartCallback callbacks).

XmNdropRectangles
Specifies a list of rectangles that describe the shape of a drop site. The
locations of the rectangles are relative to the origin of the enclosing
object. WhenXmNdropRectanglesis NULL, the drop site is assumed
to be the sensitive area of the enclosing widgeXniNdropSiteType
is XmDROP_SITE_COMPOSITE, this resource cannot be specified
by the application.

Retrieving this resource returns allocated memory that needs to be freed
with the XtFree function.

XmNdropSiteActivity
Indicates whether a drop site is active or inactive. The values are
XmDROP_SITE_ACTIVE, XmDROP_SITE_INACTIVE, and
XmDROP_SITE_IGNORE. An active drop site can receive a drop,
whereas an inactive drop site is dormant. An inactive drop site is
treated as if it was not a registered drop site and any drag-under
visuals associated with entering or leaving the drop site do not occur.
However, it is still used for clipping drag-under effects. A value
of XmDROP_SITE_IGNORE indicates that a drop site should be
ignored for all purposes.

XmNdropSiteOperations
Specifies the set of valid operations associated with a drop site. This
resource is a bit mask that is formed by combining one or more of
the following values using a bitwise operation such as inclusive OR
(): XmDROP_COPY, XmDROP_LINK , andXmDROP_MOVE. The
value XmDROP_NOOP for this resource indicates that no operations
are valid.

XmNdropSiteType
Specifies the type of the drop site. The possible values are

XmDROP_SITE_SIMPLE
The widget does not have any additional children that are
registered as drop sites.

XmDROP_SITE_COMPOSITE
The widget will have children that are registered as drop
sites.

984

Xm Functions

XmDropSite(library call)

XmNimportTargets
Specifies the list of target atoms that this drop site accepts.

XmNnumDropRectangles
Specifies the number of rectangles in tkemNdropRectangleslist. If

the drop site type iXmDROP_SITE_COMPOSITE, this resource can
not be specified by the application.

XmNnumimportTargets
Specifies the number of atoms in the target atom list.

Callback Information

A pointer to the following structure is passed to teaNdragProc routine when the
drop site receives crossing, motion, or operation changed messages:

typedef struct

L
int reason
XEvent *event
Time timeStamp
Widget dragContext
Positionx;
Positiony;
unsigned chadropSiteStatus
unsigned chaoperation
unsigned chaoperations
Booleananimate

} XmDragProcCallbackStruct, *XmDragProcCallback;

reason Indicates why the callback was invoked.
event Points to theXEventthat triggered the callback.
timeStamp Specifies the timestamp of the logical event.

dragContext Specifies the ID of the DragContext widget associated with the

transaction.
X Indicates the x-coordinate of the pointer relative to the drop site.
y Indicates the y-coordinate of the pointer relative to the drop site.
dropSiteStatus

An IN/OUT member that indicates whether or not a drop site is valid.

985

Motif 2.1—Programmer’s Reference

XmDropSite(library call)

986

operation

operations

When reason is XmCR_DROP_SITE_ENTER_MESSAGE

or XmCR_OPERATION_CHANGED,

or reason is XmCR_DRAG_MOTION or
XmCR_DROP_SITE_LEAVE_MESSAGE and the pointer is not in

the same drop site as on the previous invocation of the drag procedure,
the toolkit initializes dropSiteStatus to XmDROP_SITE_VALID

if the DragContext's XmNexportTargets and the DropSite’s
XmNimportTargets are compatible and if the initial value of the
operation member is notXmDROP_NOOP. Otherwise, the toolkit
initializes dropSiteStatusto XmDROP_SITE_INVALID .

When the reason is XmCR_DRAG_MOTION or
XmCR_DROP_SITE_LEAVE_MESSAGE and the pointer is
within the same drop site as on the previous invocation of the
drag procedure, the toolkit initializedropSiteStatus to the value

of dropSiteStatus at the time the previous invocation of the drag
procedure returns.

The drag procedure may change the value of this member. After the
drag procedure returns, the toolkit uses the final value in initializing the
dropSiteStatusmember of the callback struct passed to the appropriate
callbacks of the initiator.

An IN/OUT member that identifies an operation.

The toolkit initializes operation by selecting an operation from the
bitwise AND of the initial value of theoperations member and
the value of the DropSite’sXmNdropSiteOperations resource.
The toolkit searches this set first foKmDROP_MOVE, then
for XmDROP_COPY, then for XmDROP_LINK, and initializes
operation to the first operation it finds in the set. If the toolkit
finds none of these operations in the set, it initializggeration to
XmDROP_NOOP.

The drag procedure may change the value of this member. After the
drag procedure returns, the toolkit uses the final value in initializing

the operationmember of the callback struct passed to the appropriate
callbacks of the initiator.

An IN/JOUT member that indicates the set of operations supported for
the source data.

Xm Functions

animate

XmDropSite(library call)

If the user does not select an operation (by pressing a modifier key),
the toolkit initializes operationsto the value of the DragContext's
XmNdragOperations resource. If the user does select an operation, the
toolkit initializes operationsto the bitwise AND of the corresponding
operation and the value of the DragContexXemNdragOperations
resource. If the resulting set of operations is empty, the toolkit initializes
operationsto XmDROP_NOOP.

The drag procedure may change the value of this member. After the
drag procedure returns, the toolkit uses the final value in initializing

the operationsmember of the callback struct passed to the appropriate
callbacks of the initiator.

An OUT member that indicates whether the toolkit or the receiver client
provides drag-under effects for a valid drop sitearfmateis set to True,

the toolkit provides drop site animation per tenNanimationStyle
resource value; if it is set to False, the receiver generates drag-under
animation effects.

A pointer to the following structure is passed to teNdropProc routine when the
drop site receives a drop message:

typedef struct

{

int reason
XEvent *event
Time timeStamp
Widget dragContext
Positionx;
Positiony;
unsigned chadropSiteStatus
unsigned chaoperation
unsigned chaoperations
unsigned chadropAction

} XmDropProcCallbackStruct, *XmDropProcCallback;

reason

event

Indicates why the callback was invoked.

Specifies theXEventthat triggered the callback.

timeStamp Specifies the timestamp of the logical event.

987

Motif 2.1—Programmer’s Reference

XmDropSite(library call)

988

dragContext Specifies the ID of the DragContext widget associated with the

X

y

transaction.
Indicates the x-coordinate of the pointer relative to the drop site.

Indicates the y-coordinate of the pointer relative to the drop site.

dropSiteStatus

operation

operations

An IN/OUT member that indicates whether or not a drop site is valid.

The toolkit initializes dropSiteStatus to XmDROP_SITE_VALID

if the DragContext's XmNexportTargets and the DropSite’s
XmNimportTargets are compatible and if the initial value of the
operation member is notXmDROP_NOOP. Otherwise, the toolkit
initializes dropSiteStatusto XmDROP_SITE_INVALID .

The drop procedure may change the value of this member. After the
drop procedure returns, the toolkit uses the final value in initializing
the dropSiteStatus member of the XmDropStartCallbackStruct
passed to the initiator's drop start callbacks (the DragContext's
XmNdropStartCallback callbacks).

An IN/OUT member that identifies an operation.

The toolkit initializes operation by selecting an operation from the
bitwise AND of the initial value of theoperations member and
the value of the DropSite’sXmNdropSiteOperations resource.
The toolkit searches this set first foKmDROP_MOVE, then
for XmDROP_COPY, then for XmDROP_LINK, and initializes
operationto the first operation it finds in the set. If it finds none of
these operations in the set, it initializegerationto XmDROP_NOOP.

The drop procedure may change the value of this member. After
the drop procedure returns, the toolkit uses the final value in
initializing the operationmember of theXmDropStartCallbackStruct
passed to the initiator's drop start callbacks (the DragContext's
XmNdropStartCallback callbacks).

An IN/JOUT member that indicates the set of operations supported for
the source data.

If the user does not select an operation (by pressing a modifier key),
the toolkit initializes operationsto the value of the DragContext's
XmNdragOperations resource. If the user does select an operation, the
toolkit initializes operationsto the bitwise AND of the corresponding

Xm Functions

XmDropSite(library call)

operation and the value of the DragContexXemNdragOperations
resource. If the resulting set of operations is empty, the toolkit initializes
operationsto XmDROP_NOOP.

The drop procedure may change the value of this member. After the
drop procedure returns, the toolkit uses the final value in initializing
the operations member of the XmDropStartCallbackStruct
passed to the initiator's drop start callbacks (the DragContext's
XmNdropStartCallback callbacks).

dropAction An IN/OUT member that identifies the action associated with the drop.
The possible values are

XmDROP A drop was attempted. If the drop site is valid, drop
transfer handling proceeds.

XmDROP_HELP
The user has requested help on the drop site.

The drop procedure may change the value of this member. After the
drop procedure returns, the toolkit uses the final value in initializing
the dropAction member of the XmDropStartCallbackStruct
passed to the initiator's drop start callbacks (the DragContext's
XmNdropStartCallback callbacks).

Related Information

XmDragContext(3), XmDraglcon(3), XmDropSiteConfigureStackingOrder(3),
XmDropSiteEndUpdate(3), XmDropSiteQueryStackingOrder(3),
XmDropSiteRegister(3), XmDropSiteStartUpdate(3), XmDropSiteUpdate(3),
XmDropSiteUnregister(3), XmDropTransfer (3), and
XmTargetsAreCompatible(3).

989

Motif 2.1—Programmer’s Reference

XmDropSiteConfigureStackingOrder(library call)

XmDropSiteConfigureStackingOrder

Purpose A Drag and Drop function that reorders a stack of widgets that are registered drop

sites

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteConfigureStackingOrder(
Widget widget
Widget sibling,
Cardinal stack_modg

Description

990

XmDropSiteConfigureStackingOrder changes the stacking order of the drop site
specified bywidget The stacking order controls the manner in which drag-under
effects are clipped by overlapping siblings, regardless of whether they are active. The
stack mode is relative either to the entire stack, or to another drop site within the
stack. The stack order can be modified only if the drop sites are siblings in both the
widget and drop site hierarchy, and the widget parent of the drop sites is registered
as a composite drop site.

widget Specifies the drop site to be restacked.

sibling Specifies a sibling drop site for stacking operations. If specified, then
widgetis restacked relative to this drop site’s stack position.

stack_mode Specifies the new stack position for the specified widget. The values are
XmABOVE and XmBELOW . If a sibling is specified, themwidgetis
restacked as follows:

XmABOVE The widget is placed just above the sibling.

XmBELOW
The widget is placed just below the sibling.

If the sibling parameter is not specified, thevidgetis restacked as
follows:

Xm Functions

XmDropSiteConfigureStackingOrder(library call)

XmABOVE The widget is placed at the top of the stack.

XmBELOW
The widget is placed at the bottom of the stack.

For a complete definition of DropSite and its associated resourceXns@eopSite(3).

Related Information

XmDropSite(3), XmDropSiteRetrieve(3), and
XmDropSiteQueryStackingOrder(3).

991

Motif 2.1—Programmer’s Reference

XmDropSiteEndUpdate(library call)

XmDropSiteEndUpdate

Purpose A Drag and Drop function that facilitates processing updates to multiple drop sites

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteEndUpdate(
Widget widge);

Description

XmDropSiteEndUpdate is used in conjunction withXmDropSiteStartUpdate

to process updates to multiple drop sites within the same hierarchy.
XmDropSiteStartUpdate and XmDropSiteEndUpdate signal the beginning
and the end respectively of a series of calls XmDropSiteUpdate. Calls to
XmDropSiteStartUpdate and XmDropSiteEndUpdate can be recursively stacked.
Using these routines optimizes the processing of update information.

widget Specifies the ID of any widget within a given hierarchy. The function
uses this widget to identify the shell that contains the drop sites.

For a complete definition of DropSite and its associated resourceXns@eopSite(3).

Related Information

992

XmDropSiteStartUpdate(3) andXmDropSiteUpdate(3).

Xm Functions

XmDropSiteQueryStackingOrder(library call)

XmDropSiteQueryStackingOrder

Purpose A Drag and Drop function that returns the parent, a list of children, and the number
of children for a specified widget

Synopsis #include <Xm/DragDrop.h>

Status XmDropSiteQueryStackingOrder(
Widget widget
Widget *parent_return
Widget ** child_returns
Cardinal * num_child_returng

Description

XmDropSiteQueryStackingOrder obtains the parent, a list of children registered as
drop sites, and the number of children registered as drop sites for a given widget.
The children are listed in current stacking order, from bottom-most (first child) to the
top-most (last child). This function allocates memory for the returned data that must
be freed by callingKtFree.

widget Specifies the widget ID. For this widget, you obtain the list of its
children, its parent, and the number of children.

parent_return
Returns the widget ID of the drop site parent of the specified widget.

child_returns
Returns a pointer to the list of drop site children associated with
the specified widget. The function allocates memory to hold the list.
The application is responsible for managing the allocated space. The
application can recover the allocated space by calKtigree.

num_child_returns
Returns the number of drop site children for the specified widget.

For a complete definition of DropSite and its associated resourceXns@eopSite(3).

993

Motif 2.1—Programmer’s Reference

XmDropSiteQueryStackingOrder(library call)

Return Values

Returns O (zero) if the routine fails; returns a nonzero value if it succeeds.

Related Information
XmDropSite(3) andXmDropSiteConfigureStackingOrder(3).

994

Xm Functions

XmDropSiteRegister(library call)

XmDropSiteRegister

Purpose A Drag and Drop function that identifies a drop site and assigns resources that specify
its behavior

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteRegister(
Widget widget
ArglList arglist,
Cardinal argcounj;

Description

XmDropSiteRegister identifies the specified widget or gadget as a drop site and sets
resource values that define the drop site’s behavior. The routine assigns default values
to any resources that are not specified in the argument list. The toolkit generates
a warning message if a drop site is registered wWinNdropSiteActivity set to
XmDROP_SITE_ACTIVE and theXmNdropProc resource is NULL.

If the drop site is a descendant of a widget that is registered as a drop site,
the XmNdropSiteType resource of the ancestor drop site must be specified as
XmDROP_SITE_COMPOSITE. The ancestor must be registered before the
descendant. The drop site is stacked above all other sibling drop sites already

registered.
widget Specifies the ID of the widget to be registered.
arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argumenaliglist).

For a complete definition of DropSite and its associated resourceXns@eopSite(3).

995

Motif 2.1—Programmer’s Reference

XmDropSiteRegister(library call)

Related Information

XmDisplay(3), XmDropSite(3), XmDropSiteEndUpdate(3),
XmDropSiteStartUpdate(3), XmDropSiteUpdate(3), XmDropSiteUnregister(3),
and XmScreen(3).

996

Xm Functions

XmDropSiteRegistered(library call)

XmDropSiteRegistered

Purpose A Drag and Drop function that determines if a drop site has been registered

Synopsis #include <Xm/DragDrop.h>

Boolean XmDropSiteRegistered(
Widget widge);

Description

XmDropSiteRegistereddetermines if the specified widget has a drop site registered.
If a drop site is registered, this function returns True.

widget Specifies the ID of the widget being queried.

For a complete definition of DropSite and its associated resourceXns@eopSite(3).

Return Values

If the widget is not a registered drop site, this function returns False. Otherwise, it
returns True.

Related Information

XmDisplay(3), XmDropSite(3), XmDropSiteEndUpdate(3),
XmDropSiteStartUpdate(3), XmDropSiteUpdate(3), XmDropSiteUnregister(3),
and XmScreen(3).

997

Motif 2.1—Programmer’s Reference

XmDropSiteRetrieve(library call)

XmDropSiteRetrieve

Purpose A Drag and Drop function that retrieves resource values set on a drop site

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteRetrieve(
Widget widget
ArglList arglist,
Cardinal argcounj;

Description

XmDropSiteRetrieve extracts values for the given resources from the drop site
specified bywidget An initiator can also obtain information about the current drop
site by passing the associated DragContext widget asvitiget parameter to this
routine. The initiator can retrieve all of the drop site resources ex¢aptdragProc

and XmNdropProc using this method.

widget Specifies the ID of the widget that encloses the drop site.
arglist Specifies the argument list.
argcount Specifies the number of attribute/value pairs in the argumenaligli$t).

For a complete definition of DropSite and its associated resourceXns@eopSite(3).

Related Information
XmDropSite(3) andXmDropSiteUpdate(3).

998

Xm Functions

XmDropSiteStartUpdate(library call)

XmDropSiteStartUpdate

Purpose A Drag and Drop function that facilitates processing updates to multiple drop sites

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteStartUpdate(
Widget widge);

Description

XmDropSiteStartUpdate is used in conjunction withXmDropSiteEndUpdate

to process updates to multiple drop sites within the same shell widget.
XmDropSiteStartUpdate and XmDropSiteEndUpdate signal the beginning
and the end respectively of a series of calls XmDropSiteUpdate. Calls to
XmDropSiteStartUpdate and XmDropSiteEndUpdate can be recursively stacked.
Using these routines optimizes the processing of update information.

widget Specifies the ID of any widget within a given hierarchy. The function
uses this widget to identify the shell that contains the drop sites.

For a complete definition of DropSite and its associated resourceXns@eopSite(3).

Related Information
XmDropSite(3), XmDropSiteEndUpdate(3), andXmDropSiteUpdate(3).

999

Motif 2.1—Programmer’s Reference

XmDropSiteUnregister(library call)

XmDropSiteUnregister

Purpose A Drag and Drop function that frees drop site information

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteUnregister(
Widget widge);

Description

XmDropSiteUnregister informs the toolkit that the specified widget is no longer a
registered drop site. The function frees all associated drop site information.

widget Specifies the ID of the widget, registered as a drop site, that is to be
unregistered

For a complete definition of DropSite and its associated resourceXns@eopSite(3).

Related Information
XmDropSite(3) andXmDropSiteRegister(3).

1000

Xm Functions

XmDropSiteUpdate(library call)

XmDropSiteUpdate

Purpose A Drag and Drop function that sets resource values for a drop site

Synopsis #include <Xm/DragDrop.h>

void XmDropSiteUpdate(
Widget widget
ArglList arglist,
Cardinal argcounj;

Description

XmDropSiteUpdate modifies drop site resources associated with the specified widget.
This routine updates the drop site resources specified iartiest.

widget Specifies the ID of the widget registered as a drop site
arglist Specifies the argument list
argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition of DropSite and its associated resourceXns@eopSite(3).

Related Information

XmDropSite(3), XmDropSiteEndUpdate(3), XmDropSiteRegister(3),
XmDropSiteStartUpdate(3), andXmDropSiteUnregister(3).

1001

Motif 2.1—Programmer’s Reference

XmDropTransferAdd(library call)

XmDropTransferAdd

Purpose A Drag and Drop function that enables additional drop transfer entries to be processed
after initiating a drop transfer

Synopsis #include <Xm/DragDrop.h>

void XmDropTransferAdd(
Widget drop_transfer
XmDropTransferEntryRec * transfers
Cardinal num_transfers

Description

XmDropTransferAdd identifies a list of additional drop transfer entries to be
processed after a drop transfer is started.

drop_transfer
Specifies the ID of the DropTransfer widget returned by
XmDropTransferStart

transfers Specifies the additional drop transfer entries that the receiver wants
processed

num_transfers
Specifies the number of items in tt@nsfersarray

For a complete definition of DropTransfer and its associated resources, see
XmDropTransfer (3).

Related Information
XmDragContext(3), XmDropTransfer (3), andXmDropTransferStart (3).

1002

Xm Functions

XmDropTransferStart(library call)

XmDropTransferStart

Purpose A Drag and Drop function that initiates a drop transfer

Synopsis #include <Xm/DragDrop.h>

Widget XmDropTransferStart(
Widget widget
ArglList arglist,
Cardinal argcounj;

Description

XmDropTransferStart initiates a drop transfer and uses the specified argument list
to initialize anXmDropTransfer object. The DropTransfer object can be manipulated
with XtSetValues and XtGetValues until the last call to theXmNtransferProc
procedure is made. After that point, the result of using the widget pointer is undefined.
The DropTransfer object is freed by the toolkit when a transfer is complete.

widget Specifies the ID of the DragContext widget associated with the
transaction

arglist Specifies the argument list
argcount Specifies the number of attribute/value pairs in the argumengligligt)

For a complete definition of DropTransfer and its associated resources, see
XmDropTransfer (3).

Return Values
Returns the ID of the DropTransfer widget.

1003

Motif 2.1—Programmer’s Reference

XmDropTransferStart(library call)

Related Information
XmDragContext(3), XmDropTransfer (3), andXmDropTransferAdd (3).

1004

Xm Functions
XmFileSelectionBoxGetChild(library call)

XmFileSelectionBoxGetChild

Purpose A FileSelectionBox function used to access a component

Synopsis #include <Xm/FileSB.h>

Widget XmFileSelectionBoxGetChild(
Widget widget
unsigned char child);

Description

XmFileSelectionBoxGetChild is used to access a component within a
FileSelectionBox. The parameters given to the function are the FileSelectionBox
widget and a value indicating which component to access.

NOTE: This routine is obsolete and exists for compatibility with previous releases.
Instead of callingKmFileSelectionBoxGetChild you should calXtNameToWidget
as described in th¥mFileSelectionBox3) reference page.

widget Specifies the FileSelectionBox widget ID.

child Specifies a component within the FileSelectionBox. The following are
legal values for this parameter:

* XmDIALOG_APPLY_BUTTON

* XmDIALOG_CANCEL_BUTTON
* XmDIALOG_DEFAULT_BUTTON
* XmDIALOG_DIR_LIST

* XmDIALOG_DIR_LIST_LABEL

* XmDIALOG_FILTER_LABEL

* XmDIALOG_FILTER_TEXT

* XmDIALOG_HELP_BUTTON

1005

Motif 2.1—Programmer’s Reference
XmFileSelectionBoxGetChild(library call)

XmDIALOG_LIST
XmDIALOG_LIST_LABEL
XmDIALOG_OK_BUTTON
XmDIALOG_SELECTION_LABEL
XmDIALOG_SEPARATOR
XmDIALOG_TEXT
XmDIALOG_WORK_AREA

For a complete definition of FileSelectionBox and its associated resources, see
XmFileSelectionBox3).

Return Values

Returns the widget ID of the specified FileSelectionBox component. An application
should not assume that the returned widget will be of any particular class.

Related Information
XmFileSelectionBox3).

1006

Xm Functions

XmFileSelectionDoSearch(library call)

XmFileSelectionDoSearch

Purpose A FileSelectionBox function that initiates a directory search

Synopsis #include <Xm/FileSB.h>

void XmFileSelectionDoSearch(
Widget widget
XmString dirmask;

Description

XmFileSelectionDoSearchinitiates a directory and file search in a FileSelectionBox
widget. For a description of the actions that the FileSelectionBox takes when doing a
search, se&XmpFileSelectionBox3).

widget Specifies the FileSelectionBox widget ID.

dirmask Specifies the directory mask used in determining the directories and files
displayed in the FileSelectionBox lists. This value is used asribhsk
member of the input datdmFileSelectionBoxCallbackStructstructure
passed to the FileSelectionBoxXsnNqualifySearchDataProc Thedir
andpatternmembers of that structure are NULL.

For a complete definition of FileSelectionBox and its associated resources, see
XmFileSelectionBox3).

Related Information
XmFileSelectionBox3).

1007

Motif 2.1—Programmer’s Reference
XmFontListAdd(library call)

XmFontListAdd

Purpose A font list function that creates a new font list

Synopsis #include <Xm/Xm.h>

XmFontList XmFontListAdd(
XmFontList oldlist,
XFontStruct *font,
XmStringCharSet charsej;

Description

XmFontListAdd creates a new font list consisting of the content®lofist and the
new font list element being added. This function deallocatelist after extracting
the required information; therefore, do not referentdist thereafter.

NOTE: This function is obsolete and exists for compatibility with previous releases.
It has been replaced bymFontListAppendEntry .

oldlist Specifies a pointer to the font list to which an entry will be added.

font Specifies a pointer to a font structure for which the new font list is
generated. This is the structure returned by the XXlilnadQueryFont
function.

charset Specifies the character set identifier for the font. This can be

XmSTRING_DEFAULT_CHARSET , but this value does not comply
with the AES, and it may be removed in future versions of Motif. If
the value isXmSTRING_DEFAULT _CHARSET , the routine derives
the character set from the current language environment.

Return Values

Returns NULL ifoldlistis NULL; returnsoldlist if fontor charsetis NULL; otherwise,
returns a new font list.

1008

Xm Functions
XmFontListAdd(library call)

Related Information
XmFontList (3) andXmFontListAppendEntry (3).

1009

Motif 2.1—Programmer’s Reference

XmFontListAppendEntry(library call)

XmFontListAppendEntry

Purpose A font list function that appends an entry to a font list

Synopsis #include <Xm/Xm.h>

XmFontList XmFontListAppendEntry(
XmFontList oldlist,
XmFontListEntry entry);

Description

XmFontListAppendEntry creates a new font list that contains the contentsldiist.

This function copies the contents of the font list entry being added into this new font
list. If oldlist is NULL, XmFontListAppendEntry creates a new font list containing
only the single entry specified.

This function deallocates the original font list after extracting the required information.
The caller must free the font list entry by usiXgnFontListEntryFree .

oldlist Specifies the font list to be added to
entry Specifies the font list entry to be added

Return Values

If entryis NULL, returnsoldlist; otherwise, returns a new font list.

Related Information

XmFontList (3), XmFontListEntryCreate (3), XmFontListEntryFree (3),
XmFontListEntryLoad (3), XmFontListFree(3), andXmFontListRemoveEntry(3).

1010

Xm Functions

XmFontListCopy(library call)

XmFontListCopy

Purpose A font list function that copies a font list

Synopsis #include <Xm/Xm.h>

XmFontList XmFontListCopy(
XmFontList fontlist);

Description
XmFontListCopy creates a new font list consisting of the contents of fibratlist
argument.
fontlist Specifies a font list to be copied

Return Values

Returns NULL if fontlist is NULL; otherwise, returns a new font list and allocates
space to hold the font list. The application is responsible for managing the allocated
space. The application can recover the allocated space by cxlirkgpntListFree.

Related Information
XmFontList (3) andXmFontListFree(3).

1011

Motif 2.1—Programmer’s Reference

XmFontListCreate(library call)

XmFontListCreate

Purpose A font list function that creates a font list

Synopsis #include <Xm/Xm.h>

XmFontList XmFontListCreate(
XFontStruct * font,
XmStringCharSet charsej;

Description

XmFontListCreate creates a new font list with a single element specified by the
provided font and character set. It also allocates the space for the font list.

NOTE: This function is obsolete and exists for compatibility with previous releases.
It is replaced byXmFontListAppendEntry .

font Specifies a pointer to a font structure for which the new font list is
generated. This is the structure returned by the XXlilnadQueryFont
function.

charset Specifies the character set identifier for the font. This can be

XmSTRING_DEFAULT_CHARSET , but this value does not comply
with the AES, and it may be removed in future versions of Motif. If
the value isXmSTRING_DEFAULT _CHARSET , the routine derives
the character set from the current language environment.

Return Values

Returns NULL if font or charsetis NULL; otherwise, returns a new font list.

1012

Xm Functions

XmFontListCreate(library call)

Related Information
XmFontList (3) andXmFontListAppendEntry (3).

1013

Motif 2.1—Programmer’s Reference

XmFontListEntryCreate(library call)

XmFontListEntryCreate

Purpose A font list function that creates a font list entry

Synopsis #include <Xm/Xm.h>

XmFontListEntry XmFontListEntryCreate(
char *tag,
XmFontType type
XtPointer fonf);

Description

XmFontListEntryCreate creates a font list entry that contains either a font or font
set and is identified by a tag.

tag Specifies a NULL terminated string for the tag of the font list entry.
The tag may be specified 88nFONTLIST_DEFAULT_TAG , which
is used to identify the default font list element in a font list.

type Specifies whether théont argument is a font structure or a font set.
Valid values areXmFONT _IS FONT andXmFONT _IS_FONTSET.

font Specifies either aXFontSetreturned byXCreateFontSebr a pointer to
an XFontStructreturned byXLoadQueryFont.

The toolkit does not copy the X Font structure specified by fimet argument.
Therefore, an application programmer must not fl@ntStructor XFontSetuntil
all font lists and/or font entries that reference it have been freed.

Return Values

Returns a font list entry. The function allocates space to hold the returned font list
entry. The application is responsible for managing the allocated space. The application
can recover the allocated space by callfgFontListEntryFree .

1014

Xm Functions

XmFontListEntryCreate(library call)

Related Information

XmFontList (3), XmFontListAppendEntry (3), XmFontListEntryFree (3),
XmFontListEntryGetFont (3), XmFontListEntryGetTag (3),
XmFontListEntryLoad (3), andXmFontListRemoveEntry(3).

1015

Motif 2.1—Programmer’s Reference

XmFontListEntryFree(library call)

XmFontListEntryFree

Purpose A font list function that recovers memory used by a font list entry

Synopsis #include <Xm/Xm.h>

void XmFontListEntryFree(
XmFontListEntry * entry);

Description

XmFontListEntryFree recovers memory used by a font list entry. This routine does
not free theXFontSetor XFontStructassociated with the font list entry.

entry Specifies a pointer to the font list entry to be freed. In addition, it may be
necessary to take the address of the font list entry (viafttaperator)
before passing it to this function.

Related Information

XmFontList (3), XmFontListAppendEntry (3), XmFontListEntryCreate (3),
XmFontListEntryLoad (3), XmFontListNextEntry (3), and
XmFontListRemoveEntry(3).

1016

Xm Functions
XmFontListEntryGetFont(library call)

XmFontListEntryGetFont

Purpose A font list function that retrieves font information from a font list entry

Synopsis #include <Xm/Xm.h>

XtPointer XmFontListEntryGetFont(
XmFontListEntry entry,
XmFontType *type_returs;

Description

XmFontListEntryGetFont retrieves font information for a specified font list entry. If
the font list entry contains a fontype_returnreturnsXmFONT_IS_FONT and the
function returns a pointer to adFontStruct If the font list entry contains a font set,
type_returnreturnsXmFONT_IS_FONTSET and the function returns théFontSet

entry Specifies the font list entry.

type_return Specifies a pointer to the type of the font element for the current entry.
Valid values areXmFONT _IS FONT andXmFONT _IS_FONTSET.

The returnedXFontSetor XFontStructis not a copy of the toolkit data and must not
be freed.

Return Values
Returns anXFontSetor a pointer to arlKFontStructstructure.

Related Information

XmFontList (3), XmFontListEntryCreate (3), XmFontListEntryGetTag (3)
XmFontListEntrylLoad (3), andXmFontListNextEntry (3).

1017

Motif 2.1—Programmer’s Reference

XmFontListEntryGetTag(library call)

XmFontListEntryGetTag

Purpose A font list function that retrieves the tag of a font list entry

Synopsis #include <Xm/Xm.h>

char* XmFontListEntryGetTag(
XmFontListEntry entry);

Description

XmFontListEntryGetTag retrieves a copy of the tag of the specified font list entry.
This routine allocates memory for the tag string that must be freed by the application.

entry Specifies the font list entry

Return Values

Returns the tag for the font list entry. The function allocates space to hold the returned
tag. The application is responsible for managing the allocated space. The application
can recover the allocated space by calliigree.

Related Information

XmFontList (3), XmFontListEntryCreate (3), XmFontListEntryGetFont (3),
XmFontListEntryLoad (3), andXmFontListNextEntry (3).

1018

Xm Functions

XmFontListEntryLoad(library call)

XmFontListEntryLoad

Purpose A font list function that loads a font or creates a font set and creates an accompanying
font list entry

Synopsis #include <Xm/Xm.h>

XmFontListEntry XmFontListEntryLoad(
Display *display,
char *font_name
XmFontType type
char *tag);

Description

XmFontListEntryLoad loads a font or creates a font set based on the value of the
typeargument. It creates and returns a font list entry that contains the font or font set
and the specified tag.

If the value of type is XmFONT_IS FONT, the function uses the
XtCvtStringToFontStruct routine to convert the value offont_ nameto a
font struct. If the value oftype is XmFONT_IS_FONTSET, the function uses
the XtCvtStringToFontSet converter to create a font set in the current locale.
XmFontListEntryLoad creates a font list entry that contains the font or font set
derived from the converter. For more information abst€vtStringToFontStruct

and XtCvtStringToFontSet, seeX Toolkit Intrinsics—C Language Interface.

display Specifies the display where the font list will be used.

font_name Specifies an X Logical Font Description (XLFD) string, which is
interpreted either as a font name or as a base font name list. A base font
name list is a comma-separated and NULL-terminated string.

type Specifies whether théont_nameargument refers to a font name or
to a base font name list. Valid values aXxenFONT _IS_FONT and
XmFONT_IS_FONTSET.

1019

Motif 2.1—Programmer’s Reference

XmFontListEntryLoad(library call)

tag Specifies the tag of the font list entry to be created. The tag may
be specified asXmFONTLIST_DEFAULT_TAG , which is used to
identify the default font list element in a font list when specified as
part of a resource.

Return Values

If the specified font is not found, or if the specified font set cannot be created, then
either an implementation-defined font will be opened or a font set will be created,
and a warning messge will be generated. If no suitable font can be found or a font set
cannot be created, then another message will be generated and the function will return
NULL; otherwise the function returns a font list entry. If the function returns a font
list entry, the function allocates space to hold the font list entry. The application is
responsible for managing the allocated space. The application can recover the allocated
space by callingKmFontListEntryFree .

Related Information

XmFontList (3), XmFontListAppendEntry (3), XmFontListEntryCreate (3),
XmFontListEntryFree (3), XmFontListEntryGetFont (3),
XmFontListEntryGetTag (3), andXmFontListRemoveEntry(3).

1020

Xm Functions

XmFontListFree(library call)

XmFontListFree

Purpose A font list function that recovers memory used by a font list

Synopsis #include <Xm/Xm.h>

void XmFontListFree(
XmFontList list);

Description

XmFontListFree recovers memory used by a font list. This routine does not free the
XFontSetor XFontStructassociated with the specified font list.

list Specifies the font list to be freed

Related Information

XmFontList (3), XmFontListAppendEntry (3), XmFontListCopy (3), and
XmFontListRemoveEntry(3).

1021

Motif 2.1—Programmer’s Reference

XmFontListFreeFontContext(library call)

XmFontListFreeFontContext

Purpose A font list function that instructs the toolkit that the font list context is no longer
needed

Synopsis #include <Xm/Xm.h>

void XmFontListFreeFontContext(
XmFontContext contexj;

Description

XmFontListFreeFontContext instructs the toolkit that the context is no longer needed
and will not be used without reinitialization.

context Specifies the font list context structure that was allocated by the
XmFontListInitFontContext function

Related Information
XmFontListinitFontContext (3) andXmFontListNextEntry (3).

1022

Xm Functions
XmFontListGetNextFont(library call)

XmFontListGetNextFont

Purpose A font list function that allows applications to access the fonts and character sets in
a font list

Synopsis #include <Xm/Xm.h>

Boolean XmFontListGetNextFont(
XmFontContext context
XmStringCharSet *charset
XFontStruct ** font);

Description

XmFontListGetNextFont accesses the character set and font for the next entry of the
font list. The application first uses thémFontListinitFontContext routine to create

a font list context. The application then calMsnFontListGetNextFont repeatedly

with the same context. Each succeeding call accesses the next element of the font
list. When finished, the application callémFontListFreeFontContext to free the
allocated font list context.

This routine allocates memory for the character set string that must be freed by the
application. The function allocates memory fibrarset The application is responsible

for managing the allocated memory. The application can recover the allocated memory
by calling XtFree.

This function is obsolete and exists for compatibility with previous releases. It is
replaced byXmFontListNextEntry . If XmFontListGetNextFont is passed a context
that contains a font set entry, it will return the first font of the font set. The next call
to the function will move to the next entry in the font list.

context Specifies the font list context

charset Specifies a pointer to a character set string; the routine returns the
character set for the current font list element

1023

Motif 2.1—Programmer’s Reference
XmFontListGetNextFont(library call)

font Specifies a pointer to a pointer to a font structure; the routine returns
the font for the current font list element

Return Values

Returns True if the returned values are valid; otherwise, returns False.

Related Information
XmFontList (3) and XmFontListNextEntry (3).

1024

Xm Functions

XmFontListlnitFontContext(library call)

XmFontListinitFontContext

Purpose A font list function that allows applications to access the entries in a font list

Synopsis #include <Xm/Xm.h>

Boolean XmFontListinitFontContext(
XmFontContext *context
XmFontList fontlist);

Description

XmFontListinitFontContext establishes a context to allow applications to access the

contents of a font list. This context is used when reading the font list entry tag, font,
or font set associated with each entry in the font list. A Boolean status is returned to
indicate whether or not the font list is valid.

If an application deallocates the font list passedXtaFontListinitFontContext as
the fontlist argument, the context established by this function is rendered no longer

valid.
context Specifies a pointer to the allocated context
fontlist Specifies the font list

Return Values

Returns True if the context was allocated; otherwise, returns False. If the function
allocated a context, the application is responsible for managing the allocated space. The
application can recover the allocated space by calng-ontListFreeFontContext.

Related Information
XmFontList (3), XmFontListFreeFontContext(3), andXmFontListNextEntry (3).

1025

Motif 2.1—Programmer’s Reference

XmFontListNextEntry(library call)

XmFontListNextEntry

Purpose A font list function that returns the next entry in a font list

Synopsis #include <Xm/Xm.h>

XmFontListEntry XmFontListNextEntry(
XmFontContext contexj;

Description

XmFontListNextEntry returns the next entry in the font list. The application uses
the XmFontListInitFontContext routine to create a font list context. The first call

to XmFontListNextEntry sets the context to the first entry in the font list. The
application then callXmFontListNextEntry repeatedly with the same context. Each
succeeding call accesses the next entry of the font list. When finished, the application
calls XmFontListFreeFontContext to free the allocated font list context.

context Specifies the font list context

Return Values

Returns NULL if the context does not refer to a valid entry or if it is at the end of
the font list; otherwise, it returns a font list entry. If the function does return a font
list entry, the font list entry is not a copy. Therefore, the application should not free
the returned font list entry.

Related Information

XmFontList (3), XmFontListEntryFree (3), XmFontListEntryGetFont (3),
XmFontListEntryGetTag (3), XmFontListFreeFontContext(3), and
XmFontListinitFontContext (3).

1026

Xm Functions

XmFontListRemoveEntry(library call)

XmFontListRemoveEntry

Purpose A font list function that removes a font list entry from a font list

Synopsis #include <Xm/Xm.h>

XmFontList XmFontListRemoveEntry(
XmFontList oldlist,
XmFontListEntry entry);

Description

XmFontListRemoveEntry creates a new font list that contains the contentsldiist
minus those entries specified émtry. The routine removes any entries fravidlist

that match the components (tag, type font/font set) of the specified entry. The function
deallocates the original font list after extracting the required information. The caller
usesXmFontListEntryFree to recover memory allocated for the specified entry. This
routine does not free thEFontSetor XFontStructassociated with the font list entry
that is removed.

oldlist Specifies the font list

entry Specifies the font list entry to be removed

Return Values

If oldlist is NULL, the function returns NULL. Ifentry is NULL or no entries are
removed, the function returnsldlist. Otherwise, it returns a new font list. If the
function returns a new font list, the function allocates space to hold the new font list.
The application is responsible for managing the allocated space. The application can
recover the allocated space by calliKghFontListFree.

1027

Motif 2.1—Programmer’s Reference

XmFontListRemoveEntry(library call)

Related Information

XmFontList (3), XmFontListAppendEntry (3), XmFontListEntryCreate (3),
XmFontListEntryFree (3), XmFontListEntryLoad (3), andXmFontListFree(3).

1028

Xm Functions

XmGetAtomName(library call)

XmGetAtomName

Purpose A function that returns the string representation for an atom

Synopsis #include <Xm/Xm.h>
#include <Xm/AtomMgr.h>

String XmGetAtomName(
Display * display,
Atom atom);

Description

XmGetAtomName returns the string representation for an atom. It mirrorsXlie
interfaces for atom management but provides client-side caching. When and where
caching is provided iiXlib, the routines will become pseudonyms for ¥ié routines.

display Specifies the connection to the X server

atom Specifies the atom for the property name you want returned

Return Values

Returns a string. The function allocates space to hold the returned string. The
application is responsible for managing the allocated space. The application can
recover the allocated space by calliX§ree.

1029

Motif 2.1—Programmer’s Reference

XmGetColorCalculation(library call)

XmGetColorCalculation

Purpose A function to get the procedure used for default color calculation

Synopsis #include <Xm/Xm.h>
XmColorProc XmGetColorCalculation(

void);

Description
XmGetColorCalculation returns the procedure being used to calculate default colors.

For a description oKmColorProc, seeXmSetColorCalculation(3).

Return Values

Returns the procedure used for default color calculation.

Related Information
XmChangeColon(3), XmGetColors(3), andXmSetColorCalculation(3).

1030

Xm Functions

XmGetColors(library call)

XmGetColors

Purpose A function that generates foreground, select, and shadow colors

Synopsis #include <Xm/Xm.h>

void XmGetColors(
Screen* screen
Colormap colormap
Pixel background
Pixel * foreground
Pixel * top_shadow
Pixel * bottom_shadow
Pixel * selec);

Description

XmGetColors takes a screen, a colormap, and a background pixel, and returns pixel
values for foreground, select, and shadow colors.

screen Specifies the screen for which these colors should be allocated.
colormap Specifies the colormap from which these colors should be allocated.
background Specifies the background on which the colors should be based.

foreground Specifies a pointer to the returned foreground pixel value. If this
argument is NULL, no value is allocated or returned for this color.

top_shadow Specifies a pointer to the returned top shadow pixel value. If this
argument is NULL, no value is allocated or returned for this color.

bottom_shadow
Specifies a pointer to the returned bottom shadow pixel value. If this
argument is NULL, no value is allocated or returned for this color.

select Specifies a pointer to the returned select pixel value. If this argument is
NULL, no value is allocated or returned for this color.

1031

Motif 2.1—Programmer’s Reference

XmGetColors(library call)

Related Information
XmChangeColor(3), XmGetColorCalculation(3), andXmSetColorCalculation(3).

1032

Xm Functions

XmGetDestination(library call)

XmGetDestination

Purpose A function that returns the widget ID of the widget to be used as the current destination
for quick paste and certain clipboard operations

Synopsis #include <Xm/Xm.h>

Widget XmGetDestination(
Display *display);

Description

XmGetDestination returns the widget that is the current destination on the specified
display. The destination is generally the last editable widget on which a select, edit,
insert, or paste operation was performed and is the destination for quick paste and
certain clipboard functions. The destination is NULL until a keyboard or mouse
operation has been done on an editable widget. Refer tMthié 2.1—Programmer’s
Guidefor a description of keyboard focus.

display Specifies the display whose destination widget is to be queried

Return Values

Returns the widget ID for the current destination or NULL if there is no current
destination.

1033

Motif 2.1—Programmer’s Reference

XmGetDragContext(library call)

XmGetDragContext

Purpose A Drag and Drop function that retrieves the DragContext widget ID associated with
a timestamp

Synopsis #include <Xm/DragC.h>

Widget XmGetDragContext(
Widget refwidget
Time timestamiy

Description

XmGetDragContext returns the widget ID of the active DragContext associated with

a given display and timestamp. A timestamp uniquely identifies which DragContext is
active when more than one drag and drop transaction has been initiated on a display. If
the specified timestamp matches a timestamp processed between the start and finish of
a single drag and drop transaction, the function returns the corresponding DragContext
ID.

refwidget Specifies the ID of the widget that the routine uses to identify the
intended display. The function returns the ID of the DragContext
associated with the display value passed by this widget.

timestamp Specifies a timestamp.

For a complete definition of DragContext and its associated resources, see
XmDragContext(3).

Return Values

Returns the ID of the DragContext widget that is active for the specified timestamp.
Otherwise, returns NULL if no active DragContext is found.

1034

Xm Functions

XmGetDragContext(library call)

Related Information
XmDragContext(3).

1035

Motif 2.1—Programmer’s Reference

XmGetFocusWidget(library call)

XmGetFocusWidget

Purpose Returns the ID of the widget that has keyboard focus

Synopsis #include <Xm/Xm.h>

Widget XmGetFocusWidget(
Widget widge);

Description

XmGetFocusWidget examines the hierarchy that contains the specified widget and
returns the 1D of the widget that has keyboard focus. The function extracts the widget
ID from the associated Shell widget; therefore, the specified widget can be located
anywhere in the hierarchy.

widget Specifies a widget ID within a given hierarchy

Return Values

Returns the ID of the widget with keyboard focus. If no child of the Shell has focus,
the function returns NULL.

Related Information

XmProcessTraversa(3).

1036

Xm Functions

XmGetMenuCursor(library call)

XmGetMenuCursor

Purpose A function that returns the cursor ID for the current menu cursor

Synopsis #include <Xm/Xm.h>

Cursor XmGetMenuCursor(
Display * display);

Description

XmGetMenuCursor queries the menu cursor currently being used by this client on
the specified display and returns the cursor ID. This function returns the menu cursor
for the default screen of the display.

NOTE: XmGetMenuCursor is obsolete and exists for compatibility with previous
releases. Instead of using this function, céiGetValues for the XmScreen resource
XmNmenuCursor.

display Specifies the display whose menu cursor is to be queried

Return Values

Returns the cursor ID for the current menu cursor or the value None if a cursor is not
yet defined. A cursor will not be defined if the application makes this call before the
client has created any menus on the specified display.

Related Information
XmScreen(3).

1037

Motif 2.1—Programmer’s Reference

XmGetPixmap(library call)

XmGetPixmap

Purpose A pixmap caching function that generates a pixmap, stores it in a pixmap cache, and
returns the pixmap

Synopsis #include <Xm/Xm.h>

Pixmap XmGetPixmap(
Screen *screen
char *image_namge
Pixel foreground
Pixel background:

Description

XmGetPixmap uses the parameter data to perform a lookup in the pixmap cache to
see if a pixmap has already been generated that matches the data. If one is found, a
reference count is incremented and the pixmap is returned. Applications should use
XmDestroyPixmap when the pixmap is no longer needed.

screen Specifies the display screen on which the pixmap is to be drawn. The
depth of the pixmap is the default depth for this screen.

image_nameSpecifies the name of the image to be used to generate the pixmap

foreground Combines the image with thi@regroundcolor to create the pixmap if
the image referenced is a bit-per-pixel image

background Combines the image with theackgroundcolor to create the pixmap if
the image referenced is a bit-per-pixel image

If a pixmap is not foundjmage_nameés used to perform a lookup in the image
cache. If an image is found, it is used to generate the pixmap, which is then cached
and returned.

If an image is not found, thenage_namés used as a filename, and a search is made
for an X10 or X11 bitmap file. If it is found, the file is read, converted into an image,

1038

Xm Functions

XmGetPixmap(library call)

and cached in the image cache. The image is then used to generate a pixmap, which
is cached and returned.

If image_naméas a leading slasl(it specifies a full pathname, abinGetPixmap
opens the file as specified. Otherwismage namespecifies a filename. In this
case, XmGetPixmap looks for the file along a search path specified by the
XBMLANGPATH environment variable or by a default search path, which varies
depending on whether or not tBAPPLRESDIR environment variable is set. The
default search path contains a lot of directories. ThereféneGetPixmap will need

a relatively long time to search through all these directories for pixmaps and bitmaps.
Applications that use a lot of pixmaps and bitmaps will probably run more quickly if
XBMLANGPATH is set to a short list of directories. In addition to X bitmap files
(XBM), Motif also supports XPM (X Pixmap) file formats. ThéBMLANGPATH
specifies the path for both XBM and XPM files. Refer to ¥raGetPixmapByDepth
reference page for further details.

The XBMLANGPATH environment variable specifies a search path for X bitmap
files. It can contain the substitution fiefdB, where theimage namergument to
XmGetPixmap is substituted for%B. It can also contain the substitution fields
accepted byXtResolvePathname The substitution field6T is always mapped to
bitmaps and %S is always mapped to NULL.

If XBMLANGPATH is not set but the environment variabt®&PPLRESDIR is set,
the following pathnames are searched:

* %B

» $XAPPLRESDIR/%L/bitmaps/%N/%B
» $XAPPLRESDIR/%I_%t/bitmaps/%N/%B
» $XAPPLRESDIR/%I/bitmaps/%N/%B
* $XAPPLRESDIR/bitmaps/%N/%B

» $XAPPLRESDIR/%L/bitmaps/%B

* $XAPPLRESDIR/%I_%t/bitmaps/%B
* $XAPPLRESDIR/%l/bitmaps/%B

» $XAPPLRESDIR/bitmaps/%B

¢ $SHOME/bitmaps/%B

+ $HOME/%B

1039

Motif 2.1—Programmer’s Reference

XmGetPixmap(library call)

* Jusr/lib/X11/%L/bitmaps/%N/%B

o Jusr/lib/X11/%I|_%t/bitmaps/%N/%B
* Jusr/lib/X11/%l/bitmaps/%N/%B

* /usr/lib/X11/bitmaps/%N/%B

* Jusr/lib/X11/%L/bitmaps/%B

* Jusr/lib/X11/%I_%t/bitmaps/%B

* Jusr/lib/X11/%l/bitmaps/%B

* Jusr/lib/X11/bitmaps/%B

* /usr/include/X11/bitmaps/%B

If neither XBMLANGPATH nor XAPPLRESDIR is set, the following pathnames
are searched:

* %B

* SHOME/%L/bitmaps/%N/%B

o SHOME/%I|_%t/bitmaps/%N/%B
* SHOME/%I/bitmaps/%N/%B

¢ $SHOME/bitmaps/%N/%B

¢ SHOME/%L/bitmaps/%B

o SHOME/%|_%t/bitmaps/%B

¢ $SHOME/%/bitmaps/%B

¢ $SHOME/bitmaps/%B

+ $HOME/%B

¢ Jusr/lib/X11/%L/bitmaps/%N/%B
o Jusr/lib/X11/%I_%t/bitmaps/%N/%B
o Jusr/lib/X11/%l/bitmaps/%N/%B
¢ Jusr/lib/X11/bitmaps/%N/%B

* /usr/lib/X11/%L/bitmaps/%B

o Jusr/lib/X11/%l_%t/bitmaps/%B

1040

Xm Functions

XmGetPixmap(library call)

* Jusr/lib/X11/%l/bitmaps/%B
* Jusr/lib/X11/bitmaps/%B
* /usr/include/X11/bitmaps/%B

These paths are defaults that vendors may change. For example, a vendor may use
different directories fovusr/lib/X11 and/usr/include/X11.

The following substitutions are used in these paths:

%B The image name, from thiemage_nameaargument
%N The class name of the application
%L The display’s language string. This string is influenced by

XtSetLanguageProc The default string is determined by calling
setlocalel(C_ALL, NULL.

%I_%t The language and territory component of the display’s language string
%l The language component of the display’s language string

The contents of the file must conform to the rules for X11 bitmap files. In other words,
Motif can read any X11 conformant bitmap file.

Return Values

Returns a pixmap when successful; retuXimUNSPECIFIED PIXMAP if the
image corresponding timmage _nameannot be found.

Related Information

XmDestroyPixmap(3), XmGetPixmapByDepth(3), XmInstalllmage(3), and
XmUninstalllmage(3).

1041

Motif 2.1—Programmer’s Reference

XmGetPixmapByDepth(library call)

XmGetPixmapByDepth

Purpose A pixmap caching function that generates a pixmap, stores it in a pixmap cache, and

returns the pixmap

Synopsis #include <Xm/Xm.h>

Pixmap XmGetPixmapByDepth(
Screen *screen
char *image_namge
Pixel foreground
Pixel background
int depth;

Description

1042

XmGetPixmapByDepth uses the parameter data to perform a lookup in the pixmap
cache to see if a pixmap has already been generated that matches the data. If one
is found, a reference count is incremented and the pixmap is returned. Applications
should useXmDestroyPixmap when the pixmap is no longer needed.

screen Specifies the display screen on which the pixmap is to be drawn
image_nameSpecifies the name of the image to be used to generate the pixmap

foreground Combines the image with thi@regroundcolor to create the pixmap if
the image referenced is a bit-per-pixel image

background Combines the image with theackgroundcolor to create the pixmap if
the image referenced is a bit-per-pixel image

depth Specifies the depth of the pixmap

If a matching pixmap is not foundmage_names used to perform a lookup in the
image cache. If an image is found, it is used to generate the pixmap, which is then
cached and returned.

Xm Functions

XmGetPixmapByDepth(library call)

If an image is not foundimage_namés used as a filename, and a search is made for
an X10 or X11 bitmap file. If it is found, the file is read, converted into an image,
and cached in the image cache. The image is then used to generate a pixmap, which
is cached and returned.

If image_namehas a leading / (slash), it specifies a full pathname, and
XmGetPixmapByDepth opens the file as specified. Otherwigeage_nameapecifies

a filename. In this case{mGetPixmapByDepth looks for the file along a search
path specified by th&BMLANGPATH environment variable or by a default search
path, which varies depending on whether or not K&PPLRESDIR environment
variable is set. The default search path contains a lot of directories. Therefore,
XmGetPixmapByDepth will need a relatively long time to search through all these
directories for pixmaps and bitmaps. Applications that use a lot of pixmaps and
bitmaps will probably run more quickly iIKBMLANGPATH is set to a short list

of directories. In addition to X bitmap files (XBM), Motif also supports XPM (X
Pixmap) file formats. Th&KBMLANGPATH specifies the path for both XBM and
XPM files. XPM files are described in more detail later in this reference page.

The XBMLANGPATH environment variable specifies a search path for X bitmap
files. It can contain the substitution fiefdB, where theimage namergument to
XmGetPixmapByDepth is substituted for%B. It can also contain the substitution
fields accepted b¥XtResolvePathname The substitution fiel®T is always mapped

to bitmaps and%S is always mapped to NULL.

If XBMLANGPATH is not set, but the environment variat{ldPPLRESDIR is set,
the following pathnames are searched:

* %B

* $XAPPLRESDIR/%L/bitmaps/%N/%B

» $XAPPLRESDIR/%I_%t/bitmaps/%N/%B
» $XAPPLRESDIR/%lI/bitmaps/%N/%B

* $XAPPLRESDIR/bitmaps/%N/%B

* $XAPPLRESDIR/%L/bitmaps/%B

* $XAPPLRESDIR/%I_%t/bitmaps/%B

» $XAPPLRESDIR/%l/bitmaps/%B

» $XAPPLRESDIR/bitmaps/%B

+ $HOME/bitmaps/%B

1043

Motif 2.1—Programmer’s Reference

XmGetPixmapByDepth(library call)

+ $HOME/%B

* Jusr/lib/X11/%L/bitmaps/%N/%B

o Jusr/lib/X11/%I|_%t/bitmaps/%N/%B
* Jusr/lib/X11/%l/bitmaps/%N/%B

* /usr/lib/X11/bitmaps/%N/%B

* Jusr/lib/X11/%L/bitmaps/%B

* Jusr/lib/X11/%I_%t/bitmaps/%B

* Jusr/lib/X11/%l/bitmaps/%B

* Jusr/lib/X11/bitmaps/%B

* /usr/include/X11/bitmaps/%B

If neither XBMLANGPATH nor XAPPLRESDIR is set, the following pathnames
are searched:

* %B

* SHOME/%L/bitmaps/%N/%B

* SHOME/%I|_%t/bitmaps/%N/%B
* SHOME/%I/bitmaps/%N/%B

* $SHOME/bitmaps/%N/%B

¢ SHOME/%L/bitmaps/%B

o SHOME/%|_%t/bitmaps/%B

* $SHOME/%/bitmaps/%B

* $SHOME/bitmaps/%B

+ $HOME/%B

¢ Jusr/lib/X11/%L/bitmaps/%N/%B
o Jusr/lib/X11/%I_%t/bitmaps/%N/%B
* Jusr/lib/X11/%l/bitmaps/%N/%B
¢ Jusr/lib/X11/bitmaps/%N/%B

* Jusr/lib/X11/%L/bitmaps/%B

1044

Xm Functions

XmGetPixmapByDepth(library call)

* Jusr/lib/X11/%I|_%t/bitmaps/%B
* /usr/lib/X11/%l/bitmaps/%B

* Jusr/lib/X11/bitmaps/%B

* /usrf/include/X11/bitmaps/%B

These paths are defaults that vendors may change. For example, a vendor may use
different directories fovusr/lib/X11 and/usr/include/X11.

The following substitutions are used in these paths:

%B The image name, from thienage_nameargument
%N The class name of the application
%L The display’s language string. This string is influenced by

XtSetLanguageProc The default string is determined by calling
setlocalel(C_ALL, NULL.

%I_%t The language and territory component of the display’s language string
%l The language component of the display’s language string

The contents of the file must conform to the rules for X11 bitmap files. In other words,
Motif can read any X11 conformant bitmap file.

The XPM file format is used for storing or getting back colored X pixmaps from
files. The XPM library is provided as unsupported with Motif. To build applications
without XPM, use theNO_XPMmacro. The following shows both XBM and XPM
files, respectively, for a plaid pattern.

/* XBM file */

#define plaid_width 22

#define plaid_height 22

#define plaid_x_hot -1

#define plaid_y_hot -1

static char plaid_bits[] = {
0x75, Oxfd, Ox3f, Oxaa, Oxfa, Ox3e, 0x75, Oxfd, Ox3f, Oxaa, Oxfa, Ox3e,
0x75, Oxfd, Ox3f, Oxff, Ox57, Ox15, Ox75, Oxfd, Ox3f, Oxaa, Oxfa, Ox3e,
0x75, Oxfd, Ox3f, Oxaa, Oxfa, Ox3e, 0x75, Oxfd, Ox3f, 0x20, Oxa8, 0x2b,
0x20, O0x50, Ox15, 0x20, Oxa8, 0x2b, 0x20, 0x50, Ox15, 0x20, Oxa8, 0x2b,
Oxff, Oxff, Ox3f, Ox20, Oxa8, Ox2b, 0x20, 0x50, 0x15, 0x20, Oxa8, 0x2b,
0x20, Ox50, Ox15, 0x20, Oxa8, 0x2b};

1045

Motif 2.1—Programmer’s Reference

XmGetPixmapByDepth(library call)

I* XPM file */
static char * plaid]] = {
/* plaid pixmap

* width height ncolors chars_per_pixel */

"22 22 4 2",

/* colors */

" c red m white s light_color ",

"Y ¢ green m black s lines_in_mix ",

"+ ¢ yellow m white s lines_in_dark ",

"X m black s dark_color ",

/* pixels */

"X X X X X X XX XX XX+ XXXXX"
"X X X X X XXX XXX XXXXX",
"X X X X X X XX XX XX+ XXXXX"
"X X X X X XXX XXX XXXXX"
"X X X X X X XX XX XX+ XXXXX"
"YTYYYYXYYYYY+X+X+X+X+Xx+"
"X X X X X X XXX XXX+ XXXXX"
"X X X X X X XX XXX XXXXX",
"X X X X X X XXX XXX+ XXXXX"
"X X X X X XXX XXX XXXXX",
"X X X X X X XXX XXX+ XXXXX"
" X X X XY X X x ",
" X X X Y X X
" X X X XY X X x "

X X X X X

Return Values

XXX XXXXXXXXXXXXXXXXXXX"

1

X X XY X X x "
X X Y X X "
XY X X x "
X X Y X

XY X X x "

Returns a pixmap when successful; retudXmUNSPECIFIED_PIXMAP if
image corresponding timmage _nameannot be found.

the

Xm Functions

XmGetPixmapByDepth(library call)

Related Information
XmDestroyPixmap(3), Xminstalllmage(3), andXmUninstalllmage(3).

1047

Motif 2.1—Programmer’s Reference
XmGetPostedFromWidget(library call)

XmGetPostedFromWidget

Purpose A RowColumn function that returns the widget from which a menu was posted

Synopsis #include <Xm/RowColumn.h>

Widget XmGetPostedFromWidget(
Widget meny);

Description

XmGetPostedFromWidget returns the widget from which a menu was posted. For
torn-off menus, this function returns the widget from which the menu was originally
torn. An application can use this routine during the activate callback to determine the
context in which the menu callback should be interpreted.

menu Specifies the widget ID of the menu

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Return Values

Returns the widget ID of the widget from which the menu was posted. If the menu is a
Popup Menu, the returned widget is the widget from which the menu was popped up.
If the menu is a Pulldown Menu, the returned widget is the MenuBar or OptionMenu

from which the widget was pulled down.

Related Information
XmRowColumn(3).

1048

Xm Functions

XmGetSecondaryResourceData(library call)

XmGetSecondaryResourceData

Purpose A function that provides access to secondary widget resource data

Synopsis #include <Xm/Xm.h>

Cardinal XmGetSecondaryResourceData(
WidgetClasswidget_class
XmSecondaryResourceData *$econdary_data_retujn

Description

Some Motif widget classes (such as Gadget, Text, and VendorShell) have
resources that are not accessible through the functt@etResourcelList and
XtGetConstraintResourceList In order to retrieve the descriptions of these
resources, an application must bseGetSecondaryResourceData

When a widget class has such resources, this function provides descriptions of the
resources in one or more data structurémGetSecondaryResourceDatdakes a
widget class argument and returns the number of these data structures associated with
the widget class. If the return value is greater than O (zero), the function allocates and
fills an array of pointers to the corresponding data structures. It returns this array at
the address that is the value of thecondary_data_returargument.

The type XmSecondaryResourceDatais a pointer to a structure with two
members that are useful to an applicatisesources of type XtResourceListand
num_resources of type Cardinal. The resourcesmember is a list of the widget
resources that are not accessible using Xt functions.ntime_resourcesmember is
the length of theesourcedist.

If the return value is greater than 0 (zer8nGetSecondaryResourceDatallocates
memory that the application must free. UgH-ree to free the resource list in each
structure (the value of thesourcesnember), the structures themselves, and the array
of pointers to the structures (the array whose addresedsndary_data_retujn

widget_classSpecifies the widget class for which secondary resource data is to be
retrieved.

1049

Motif 2.1—Programmer’s Reference

XmGetSecondaryResourceData(library call)

secondary_data_return
Specifies a pointer to an array ¥mSecondaryResourceDatgointers
to be returned by this function. If the widget class has no secondary
resource data, for example, if the value returned by the function is O
(zero), the function returns no meaningful value for this argument.

Return Values

Returns the number of secondary resource data structures associated with this widget
class.

Examples

The following example useXmGetSecondaryResourceDatdo print the names of
the secondary resources of the Motif Text widget and then frees the data allocated by
the function:

XmSecondaryResourceData * block_array;
Cardinal num_blocks, i, j;
if (num_blocks = XmGetSecondaryResourceData (xmTextWidgetClass,
&block_array)) {
for (i = 0; i < num_blocks; i++) {
for j = 0; j < block_array[i]->num_resources; j++) {
printf("%s\n", block_array[i]->resources][j].resource_name);
}
XtFree((char*)block_array[i]->resources);
XtFree((char*)block_arrayf[i]);
}
XtFree((char*)block_array);
}

1050

Xm Functions

XmGetTabGroup(library call)

XmGetTabGroup

Purpose Returns the widget ID of a tab group

Synopsis #include <Xm/Xm.h>

Widget XmGetTabGroup(
Widget widge);

Description
XmGetTabGroup returns the widget ID of the tab group that contains the specified
widget.
widget Specifies a widget ID within a tab group

Return Values
Returns the widget ID of a tab group or shell, determined as follows:
« If widgetis a tab group or shell, returngidget

« If neither widgetnor any ancestor up to the nearest shell is a tab group, returns
the nearest ancestor wfidgetthat is a shell

» Otherwise, returns the nearest ancestowifgetthat is a tab group

Related Information
XmAddTabGroup (3), XmManager(3), andXmPrimitive (3).

1051

Motif 2.1—Programmer’s Reference
XmGetTearOffControl(library call)

XmGetTearOffControl

Purpose A RowColumn function that obtains the widget ID for the tear-off control in a menu

Synopsis #include <Xm/RowColumn.h>

Widget XmGetTearOffControl(
Widget meny);

Description

XmGetTearOffControl provides the application with the means for obtaining the
widget ID of the internally created tear-off control in a tear-off menu.

RowColumn creates a tear-off control for a PulldownMenu or PopupMenu when the
XmNtearOffModel resource is initialized or set ®MTEAR_OFF_ENABLED . The
tear-off control is a widget that appears as the first element in the menu. The user
tears off the menu by means of mouse or keyboard events in the tear-off control.

The tear-off control has Separator-like behavior. Once the application has obtained

the widget ID of the tear-off control, it can set resources to specify the appearance of

the control. The application or user can also set these resources in a resource file by
using the name of the control, which TearOffControl . For a list of the resources

the application or user can set, Sé@mRowColumn(3).

menu Specifies the widget ID of the RowColumn PulldownMenu or
PopupMenu

For more information on tear-off menus and a complete definition of RowColumn and
its associated resources, seémRowColumn(3).

Return Values

Returns the widget ID for the tear-off control, or NULL if no tear-off control exists.
An application should not assume that the returned widget will be of any particular
class.

1052

Xm Functions
XmGetTearOffControl(library call)

Related Information

XmRowColumn(3).

1053

Motif 2.1—Programmer’s Reference

XmGetVisibility(library call)

XmGetVisibility

Purpose A function that determines if a widget is visible

Synopsis #include <Xm/Xm.h>

XmVisibility XmGetVisibility(
Widget widge);

Description

XmGetVisibility returns the visibility state of the specified widget. It checks to
see if some part of the widget's rectangular area is unobscured by the widget's
ancestors, or some part of the widget’s rectangular area is inside the work window (but
possibly outside the clip window) of a ScrolledWindow whogaNscrollingPolicy

is XMAUTOMATIC and whoseXmNtraverseObscuredCallbackis not NULL.

XmGetVisibility does not check to see ifvidget is obscured by its siblings
or by siblings of its ancestors. Consequentl)XmGetVisibility returns
XmVISIBILITY_UNOBSCURED for widgets which are completely or
partially covered by one or more siblings efidget by one or more siblings of
ancestors ofvidget

When a widget which is unrealized is being queried, it is indicated that
the widget is fully obscured. If an application unmapswédget that has its
XmNmappedWhenManaged resource set to True, the return value is undefined.
When a widget which is unmanaged is being queried, it is indicated that the widget
is fully obscured.

widget Specifies the ID of the widget

Return Values

1054

Returns one of the following values:

Xm Functions
XmGetVisibility(library call)

XmVISIBILITY_UNOBSCURED
Indicates that the widget is mapped, not obscured, and is completely
visible on the screen.

XmVISIBILITY_PARTIALLY_OBSCURED
Indicates that the widget is mapped, and is not completely visible on
the screen (partially obscured).

XmVISIBILITY_FULLY_OBSCURED
Indicates that the widget is not at all visible on the screen.

Related Information

XmlsTraversable(3), XmManager(3), andXmProcessTraversa(3).

1055

Motif 2.1—Programmer’s Reference

XmGetXmDisplay(library call)

XmGetXmDisplay

Purpose A Display function that returns the XmDisplay object ID for a specified display

Synopsis #include <Xm/Display.h>

Widget XmGetXmDisplay(
Display *display);

Description

XmGetXmbDisplay returns theXmDisplay object ID associated with a display. The
application can access Display resources WitBetValues.

display Specifies the display for which th&mDisplay object ID is to be
returned

For a complete definition of Display and its associated resources{ra&asplay(3).

Return Value
Returns theXmDisplay object ID for the specified display.

Related Information
XmDisplay(3).

1056

Xm Functions

XmGetXmScreen(library call)

XmGetXmScreen

Purpose A Screen function that returns the XmScreen object ID for a specified screen

Synopsis #include <Xm/Screen.h>

Widget XmGetXmScreen(
Screen *screen);

Description

XmGetXmScreen returns theXmsScreen object ID associated with a screen. The

application can access and manipulate Screen resources Xu@ktValues and
XtSetValues

screen Specifies the screen for which tbénScreen|D is to be returned

For a complete definition of Screen and its associated resourceXnsgereen3).

Return Values

Returns theXmScreenobject ID.

Related Information
XmScreen(3).

1057

Motif 2.1—Programmer’s Reference
XmImCloseXIM(library call)

XmImCloseXIM

Purpose An input manager function that releases the input method associated with a specified
widget

Synopsis #include <Xm/Xmim.h>

void XmImCloseXIM(
Widget widge);

Description

XmImCloseXIM closes all input contexts associated with the Input Method (IM)
of widget widgetis used to identify the Display that specifies the Input Method
opened for the widget. Upon closure, all widgets registered with the input contexts
are unregistered. Also, the Input Method specified by Display is closed.

widget Specifies the ID of a widget whose reference Input Method is to be
closed.

Related Information
XmImGetXIM (3) andXmImRegister(3).

1058

Xm Functions

XmlImFreeXIC(library call)

XmimFreeXIC

Purpose An input manager function that unregisters widgets for an XIC

Synopsis #include <Xm/Xmim.h>

void XmImFreeXIC(
Widget widget
XIC xic);

Description

XmImFreeXIC unregisters all widgets associated with the specified X Input Context
(XIC). The specifiedvidgetmust be associated with the specifigd

After unregistering the associated widgets, this call freeihe

widget Specifies the ID of a widget used to identify théendorShell and
XmDisplay that maintain the widget-XIC registry.

xic Specifies the Input Context associated with the widget.

Related Information
XmImGetXIC (3) andXmImSetXIC (3).

1059

Motif 2.1—Programmer’s Reference

XmImGetXIC(library call)

XmIimGetXIC

Purpose An input manager function that obtains an XIC for a widget

Synopsis #include <Xm/Xmim.h>

XIC XmImGetXIC(
Widget widget
XminputPolicy input_policy
ArglList args
Cardinal num_args;

Description

1060

XmImGetXIC creates and registers an X Input Context (XIC) with the specified
arguments fowidget If XmINHERIT_POLICY is specified folinput_policy a new
XIC will be created only if required to by the arguments or by YremdorShell input
policy. Any existing XIC registered witvidgetis unregistered.

Refer to theVendorShell reference page for further details.
widget Specifies the ID of a widget for which an Input Context is to be created.
input_policy Specifies the type of input policy. It accepts the following values:

XmINHERIT_POLICY
Inherits the policy fromVendorShell.

XmPER_WIDGET
Creates a new XIC for this widget.

XmPER_SHELL
Creates a new XIC for the shell, if needed.

args Specifies arXtArgList parameter to use for creating the XIC.

num_args Specifies the number of arguments in Hrgs parameter.

Xm Functions
XmImGetXIC(library call)

Return Values

Returns the created XIC. The application is responsible for freeing the returned XIC
by calling XmimFreeXIC .

Related Information
XmImSetXIC (3) andXmImFreeXIC (3).

1061

Motif 2.1—Programmer’s Reference
XmImGetXIM(library call)

XmIimGetXIM

Purpose An input manager function that retrieves the input method associated with a specified
widget

Synopsis #include <Xm/Xmim.h>

XIM XmImGetXIM(
Widget widge);

Description

XmIimGetXIM retrieves the XIM data structure representing the input method that
the input manager has opened for the specified widget. If an input method has not
been opened by a previous callXenimRegister, the first time this routine is called it
opens an input method using tXenNinputMethod resource for the VendorShell. If

the XmNinputMethod is NULL, an input method is opened using the current locale.

If it cannot open an input method, the function returns NULL.

widget Specifies the ID of a widget registered with the input manager

Return Values

Returns the input method for the current locale associated with the specified widget's
input manager; otherwise, returns NULL. The application is responsible for freeing
the returned XIM by calling<mImCloseXIM .

Related Information

XmImCloseXIM (3), XmimGetXIM (3), XmimMbLookupString (3), and
XmImRegister(3).

1062

Xm Functions

XmImMbLookupString(library call)

XmimMbLookupString

Purpose An input manager function that retrieves a composed string from an input method

Synopsis #include <Xm/Xmim.h>

int XmImMbLookupString(
Widget widget
XKeyPressedEvent tvent
char *buffer_return
int bytes_buffer
KeySym *keysym_return
int * status_returiy

Description

XmImMbLookupString returns a string composed in the locale associated with the
widget’'s input method and a KeySym that is currently mapped to the keycode in a
KeyPress event. The KeySym is obtained by using the standard interpretation of Shift,
Lock and Group modifiers as defined in the X Protocol specification.

An XIM will be created, but an XIC will not be created. One of the functions,
XmimSetValues XmimVaSetValues, or XmIimGetXIC , needs to be called to create
an XIC.

widget Specifies the ID of the widget registered with the input manager
event Specifies the key press event

buffer_return
Specifies the buffer in which the string is returned

bytes buffer Specifies the size of the buffer in bytes

keysym_return
Specifies a pointer to the KeySym returned if one exists

1063

Motif 2.1—Programmer’s Reference

XmImMbLookupString(library call)

status_return
Specifies the status values returned by the function. These status values
are the same as those for tienbLookupString function. The possible
status values are:

XBufferOverflow
The size of the buffer was insufficient to handle the
returned string. The contents obuffer_return and
keysym_returrare not modified. The required buffer size
is returned as a value of the function. The client should
repeat the call with a larger buffer size to receive the
string.

XLookupNone
No consistent input was composed. The contents of
buffer_returnandkeysym_returrare not modified and the
function returns a value of O.

XLookupChars
Some input characters were composed and returned
in buffer_return The content ofkeysym_returnis not
modified. The function returns the length of the string in
bytes.

XLookupKeysym
A keysym value was returned instead of a string. The
content ofbuffer_returnis not modified and the function
returns a value of 0.

XLookupBoth
A keysym value and a string were returned. The keysym
value may not necessarily correspond to the string
returned. The function returns the length of the string in
bytes.

Return Values

Return values depend on the status returned by the function. Refer to the description
of status values above.

1064

Xm Functions

XmImMbLookupString(library call)

Related Information

XmImGetXIM (3), XmImGetXIC (3), XmImRegister(3), XmimSetValueq3), and
XmImUnregister (3).

1065

Motif 2.1—Programmer’s Reference
XmImMbResetIC(library call)

XmIimMbResetIC

Purpose An input manager function that resets the input context for a widget

Synopsis #include <Xm/Xmim.h>

void XmImMbResetIC(
Widget widget
char *mb);

Description

XmIimMbResetIC gets the XIC of the widget and resets it. It puts a pointer to a
string containing the current preedit stringrtda. The caller should free the returned
string after use by callingfree.

widget Specifies the ID of the widget.

mb Contains a pointer to the preedit string upon return.

Return Values

None

Related Information

1066

Xm Functions

XmlImRegister(library call)

XmImRegister

Purpose An input manager function that registers a widget with an input manager

Synopsis #include <Xm/Xmim.h>

void XmImRegister(
Widget widget
unsigned int reserveq;

Description

XmImRegister registers a widget with its input manager. This adds the specified
widget to a list of widgets that are supported by the input manager for an input method.
If an input method has not been opened by a previous calmtmRegister, the first

time this routine is called it opens an input method using XmeNinputMethod
resource for the VendorShell. If thémNinputMethod is NULL, an input method is
opened using the current locale.

If an input method cannot be opened in the current locdlmokupString provides
input processing.

The application is responsible for unregistering a widget by calingmUnregister.

Note that the Text, TextField, and List widgets already call XmImRegister
function internally. You should not call this function for these widgets before calling
XmImUnregister first.

widget Specifies the ID of the widget to be registered.

reserved This argument is not used in the current release of Motif. The value
should always be 0 (zero).

Related Information
XmImGetXIM (3), XmIimMbLookupString (3), andXmimUnregister (3).

1067

Motif 2.1—Programmer’s Reference

XmlImSetFocusValues(library call)

XmImSetFocusValues

Purpose An input manager function that notifies an input manager that a widget has received

input focus and updates the input context attributes

Synopsis #include <Xm/Xmim.h>

void XmImSetFocusValues(
Widget widget
ArglList arglist,
Cardinal argcount

)i

Description

1068

XmImSetFocusValues notifies the input manager that the specified widget has
received input focus. This function also updates the attributes of the input context
associated with the widget. The focus window for the XIC is set to the window of
the widget. Thearglist argument is a list of attribute/value pairs for the input context.
This function passes the attributes and valueXi6SetValuesThe caller of this
routine should pass in only those values that have changed since the last call to any
of these functionsXmimSetValues, XmIimSetFocusValues XmimVaSetValues, or
XmImVaSetFocusValues See the description in thEmimSetValueq3) reference

page for a list of associated resources.

If the previous parameters for the widget’'s XIC do not allow the previously registered
XIC to be reused, that XIC will be unregistered, and a new one will be created and
registered with the widget. Note that sharing of data is preserved.

widget Specifies the ID of the widget registered with the input manager.

arglist Specifies the list of attribute/value pairs to be passedl@SetValues
See the description in thémIimSetValueq3) man page for a description
of resources.

argcount Specifies the number of attribute/values pairs in the argument list
(arglist)

Xm Functions

XmlImSetFocusValues(library call)

Note that the Text and TextField widgets call ealmSetFocusValuesfunction when
they receive focus. Therefore, further calls to ¥mlmSetFocusValuesfunction for
these widgets are unnecessatry.

Related Information
XmImSetValueq3), XmimVaSetFocusValue$3), andXmimVaSetValueq3).

1069

Motif 2.1—Programmer’s Reference

XmlImSetValues(library call)

XmimSetValues

Purpose An input manager function that updates attributes of an input context

Synopsis #include <Xm/Xmim.h>

void XmImSetValues(
Widget widget
ArglList arglist,
Cardinal argcount

);

Description

1070

XmlImSetValues updates attributes of the input context associated with the specified
widget. Thearglist argument is a list of attribute/value pairs for the input context.
This function passes the attributes and valueXIt©SetValuesThe initial call to this
routine should pass in all of the input context attributes. Thereafter, the application
programmer call&XmimSetValues for an XIC, only if a value has changed.

If the previous parameters for the widget’'s XIC do not allow the previously registered
XIC to be reused, that XIC will be unregistered, and a new one will be created and
registered with the widget. Note that sharing of data is preserved.

Note that the Text and TextField widgets call thenimSetValues function when
they receive focus. Therefore, further calls to ¥mmlmSetValues function for these
widgets are unnecessary.

widget Specifies the ID of the widget registered with the input manager

arglist Specifies the list of attribute/value pairs to be passell@SetValues
the following attributes are acceptedXmNpreeditStartCallback
XmNpreeditDoneCallback XmNpreeditDrawCallback and

XmNpreeditCaretCallbackThese attributes accept an accompanying
value of type pointer to structure of typédMCallback

Xm Functions

XmlImSetValues(library call)

These callbacks are used only when XmNpreeditTypeesource of
the relevantVendorShellhas the "onthespot" value, and that the XIM
supportsXIMPreeditCallbacksnput style. These values are ignored if
the condition is not met.

For each of these callbacks, if the callback value is not set by this
function, no action will be taken when the Input Method tries to call
this callback. Refer to the "Xlib - C Language X Interface, X Version
11, Release 6," Chapter 13 for the detail of these callbacks.

argcount Specifies the number of attribute/values pairs in the argument list
(arglist)

Resources that can be set for the input context include:

XmNbackground
Specifies the pixel value for the background color.

XmNbackgroundPixmap
Specifies a pixmap for tiling the background.

XmNfontList
Specifies the font list used by the widget. The input method uses the first
occurrence of a font set tagged wWXmMFONTLIST_DEFAULT_TAG .
If no such instance is found, the first font set in the font list is used.
If the font list does not contain a font set, a value is not passed to
XICSetValues

XmNforeground
Specifies the pixel value for the foreground color.

XmNIlineSpace
Specifies the line spacing used in the pre-edit window.

XmNrenderTable
Specifies the render table used by the widget.

XmNspotLocation
Specifies thex and y coordinates of the position where text will be
inserted in the widget handling input, whose input method style is
"OverTheSpot". They coordinate is the position of the baseline used
by the current text line.

1071

Motif 2.1—Programmer’s Reference

XmlImSetValues(library call)

The caller may also pass any other vendor-defined resources to this function.
For additional information on the internationalization interface, see the Xlib
documentation.

Related Information
XmlImSetFocusValue$3), XmimVaSetFocusValue$3), andXmimVaSetValueg3).

1072

Xm Functions
XmImSetXIC(library call)

XmIimSetXIC

Purpose An input manager function that registers an existing XIC with a widget

Synopsis #include <Xm/Xmim.h>

XIC XmImSetXIC(
Widget widget
XIC xic);

Description

XmImSetXIC registers the specified X Input Context (XIC) withidget Any existing
XIC registered forwidget is unregistered. The new XIC registered fatdget is
returned.

If xic was not created bXmImGetXIC or XmImRegister, it will not be subject to
closing activities when it has no widgets registered with it.

widget Specifies the ID of a widget for which a new Input Context is to be
registered.
xic Specifies the Input Context to be registered with the widgexidfis

NULL, the function returns the currextIC used bywidget

Return Values

Returns the new XIC registered faridget The application is responsible for freeing
the returned XIC. To free the XIC, cakmimFreeXIC .

Related Information
XmImGetXIC (3) andXmImFreeXIC (3).

1073

Motif 2.1—Programmer’s Reference

XmImUnregister(library call)

XmImUnregister

Purpose An input manager function that removes a widget from association with its input
manager

Synopsis #include <Xm/Xmim.h>

void XmImUnregister(
Widget widge);

Description

XmImUnregister removes the specified widget from the list of widgets registered for
input by the input manager.

Note that the Text, TextField, and List widgets already call XmImRegister
internally. You should call theXmimUnregister function for these widgets before
calling XmImRegister.

widget Specifies the ID of the widget to be unregistered

Related Information
XmImRegister(3).

1074

Xm Functions

XmImUnsetFocus(library call)

XmImUnsetFocus

Purpose An input manager function that notifies an input method that a widget has lost input
focus

Synopsis #include <Xm/Xmim.h>

void XmImUnsetFocus(
Widget widge);

Description

XmIimUnsetFocusunsets a specified widget’s focus, then notifies the input manager
that the specified widget has lost its input focus.

Note that the Text, TextField, and List widgets already call ¥relmUnsetFocus
internally. Therefore, further calls to thénimUnsetFocusfunction for those widgets
are unnecessatry.

widget Specifies the ID of the widget registered with the input manager

Related Information
XmlImSetFocusValue$3) andXmimVaSetFocusValueg3).

1075

Motif 2.1—Programmer’s Reference

XmImVaSetFocusValues(library call)

XmImVaSetFocusValues

Purpose An input manager function that notifies an input manager that a widget has received

input focus and updates the input context attributes

Synopsis #include <Xm/Xmim.h>

void XmImVaSetFocusValues(
Widget widge);

Description

1076

XmlmVaSetFocusValues notifies the input manager that the specified widget
has received input focus. This function also updates the attributes of the input
context associated with the widget. This function passes the attributes and values
to XICSetValuesThe caller of this routine should pass in only those values that
have changed since the last call to any of these functidmsimVaSetValues
XmimVaSetFocusValues XmimSetValues or XmimSetFocusValues See the
description in the XmIimSetValueq3) reference page for a list of associated
resources.

This routine uses the ANSI C variable-length argument list (varargs) calling

conventions. The variable-length argument list consists of groups of arguments
each of which contains an attribute followed by the value of the attribute. The last
argument in the list must be NULL

Note that the List and TextField widgets call tXenimVaSetFocusValuesfunction
when they receive focus. Therefore, further calls to XmalmVaSetFocusValues
function for these widgets are unnecessary.

widget Specifies the ID of the widget registered with the input manager

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

Xm Functions

XmImVaSetFocusValues(library call)

Related Information
XmImSetFocusValue$3), XmIimSetValueg3), andXmimVaSetValueq3).

1077

Motif 2.1—Programmer’s Reference

XmImVaSetValues(library call)

XmIimVaSetValues

Purpose An input manager function that updates attributes of an input context

Synopsis #include <Xm/Xmim.h>

void XmImVaSetValues(
Widget widge);

Description

XmlmVaSetValuesupdates attributes of the input context associated with the specified
widget. This function passes the attributesXtCSetValuesThe initial call to this
routine should pass in all of the input context attributes. Thereafter, the application
programmer callXmimVaSetValuesonly if a value has changed. See the description
in the XmIimSetValueg3) man page for a list of associated resources.

This routine uses the ANSI C variable-length argument list (varargs) calling
convention. The variable-length argument list consists of groups of arguments each of
which contains an attribute followed by the value of the attribute. The last argument
in the list must be NULL.

Note that the List and TextField widgets call thémimVaSetValues function
internally. Therefore, further calls to thémimVaSetValuesfunction for these widgets
are unnecessatry.

widget Specifies the ID of the widget registered with the input manager

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

Related Information
XmImSetFocusValueg3), XmimSetValueq3), andXmImVaSetFocusValue$3).

1078

Xm Functions

Xminstalllmage(library call)

Xminstalllmage

Purpose A pixmap caching function that adds an image to the image cache

Synopsis #include <Xm/Xm.h>

Boolean Xminstalllmage(
XIlmage * image
char * image_namg

Description

Xminstalllmage stores an image in an image cache that can later be used to generate
a pixmap. Part of the installation process is to extend the resource converter used to
reference these images. The resource converter is given the image name so that the
image can be referenced in.ddefaults file. Since an image can be referenced by

a widget through its pixmap resources, it is up to the application to ensure that the
image is installed before the widget is created.

image Points to the image structure to be installed. The installation process
does not make a local copy of the image. Therefore, the application
should not destroy the image until it is uninstalled from the caching
functions.

image_nameSpecifies a string that the application uses to name the image. After
installation, this name can be used .Xdefaults for referencing the
image. A local copy of the name is created by the image caching
functions.

The image caching functions provide a set of eight preinstalled images. These names
can be used within &Xdefaults file for generating pixmaps for the resource for which
they are provided.

1079

Motif 2.1—Programmer’s Reference

Xminstalllmage(library call)

Image Name

Description

background

A tile of solid background

25_foreground

A tile of 25% foreground, 75%
background

50_foreground

A tile of 50% foreground, 50%
background

75_foreground

A tile of 75% foreground, 25%
background

1°2)

horizontal A tile of horizontal lines of the two
colors

vertical A tile of vertical lines of the two colors

slant_right A tile of slanting lines of the two color

slant_left A tile of slanting lines of the two color

12}

menu_cascade

A tile of an arrow of the foreground
color

menu_checkmark

A tile of a checkmark of the foregroun
color

o

menu_dash

A tile of one horizontal line of the

foreground color

Return Values

Returns True when successful; returns False if NUinage NULL image_namgor
duplicateimage_names used as a parameter value.

Related Information

XmUninstalllmage(3), XmGetPixmap(3), andXmDestroyPixmap(3).

1080

Xm Functions

XminternAtom(library call)

XminternAtom

Purpose A macro that returns an atom for a given name

Synopsis #include <Xm/AtomMgr.h>

Atom XminternAtom(
Display * display,
String name
Booleanonly_if_exist}

Description

XminternAtom returns an atom for a given name. The returned atom remains defined
even after the client’'s connection closes. The returned atom becomes undefined when
the last connection to the X server closes.

display Specifies the connection to the X server

name Specifies the name associated with the atom you want returned. The
value ofnameis case dependent.

only_if exists
Specifies a Boolean value. If False, the atom is created even if it does
not exist. (If it does not exist, the returned atom will Hene) If True,
the atom is created only if it exists.

Return Values

Returns an atom.

1081

Motif 2.1—Programmer’s Reference
XmlsMotifWMRunning(library call)

XmlIsMotifWMRunning

Purpose A function that determines whether the window manager is running

Synopsis #include <Xm/Xm.h>

Boolean XmlsMotifWMRunning(
Widget shel;

Description

XmlsMotifWMRunning lets a user know whether the Motif Window Manager is
running on a screen that contains a specific widget hierarchy. This function first sees
whether the _MOTIF_WM_INFO property is present on the root window of the shell’'s
screen. If it is, its window field is used to query for the presence of the specified
window as a child of root.

shell Specifies the shell whose screen will be testednfiarm’s presence.

Return Values

Returns True if MWM is running.

1082

Xm Functions

XmlsTraversable(library call)

XmlisTraversable

Purpose A function that identifies whether a widget can be traversed

Synopsis #include <Xm/Xm.h>

Boolean XmlsTraversable(

Description

Widget widge);

XmlsTraversable determines whether the specified widget is eligible to receive focus
through keyboard traversal. In general, a widget is eligible to receive focus when all
of the following conditions are true:

» The widget and its ancestors are not being destroyed, are sensitive, and have a

value of True forXmNtraversalOn.

The widget and its ancestors are realized, managed, and (except for
gadgets) mapped. If an application unmaps veidget that has its
XmNmappedWhenManaged resource set to True, the return value is
undefined.

Some part of the widget's rectangular area is unobscured by the
widget's ancestors, or some part of the widget's rectangular area is
inside the work window (but possibly outside the clip window) of a
ScrolledWindow whoseXmNscrollingPolicy is XmAUTOMATIC and whose
XmNtraverseObscuredCallbackis not NULL.

Some widgets may not be eligible to receive focus even if they meet all these
conditions. For example, most managers cannot receive focus through keyboard
traversal. Some widgets may be eligible to receive focus under particular conditions.
For example, a DrawingArea is eligible to receive focus if it meets the conditions
above and has no child who3¥enNtraversalOn resource is True.

1083

Motif 2.1—Programmer’s Reference

XmlsTraversable(library call)

Note that when all widgets in a shell hierarchy have been made untraversable, they
are considered to have lost focus. When a widget in this hierarchy is made traversable
again, it regains focus.

XmlsTraversable may return unexpected results whesdget or its ancestors are
overlapped by their siblings.

widget Specifies the ID of the widget

Return Values

Returns True if the widget is eligible to receive focus through keyboard traversal;
otherwise, returns False.

Related Information
XmGetVisibility (3) andXmProcessTraversa(3).

1084

Xm Functions
XmListAddItem(library call)

XmListAddltem

Purpose A List function that adds an item to the list

Synopsis #include <Xm/List.h>

void XmListAddItem(
Widget widget
XmString item,
int position);

Description

XmListAdditem adds an item to the list at the given position. When the item is
inserted into the list, it is compared with the currefriNselectedltemslist. If the
new item matches an item on the selected list, it appears selected.

widget Specifies the ID of the List to which an item is added.
item Specifies the item to be added to the list.
position Specifies the position of the new item in the list. A value of 1 makes

the new item the first item in the list; a value of 2 makes it the second
item; and so on. A value of 0 (zero) makes the new item the last item
in the list.

For a complete definition of List and its associated resourcesXiseést (3).

Related Information
XmList (3).

1085

Motif 2.1—Programmer’s Reference
XmListAdditemUnselected(library call)

XmListAddItemUnselected

Purpose A List function that adds an item to the list

Synopsis #include <Xm/List.h>

void XmListAddltemUnselected(
Widget widget
XmString item,
int position;

Description

XmListAdditemUnselected adds an item to the list at the given position. The item
does not appear selected, even if it matches an item in the cmeNselecteditems

list.

widget Specifies the ID of the List from whose list an item is added.

item Specifies the item to be added to the list.

position Specifies the position of the new item in the list. A value of 1 makes

the new item the first item in the list; a value of 2 makes it the second
item; and so on. A value of 0 (zero) makes the new item the last item
in the list.

For a complete definition of List and its associated resourcesXsgast (3).

Related Information
XmList (3).

1086

Xm Functions
XmListAddItems(library call)

XmListAddltems

Purpose A List function that adds items to the list

Synopsis #include <Xm/List.h>

void XmListAddItems(
Widget widget
XmString * items
int item_count
int position;

Description

XmListAdditems adds the specified items to the list at the given position. The first
item_counttems of theitemsarray are added to the list. When the items are inserted
into the list, they are compared with the curredmhiNselectedltemslist. If any of the
new items matches an item on the selected list, it appears selected.

widget Specifies the ID of the List to which an item is added.

items Specifies a pointer to the items to be added to the list.

item_count Specifies the number of items iitems This number must be
nonnegative.

position Specifies the position of the first new item in the list. A value of 1

makes the first new item the first item in the list; a value of 2 makes
it the second item; and so on. A value of O (zero) makes the first new
item follow the last item in the list.

For a complete definition of List and its associated resourcesXiseést (3).

Related Information
XmList (3).

1087

Motif 2.1—Programmer’s Reference

XmListAddIitemsUnselected(library call)

XmListAddIltemsUnselected

Purpose A List function that adds items to a list

Synopsis #include <Xm/List.h>

void XmListAddltemsUnselected(
Widget widget
XmString * items
int item_count
int position);

Description

XmListAdditemsUnselected adds the specified items to the list at the given
position. The inserted items remain unselected, even if they currently appear in the
XmNselectedltemslist.

widget Specifies the ID of the List widget to add items to.

items Specifies a pointer to the items to be added to the list.

item_count Specifies the number of elements items This number must be
nonnegative.

position Specifies the position of the first new item in the list. A value of 1

makes the first new item the first item in the list; a value of 2 makes
it the second item; and so on. A value of O (zero) makes the first new
item follow the last item of the list.

For a complete definition of List and its associated resourcesXsgast (3).

Related Information
XmList (3).

1088

Xm Functions

XmListDeleteAllltems(library call)

XmListDeleteAllltems

Purpose A List function that deletes all items from the list

Synopsis #include <Xm/List.h>

void XmListDeleteAllltems(
Widget widge);

Description
XmListDeleteAllltems deletes all items from the list.
widget Specifies the ID of the List from whose list the items are deleted

For a complete definition of List and its associated resourcesXiseést (3).

Related Information
XmList (3).

1089

Motif 2.1—Programmer’s Reference

XmListDeleteltem(library call)

XmListDeleteltem

Purpose A List function that deletes an item from the list

Synopsis #include <Xm/List.h>

void XmListDeleteltem(
Widget widget
XmString item);

Description

XmListDeleteltem deletes the first item in the list that matchi#sm A warning
message appears if the item does not exist.

widget Specifies the ID of the List from whose list an item is deleted.

item Specifies the text of the item to be deleted from the lisitelfn appears
more than once in the List, only the first occurrence is matched.

For a complete definition of List and its associated resourcesXsgast (3).

Related Information
XmList (3).

1090

Xm Functions

XmListDeleteltems(library call)

XmListDeleteltems

Purpose A List function that deletes items from the list

Synopsis #include <Xm/List.h>

void XmListDeleteltems(
Widget widget
XmString * items
int item_couny,

Description

XmListDeleteltems deletes the specified items from the list. For each element of
items the first item in the list that matches that element is deleted. A warning message
appears if any of the items do not exist.

widget Specifies the ID of the List from whose list an item is deleted
items Specifies a pointer to items to be deleted from the list

item_count Specifies the number of elements items This number must be
nonnegative.

For a complete definition of List and its associated resourcesXiseést (3).

Related Information
XmList (3).

1091

Motif 2.1—Programmer’s Reference

XmListDeleteltemsPos(library call)

XmListDeleteltemsPos

Purpose A List function that deletes items from the list starting at the given position

Synopsis #include <Xm/List.h>

void XmListDeleteltemsPos(
Widget widget
int item_count
int position;

Description

XmListDeleteltemsPosdeletes the specified number of items from the list starting at
the specified position.

widget Specifies the ID of the List from whose list an item is deleted.

item_count Specifies the number of items to be deleted. This number must be
nonnegative.

position Specifies the position in the list of the first item to be deleted. A value

of 1 indicates that the first deleted item is the first item in the list; a
value of 2 indicates that it is the second item; and so on.

For a complete definition of List and its associated resourcesXsgast (3).

Related Information
XmList (3).

1092

Xm Functions

XmListDeletePos(library call)

XmListDeletePos

Purpose A List function that deletes an item from a list at a specified position

Synopsis #include <Xm/List.h>

void XmListDeletePos(
Widget widget
int position);

Description

XmListDeletePosdeletes an item at a specified position. A warning message appears
if the position does not exist.

widget Specifies the ID of the List from which an item is to be deleted.

position Specifies the position of the item to be deleted. A value of 1 indicates
that the first item in the list is deleted; a value of 2 indicates that the
second item is deleted; and so on. A value of O (zero) indicates that the
last item in the list is deleted.

For a complete definition of List and its associated resourcesXiseést (3).

Related Information
XmList (3).

1093

Motif 2.1—Programmer’s Reference

XmListDeletePositions(library call)

XmListDeletePositions

Purpose A List function that deletes items from a list based on an array of positions

Synopsis #include <Xm/List.h>

void XmListDeletePositions(
Widget widget
int * position_list
int position_count

Description

XmListDeletePositionsdeletes noncontiguous items from a list. The function deletes
all items whose corresponding positions appear inp&tion_listarray. A warning
message is displayed if a specified position is invalid; that is, the value is 0, a negative
integer, or a number greater than the number of items in the list.

widget Specifies the ID of the List widget

position_list Specifies an array of the item positions to be deleted. The position of
the first item in the list is 1; the position of the second item is 2; and
S0 on.

position_count
Specifies the number of elements in hesition_list

For a complete definition of List and its associated resourcesXsgast (3).

Related Information
XmList (3).

1094

Xm Functions

XmListDeselectAllltems(library call)

XmListDeselectAllltems

Purpose A List function that unhighlights and removes all items from the selected list

Synopsis #include <Xm/List.h>

void XmListDeselectAllltems(
Widget widge);

Description
XmListDeselectAllltems unhighlights and removes all items from the selected list.

widget Specifies the ID of the List widget from whose list all selected items
are deselected

For a complete definition of List and its associated resourcesXiseést (3).

Related Information
XmList (3).

1095

Motif 2.1—Programmer’s Reference

XmListDeselectltem(library call)

XmListDeselectltem

Purpose A List function that deselects the specified item from the selected list

Synopsis #include <Xm/List.h>

void XmListDeselectltem(
Widget widget
XmString item);

Description

XmListDeselectltem unhighlights and removes from the selected list the first item in
the list that matchegem

widget Specifies the ID of the List from whose list an item is deselected.

item Specifies the item to be deselected from the lisitdfn appears more
than once in the List, only the first occurrence is matched.

For a complete definition of List and its associated resourcesXsgast (3).

Related Information
XmList (3).

1096

Xm Functions

XmListDeselectPos(library call)

XmListDeselectPos

Purpose A List function that deselects an item at a specified position in the list

Synopsis #include <Xm/List.h>

void XmListDeselectPos(
Widget widget
int position);

Description

XmListDeselectPosunhighlights the item at the specified position and deletes it from
the list of selected items.

widget Specifies the ID of the List widget

position Specifies the position of the item to be deselected. A value of 1 indicates
that the first item in the list is deselected; a value of 2 indicates that the
second item is deselected; and so on. A value of O (zero) indicates that
the last item in the list is deselected.

For a complete definition of List and its associated resourcesXiseést (3).

Related Information
XmList (3).

1097

Motif 2.1—Programmer’s Reference
XmListGetKbdIltemPos(library call)

XmListGetKbdltemPos

Purpose A List function that returns the position of the item at the location cursor

Synopsis #include <Xm/List.h>

int XmListGetKbdIltemPos(
Widget widge);

Description
XmListGetKbdIltemPos returns the position of the list item at the location cursor.
widget Specifies the ID of the List widget

For a complete definition of List and its associated resourcesXsgast (3).

Return Values

Returns the position of the current keyboard item. A value of 1 indicates that the
location cursor is at the first item of the list; a value of 2 indicates that it is at the
second item; and so on. A value of 0 (zero) indicates the List widget is empty.

Related Information
XmList (3).

1098

Xm Functions
XmListGetMatchPos(library call)

XmListGetMatchPos

Purpose A List function that returns all instances of an item in the list

Synopsis #include <Xm/List.h>

Boolean XmListGetMatchPos(
Widget widget
XmString item,
int ** position_list
int * position_count

Description

XmListGetMatchPos is a Boolean function that returns an array of positions where
a specified item is found in a List.

widget Specifies the ID of the List widget.
item Specifies the item to search for.

position_list Returns an array of positions at which the item occurs in the List. The
position of the first item in the list is 1; the position of the second item
is 2; and so on. When the return value is Tri¥eListGetMatchPos
allocates memory for this array. The caller is responsible for freeing
this memory. The caller can recover the allocated memory by calling
XtFree.

position_count
Returns the number of elements in fhesition_list

For a complete definition of List and its associated resourcesXiseést (3).

Return Values

Returns True if the specified item is present in the list, and False if it is not.

1099

Motif 2.1—Programmer’s Reference

XmListGetMatchPos(library call)

Related Information
XmList (3).

1100

Xm Functions
XmListGetSelectedPos(library call)

XmListGetSelectedPos

Purpose A List function that returns the position of every selected item in the list

Synopsis #include <Xm/List.h>

Boolean XmListGetSelectedPos(
Widget widget
int ** position_list
int * position_count

Description

This routine is obsolete. It is replaced by calliXgGetValues for the List resources
XmNselectedPositionsand XmNselectedPositionCount XmListGetSelectedPosis

a Boolean function that returns an array of the positions of the selected items in a
List.

widget Specifies the ID of the List widget.

position_list Returns an array of the positions of the selected items in the List. The
position of the first item in the list is 1; the position of the second item
is 2; and so on. When the return value is Tr¥ejListGetSelectedPos
allocates memory for this array. The caller is responsible for freeing
this memory. The caller can recover the allocated memory by calling
XtFree.

position_count
Returns the number of elements in thesition_list

For a complete definition of List and its associated resourcesXiseést (3).

Return Values

Returns True if the list has any selected items, and False if it does not.

1101

Motif 2.1—Programmer’s Reference

XmListGetSelectedPos(library call)

Related Information
XmList (3).

1102

Xm Functions

XmListltemExists(library call)

XmListitemExists

Purpose A List function that checks if a specified item is in the list

Synopsis #include <Xm/List.h>

Boolean XmListltemEXxists(
Widget widget
XmString item);

Description
XmListltemEXxists is a Boolean function that checks if a specified item is present in
the list.
widget Specifies the ID of the List widget
item Specifies the item whose presence is checked

For a complete definition of List and its associated resourcesXiseést (3).

Return Values

Returns True if the specified item is present in the list.

Related Information
XmList (3).

1103

Motif 2.1—Programmer’s Reference

XmListltemPos(library call)

XmListitemPos

Purpose A List function that returns the position of an item in the list

Synopsis #include <Xm/List.h>

int XmListltemPos(
Widget widget
XmString item);

Description
XmListltemPos returns the position of the first instance of the specified item in a list.
widget Specifies the ID of the List widget
item Specifies the item whose position is returned

For a complete definition of List and its associated resourcesXsgast (3).

Return Values

Returns the position in the list of the first instance of the specified item. The position
of the first item in the list is 1; the position of the second item is 2; and so on. This
function returns O (zero) if the item is not found.

Related Information
XmList (3).

1104

Xm Functions

XmListPosSelected(library call)

XmListPosSelected

Purpose A List function that determines if the list item at a specified position is selected

Synopsis #include <Xm/List.h>

Boolean XmListPosSelected(
Widget widget
int position);

Description
XmPosSelectedetermines if the list item at the specified position is selected or not.
widget Specifies the ID of the List widget
position Specifies the position of the list item. A value of 1 indicates the first

item in the list; a value of 2 indicates the second item; and so on. A
value of O (zero) specifies the last item in the list.

For a complete definition of List and its associated resourcesXiseést (3).

Return Values

Returns True if the list item is selected; otherwise, returns False if the item is not
selected or the specified position is invalid.

Related Information
XmList (3).

1105

Motif 2.1—Programmer’s Reference

XmListPosToBounds(library call)

XmListPosToBounds

Purpose A List function that returns the bounding box of an item at a specified position in a
list

Synopsis #include <Xm/List.h>

Boolean XmListPosToBounds(
Widget widget
int position
Position *x,
Position *y,
Dimension *width,
Dimension *heigh);

Description

XmListPosToBounds returns the coordinates of an item within a list and the
dimensions of its bounding box. The function returns the associated x and y-
coordinates of the upper left corner of the bounding box relative to the upper left
corner of the List widget, as well as the width and the height of the box. The caller
can pass a NULL value for the y, width, or heightparameters to indicate that the
return value for that parameter is not requested.

widget Specifies the ID of the List widget.

position Specifies the position of the specified item. A value of 1 indicates the
first item in the list; a value of 2 indicates the second item; and so on.
A value of 0 (zero) specifies the last item in the list.

X Specifies a pointer to the returned x-coordinate of the item.
y Specifies the pointer to the returned y-coordinate of the item.
width Specifies the pointer to the returned width of the item.

height Specifies the pointer to the returned height of the item.

1106

Xm Functions

XmListPosToBounds(library call)

For a complete definition of List and its associated resourcesXiseést (3).

Return Values

If the item at the specified position is not visible, returns False, and the returned values
(if any) are undefined. Otherwise, this function returns True.

Related Information
XmList (3) andXmListYToPos(3).

1107

Motif 2.1—Programmer’s Reference

XmListReplaceltems(library call)

XmListReplaceltems

Purpose A List function that replaces the specified elements in the list

Synopsis #include <Xm/List.h>

void XmListReplaceltems(
Widget widget
XmString * old_items
int item_count
XmString * new_itemy

Description

XmListReplaceltems replaces each specified item of the list with a corresponding
new item. When the items are inserted into the list, they are compared with the current
XmNselectedltemslist. If any of the new items matches an item on the selected list,

it appears selected.

widget Specifies the ID of the List widget.
old_items Specifies the items to be replaced.

item_count Specifies the number of items add_itemsandnew_itemsThis number
must be nonnegative.

new_items Specifies the replacement items.

Every occurrence of each element @fl_itemsis replaced with the corresponding
element fromnew_itemsThat is, the first element afld_itemsis replaced with the
first element ofnew_items The second element afld_itemsis replaced with the
second element afew_itemsand so on untiltem_counts reached.

For a complete definition of List and its associated resourcesXsgast (3).

1108

Xm Functions

XmListReplaceltems(library call)

Related Information
XmList (3).

1109

Motif 2.1—Programmer’s Reference

XmListReplaceltemsPos(library call)

XmListReplaceltemsPos

Purpose A List function that replaces the specified elements in the list

Synopsis #include <Xm/List.h>

void XmListReplaceltemsPos(
Widget widget
XmString * new_items
int item_count
int position);

Description

XmListReplaceltemsPosreplaces the specified number of items of the List with new
items, starting at the specified position in the List. When the items are inserted into
the list, they are compared with the curretthNselectedltemsdlist. If any of the new
items matches an item on the selected list, it appears selected.

widget Specifies the ID of the List widget.
new_items Specifies the replacement items.

item_count Specifies the number of items irew_itemsand the number of items in
the list to replace. This number must be nonnegative.

position Specifies the position of the first item in the list to be replaced. A value
of 1 indicates that the first item replaced is the first item in the list; a
value of 2 indicates that it is the second item; and so on.

Beginning with the item specified iposition item_countitems in the
list are replaced with the corresponding elements frmw_itemsThat
is, the item atpositionis replaced with the first element aew_items
the item afteipositionis replaced with the second elemennefv_items
and so on, untiltem_counts reached.

For a complete definition of List and its associated resourcesXsgast (3).

1110

Xm Functions

XmListReplaceltemsPos(library call)

Related Information
XmList (3).

1111

Motif 2.1—Programmer’s Reference

XmListReplaceltemsPosUnselected(library call)

XmListReplaceltemsPosUnselected

Purpose A List function that replaces items in a list without selecting the replacement items

Synopsis #include <Xm/List.h>

void XmListReplaceltemsPosUnselected(
Widget widget
XmString * new_items
int item_count
int position);

Description

XmListReplaceltemsPosUnselectedeplaces the specified number of items in the
list with new items, starting at the given position. The replacement items remain
unselected, even if they currently appear in XraNselectedltemslist.

widget Specifies the ID of the List widget to replace items in.
new_items Specifies a pointer to the replacement items.

item_count Specifies the number of elementsriaw_itemsand the number of items
in the list to replace. This number must be nonnegative.

position Specifies the position of the first item in the list to be replaced. A value
of 1 indicates that the first item replaced is the first item in the list; a
value of 2 indicates that it is the second item; and so on.

Beginning with the item specified iposition item_countitems in the
list are replaced with the corresponding elements frmw_itemsThat
is, the item atpositionis replaced with the first element aew_items
the item aftepositionis replaced with the second elemennefv_items
and so on, untiltem_counts reached.

For a complete definition of List and its associated resourcesXsgast (3).

1112

Xm Functions

XmListReplaceltemsPosUnselected(library call)

Related Information
XmList (3).

1113

Motif 2.1—Programmer’s Reference

XmListReplaceltemsUnselected(library call)

XmListReplaceltemsUnselected

Purpose A List function that replaces items in a list

Synopsis #include <Xm/List.h>

void XmListReplaceltemsUnselected(
Widget widget
XmString * old_items
int item_count
XmString * new_itemy

Description

1114

XmListReplaceltemsUnselectedreplaces each specified item in the list with a
corresponding new item. The replacement items remain unselected, even if they
currently appear in thXmNselectedltemslist.

widget
old_items

item_count

new_items

Specifies the ID of the List widget to replace items in.
Specifies a pointer to the list items to be replaced.

Specifies the number of elements ahd_itemsand new_items This
number must be nonnegative.

Specifies a pointer to the replacement items. Every occurrence of each
element ofold_itemsis replaced with the corresponding element from
new_itemsThat is, the first element afld_itemsis replaced with the

first element ohew_itemsThe second element ofd_itemsis replaced

with the second element afew_items and so on untilitem_count

is reached. If an element iold_itemsdoes not exist in the list, the
corresponding entry imew_itemsds skipped.

For a complete definition of List and its associated resourcesXsgast (3).

Xm Functions

XmListReplaceltemsUnselected(library call)

Related Information
XmList (3).

1115

Motif 2.1—Programmer’s Reference

XmListReplacePositions(library call)

XmListReplacePositions

Purpose A List function that replaces items in a list based on position

Synopsis #include <Xm/List.h>

void XmListReplacePositions(
Widget widget
int * position_list
XmString * item_list
int item_count);

Description

1116

XmListReplacePositionsreplaces noncontiguous items in a list. The item at each
position specified ipposition_listis replaced with the corresponding entryitem_list

When the items are inserted into the list, they are compared with the current
XmNselectedltemslist. Any of the new items that match items on the selected list
appear selected. A warning message is displayed if a specified position is invalid; that
is, the value is O (zero), a negative integer, or a number greater than the number of
items in the list.

widget Specifies the ID of the List widget.

position_list Specifies an array of the positions of items to be replaced. The position
of the first item in the list is 1; the position of the second item is 2; and
S0 on.

item_list Specifies an array of the replacement items.

item_count Specifies the number of elements position_listand item_list This
number must be nonnegative.

For a complete definition of List and its associated resourcesXsgast (3).

Xm Functions

XmListReplacePositions(library call)

Related Information
XmList (3).

1117

Motif 2.1—Programmer’s Reference

XmListSelectltem(library call)

XmListSelectltem

Purpose A List function that selects an item in the list

Synopsis #include <Xm/List.h>

void XmListSelectltem(
Widget widget
XmString item,
Boolean notify);

Description

XmListSelectltem highlights and adds to the selected list the first item in the list that
matchestem

widget Specifies the ID of the List widget from whose list an item is selected.

item Specifies the item to be selected in the List widgeitelfn appears more
than once in the List, only the first occurrence is matched.

notify Specifies a Boolean value that when TRUE invokes the selection
callback for the current mode. From an application interface view, calling
this function withnotify True is indistinguishable from a user-initiated
selection action. Whenotify is FALSE, no callbacks are called.

For a complete definition of List and its associated resourcesXsgast (3).

Related Information
XmList (3) andXmListSelectPog3).

1118

Xm Functions

XmListSelectPos(library call)

XmListSelectPos

Purpose A List function that selects an item at a specified position in the list

Synopsis #include <Xm/List.h>

void XmListSelectPos(
Widget widget
int position
Boolean notify);

Description

XmListSelectPoshighlights a List item at the specified position and adds it to the list
of selected items.

widget Specifies the ID of the List widget.

position Specifies the position of the item to be selected. A value of 1 indicates
that the first item in the list is selected; a value of 2 indicates that the
second item is selected; and so on. A value of O (zero) indicates that
the last item in the list is selected.

notify Specifies a Boolean value that when TRUE invokes the selection
callback for the current mode. From an application interface view, calling
this function withnotify True is indistinguishable from a user-initiated
selection action. Whenotify is FALSE, no callbacks are called.

For a complete definition of List and its associated resourcesXiseést (3).

Related Information
XmList (3) andXmListSelectltem(3).

1119

Motif 2.1—Programmer’s Reference

XmListSetAddMode(library call)

XmListSetAddMode

Purpose A List function that sets add mode in the list

Synopsis #include <Xm/List.h>

void XmListSetAddMode(
Widget widget
Booleanstatg);

Description

XmListSetAddMode allows applications control over Add Mode in the extended
selection model. This function ensures that the mode it sets is compatible
with the selection policy XmNselectionPolicy of the widget. For example, it
cannot put the widget into add mode when the valueXaiNselectionPolicy is
XmBROWSE_SELECT.

widget Specifies the ID of the List widget

state Specifies whether to activate or deactivate Add Modestadteis True,
Add Mode is activated. IEtateis False, Add Mode is deactivated.

For a complete definition of List and its associated resourcesXsgast (3).

Related Information

1120

XmList (3).

Xm Functions

XmListSetBottomltem(library call)

XmListSetBottomltem

Purpose A List function that makes an existing item the last visible item in the list

Synopsis #include <Xm/List.h>

void XmListSetBottomltem(
Widget widget
XmString item);

Description

XmListSetBottomltem makes the first item in the list that matchism the last
visible item in the list.

widget Specifies the ID of the List widget from whose list an item is made the
last visible
item Specifies the item

For a complete definition of List and its associated resourcesXiseést (3).

Related Information
XmList (3).

1121

Motif 2.1—Programmer’s Reference

XmListSetBottomPos(library call)

XmListSetBottomPos

Purpose A List function that makes a specified item the last visible item in the list

Synopsis #include <Xm/List.h>

void XmListSetBottomPos(
Widget widget
int position);

Description
XmListSetBottomPos makes the item at the specified position the last visible item
in the List.
widget Specifies the ID of the List widget.
position Specifies the position of the item to be made the last visible item in the

list. A value of 1 indicates that the first item in the list is the last visible
item; a value of 2 indicates that the second item is the last visible item;
and so on. A value of 0 (zero) indicates that the last item in the list is
the last visible item.

For a complete definition of List and its associated resourcesXsgast (3).

Related Information
XmList (3).

1122

Xm Functions

XmListSetHorizPos(library call)

XmListSetHorizPos

Purpose A List function that scrolls to the specified position in the list

Synopsis #include <Xm/List.h>

void XmListSetHorizPos(
Widget widget
int position);

Description

XmListSetHorizPos sets the XmNvalue resource of the horizontal ScrollBar
to the specified position and updates the visible portion of the list with the
new value if the List widget'sXmNlistSizePolicy is set to XmCONSTANT or
XmRESIZE_IF_POSSIBLE and the horizontal ScrollBar is currently visible. This
is equivalent to moving the horizontal ScrollBar to the specified position.

widget Specifies the ID of the List widget
position Specifies the horizontal position

For a complete definition of List and its associated resourcesXiseést (3).

Related Information
XmList (3).

1123

Motif 2.1—Programmer’s Reference

XmListSetltem(library call)

XmListSetltem

Purpose A List function that makes an existing item the first visible item in the list

Synopsis #include <Xm/List.h>

void XmListSetltem(
Widget widget
XmString item);

Description
XmListSetltem makes the first item in the list that matchismmthe first visible item
in the list.
widget Specifies the ID of the List widget from whose list an item is made the
first visible
item Specifies the item

For a complete definition of List and its associated resourcesXsgast (3).

Related Information
XmList (3).

1124

Xm Functions
XmListSetKbdItemPos(library call)

XmListSetKbhdIltemPos

Purpose A List function that sets the location cursor at a specified position

Synopsis #include <Xm/List.h>

Boolean XmListSetKbdIitemPos(
Widget widget
int position);

Description

XmListSetKbdltemPos sets the location cursor at the item specifiegpbgition This
function does not determine if the item at the specified position is selected or not.

widget Specifies the ID of the List widget.

position Specifies the position of the item at which the location cursor is set. A
value of 1 indicates the first item in the list; a value of 2 indicates the
second item; and so on. A value of 0 (zero) sets the location cursor at
the last item in the list.

For a complete definition of List and its associated resourcesXiseést (3).

Return Values

Returns False if no item exists at the specified position or if the list is empty; otherwise,
returns True.

Related Information
XmList (3).

1125

Motif 2.1—Programmer’s Reference

XmListSetPos(library call)

XmListSetPos

Purpose A List function that makes the item at the given position the first visible position in
the list

Synopsis #include <Xm/List.h>

void XmListSetPos(
Widget widget
int position);

Description
XmListSetPos makes the item at the given position the first visible position in the
list.
widget Specifies the ID of the List widget.
position Specifies the position of the item to be made the first visible item in the

list. A value of 1 indicates that the first item in the list is the first visible
item; a value of 2 indicates that the second item is the first visible item;
and so on. A value of 0 (zero) indicates that the last item in the list is
the first visible item.

For a complete definition of List and its associated resourcesXsgast (3).

Related Information
XmList (3).

1126

Xm Functions
XmListUpdateSelectedList(library call)

XmListUpdateSelectedList

Purpose A List function that updates the XmNselectedltems resource

Synopsis #include <Xm/List.h>

void XmListUpdateSelectedList(
Widget widge);

Description

XmListUpdateSelectedListfrees the contents of the curreXinNselectedltemslist.

The routine traverses thémNitems list and adds each currently selected item to the
XmNselectedltemslist. For each selected item, there is a corresponding entry in the
updatedXmNselectedltemslist.

widget Specifies the ID of the List widget to update

For a complete definition of List and its associated resourcesXiseést (3).

Related Information
XmList (3).

1127

Motif 2.1—Programmer’s Reference
XmListYToPos(library call)

XmListYToPos

Purpose A List function that returns the position of the item at a specified y-coordinate

Synopsis #include <Xm/List.h>

int XmListYToPos(
Widget widget
Position y);

Description
XmListYToPos returns the position of the item at the given y-coordinate within the
list.
widget Specifies the ID of the List widget
y Specifies the y-coordinate in the list's coordinate system

For a complete definition of List and its associated resourcesXsgast (3).

Return Values

Returns the position of the item at the specified y coordinate. A value of 1 indicates
the first item in the list; a value of 2 indicates the second item; and so on. A value of
0 (zero) indicates that no item exists at the specified y coordinate.

Related Information
XmList (3) andXmListPosToBoundg3).

1128

Xm Functions

XmMainWindowSepl(library call)

XmMainWindowSep1l

Purpose A Mainwindow function that returns the widget ID of the first Separator

Synopsis #include <Xm/MainW.h>

Widget XmMainWindowSep1(
Widget widge);

Description

XmMainWindowSepl returns the widget ID of the first Separator in the
MainWindow. The first Separator is located between the MenuBar and the Command
widget. This Separator is visible only whetmNshowSeparatoris True.

NOTE: XmMainWindowSep1 is obsolete and exists for compatibility with previous
releases. Us&XtNameToWidget instead. Pass a MainWindow variable as the first
argument taXtNameToWidget and passSeparatorl as the second argument.

widget Specifies the MainWindow widget ID

For a complete definition of MainWindow and its associated resources, see
XmMainWindow (3).

Return Values
Returns the widget ID of the first Separator.

Related Information
XmMainWindow (3).

1129

Motif 2.1—Programmer’s Reference

XmMainWindowSep2(library call)

XmMainWindowSep2

Purpose A Mainwindow function that returns the widget ID of the second Separator widget

Synopsis #include <Xm/MainW.h>

Widget XmMainWindowSep2(
Widget widge);

Description

XmMainWindowSep2 returns the widget ID of the second Separator in the
MainWindow. The second Separator is located between the Command widget and the
ScrolledWindow. This Separator is visible only wh¥mNshowSeparatoris True.

NOTE: XmMainWindowSep2 is obsolete and exists for compatibility with previous
releases. Us&XtNameToWidget instead. Pass a MainWindow variable as the first
argument taXtNameToWidget and passSeparator2 as the second argument.

widget Specifies the MainWindow widget ID

For a complete definition of MainWindow and its associated resources, see
XmMainWindow (3).

Return Values

Returns the widget ID of the second Separator.

Related Information
XmMainWindow (3).

1130

Xm Functions

XmMainWindowSep3(library call)

XmMainWindowSep3

Purpose A Mainwindow function that returns the widget ID of the third Separator widget

Synopsis #include <Xm/MainW.h>

Widget XmMainWindowSep3(
Widget widge);

Description

XmMainWindowSep3 returns the widget ID of the third Separator in the
MainWindow. The third Separator is located between the message window and the
widget above it. This Separator is visible only wh€mNshowSeparatoris True.

NOTE: XmMainWindowSep3 is obsolete and exists for compatibility with previous
releases. Us&XtNameToWidget instead. Pass a MainWindow variable as the first
argument taXtNameToWidget and passSeparator3 as the second argument.

widget Specifies the MainWindow widget ID

For a complete definition of MainWindow and its associated resources, see
XmMainWindow (3).

Return Values
Returns the widget ID of the third Separator.

Related Information
XmMainWindow (3).

1131

Motif 2.1—Programmer’s Reference

XmMainWindowSetAreas(library call)

XmMainWindowSetAreas

Purpose A Mainwindow function that identifies manageable children for each area

Synopsis #include <Xm/MainW.h>

void XmMainWindowSetAreas(
Widget widget
Widget menu_bay
Widget command_window
Widget horizontal_scrollbay
Widget vertical_scrollbar
Widget work_region);

Description

XmMainWindowSetAreas identifies which of the valid children for each area (such
as the MenuBar and work region) are to be actively managed by MainWindow. This
function also sets up or adds the MenuBar, work window, command window, and
ScrollBar widgets to the application’s main window widget.

Each area is optional; therefore, the user can pass NULL to one or more of the
following arguments. The window manager provides the title bar.

NOTE: XmMainWindowSetAreas is obsolete and exists for compatibility with
previous releases. The information previously returned by this function can now
be obtained through a call t§tGetValues on the XmNscrolledWindowChildType
resource.

widget Specifies the MainWindow widget ID.

menu_bar Specifies the widget ID for the MenuBar to be associated with the
MainWindow widget. Set this ID only after creating an instance of the
MainWindow widget. The attribute name associated with this argument
is XmNmenuBar.

1132

Xm Functions

XmMainWindowSetAreas(library call)

command_window
Specifies the widget ID for the command window to be associated with
the MainWindow widget. Set this ID only after creating an instance
of the MainWindow widget. The attribute name associated with this
argument isXmNcommandWindow.

horizontal_scrollbar
Specifies the ScrollBar widget ID for the horizontal ScrollBar to be
associated with the MainWindow widget. Set this ID only after creating
an instance of the MainWindow widget. The attribute name associated
with this argument is<mNhorizontalScrollBar .

vertical_scrollbar
Specifies the ScrollBar widget ID for the vertical ScrollBar to be
associated with the MainWindow widget. Set this ID only after creating
an instance of the MainWindow widget. The attribute name associated
with this argument is<mNverticalScrollBar .

work_region
Specifies the widget ID for the work window to be associated with the
MainWindow widget. Set this ID only after creating an instance of the
MainWindow widget. The attribute name associated with this argument
is XmNworkWindow .

For a complete definition of MainWindow and its associated resources, see
XmMainWindow (3).

Related Information
XmMainWindow (3).

1133

Motif 2.1—Programmer’s Reference

XmMapSegmentEncoding(library call)

XmMapSegmentEncoding

Purpose A compound string function that returns the compound text encoding format associated
with the specified font list tag

Synopsis #include <Xm/Xm.h>

char * XmMapSegmentEncoding(
char *fontlist_tag;

Description

XmMapSegmentEncodingsearches the segment encoding registry for an entry that
matches the specified font list tag and returns a copy of the associated compound text
encoding format. The application is responsible for freeing the storage associated with
the returned data by callingtFree.

fontlist_ tag Specifies the compound string font list tag

Return Values

Returns a copy of the associated compound text encoding format if the font list tag
is found in the registry; otherwise, returns NULL.

Related Information

XmCvtXmStringToCT (3), XmFontList (3), XmRegisterSegmentEncodin3), and
XmString (3).

1134

Xm Functions

XmMenuPosition(library call)

XmMenuPosition

Purpose A RowColumn function that positions a Popup menu pane

Synopsis #include <Xm/RowColumn.h>

void XmMenuPosition(
Widget menuy
XButtonPressedEvent* even);

Description

XmMenuPosition positions a Popup menu pane using the information in the specified
event. Unless an application is positioning the menu pane itself, it must first invoke
this function before managing the PopupMenu. &eoot andy_root fields in the
specified X event are used to determine the menu position.

menu Specifies the PopupMenu to be positioned
event Specifies the event passed to the action procedure which manages the
PopupMenu

Which corner of the PopupMenu is positioned at theoot andy_root depends on
the XmNlayoutDirection resource of the widget from which popup occurs.

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

Related Information

XmRowColumn(3).

1135

Motif 2.1—Programmer’s Reference

XmMessageBoxGetChild(library call)

XmMessageBoxGetChild

Purpose A MessageBox function that is used to access a component

Synopsis #include <Xm/MessageB.h>

Widget XmMessageBoxGetChild(
Widget widget
unsigned char child);

Description

XmMessageBoxGetChildis used to access a component within a MessageBox. The
parameters given to the function are the MessageBox widget and a value indicating
which component to access.

NOTE: This routine is obsolete and exists for compatibility with previous releases.
Instead of callingKXmMessageBoxGetChild you should callXtNameToWidget as
described in theKmMessageBox3) reference page.

widget Specifies the MessageBox widget ID.

child Specifies a component within the MessageBox. The following are legal
values for this parameter:

* XmDIALOG_CANCEL_BUTTON
XmDIALOG_DEFAULT_BUTTON
XmDIALOG_HELP_BUTTON
XmDIALOG_MESSAGE_LABEL
XmDIALOG_OK_BUTTON
XmDIALOG_SEPARATOR
XmDIALOG_SYMBOL_LABEL

1136

Xm Functions

XmMessageBoxGetChild(library call)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox3).

Return Values

Returns the widget ID of the specified MessageBox component. An application should
not assume that the returned widget will be of any particular class.

Related Information
XmMessageBox3).

1137

Motif 2.1—Programmer’s Reference

XmNotebookGetPagelnfo(library call)

XmNotebookGetPagelnfo

Purpose A Notebook function that returns page information

Synopsis #include <Xm/Notebook.h>

XmNotebookPageStatus XmNotebookGetPagelnfo(
Widget notebook
int page_number
XmNotebookPagelnfo*page_infq;

Description
XmNotebookGetPagelnforeturns status information for the specified Notebook page.
notebook Specifies the Notebook widget.

page_number
Specifies the page number to be queried.

page_info Points to the structure containing the page information. The structure
has the following form:
typedef struct
{
int page_number
Widget page_widget
Widget status_area_widget
Widget major_tab_widget
Widget minor_tab_widget
} XmNotebookPagelnfo;

page_number
Specifies thgpage_numbepassed to the function.

page_widget
Specifies a child widget of the Notebook with a
XmNchildType of XmPAGE and aXmNpageNumber

1138

Xm Functions
XmNotebookGetPagelnfo(library call)

equal to page_numberif one exists; otherwise set to
NULL.

status_area_widget
Specifies a child widget of the Notebook with
a XmNchildType of XmSTATUS_AREA and a
XmNpageNumber equal topage_numbeif one exists;
otherwise set to NULL.

major_tab_widget
Specifies a child widget of the Notebook with a
XmNchildType of XmMAJOR_TAB and the nearest
XmNpageNumber equal to or less thapage_numbeif
one exists; otherwise set to NULL.

minor_tab_widget
Specifies a child widget of the Notebook with a
XmNchildType of XmMINOR_TAB and the nearest

XmNpageNumber equal to or less thapage_numbeif
one exists; otherwise set to NULL.

For a complete definition of Notebook and its associated resources, see
XmNotebook(3).

Return Values
Returns one of the following page status values:

XmPAGE_FOUND
The specified page was found.

XmPAGE_INVALID
The specified page number is out of the page number range.

XmPAGE_EMPTY
The specified page does not have a page widget.

XmPAGE_DUPLICATED
There is more than one page widget with the specified page number. The
more recently managed page widget is used for the page information
structure.

1139

Motif 2.1—Programmer’s Reference

XmNotebookGetPagelnfo(library call)

Related Information
XmNotebook(3).

1140

Xm Functions
XmObjectAtPoint(library call)

XmObjectAtPoint

Purpose A toolkit function that determines which child intersects or comes closest to a specified
point

Synopsis #include <Xm/Xm.h>

Widget XmObjectAtPoint(
Widget widget
Position X,
Position y);

Description

XmObjectAtPoint searches the child list of the specified managielgetand returns
the child most closely associated with the specifigdcoordinate pair.

For the typical Motif managewidget XmObjectAtPoint uses the following rules to
determine the returned object:

« If one child intersectx,y, XmObjectAtPoint returns the widget ID of that child.

« If more than one child intersectsy, XmObjectAtPoint returns the widget ID of
the visible child.

« If no child intersectsty, XmObjectAtPoint returns NULL.

The preceding rules are only general. In fact, each managkyetis free to define
"most closely associated" as it desires. For example, if no child intersegta
manager might return the child closestxg.

widget Specifies a manager widget.

X Specifies the x-coordinate about which you are seeking child
information. The x-coordinate must be specified in pixels, relative to
the left side ofmanager

1141

Motif 2.1—Programmer’s Reference
XmObjectAtPoint(library call)

y Specifies the y-coordinate about which you are seeking child
information. The y-coordinate must be specified in pixels, relative to
the top side oimanager

Return Values

Returns the child ofanagemost closely associated withy. If none of its children
are sufficiently associated withy, returns NULL.

Related Information
XmManager(3).

1142

Xm Functions

XmOptionButtonGadget(library call)

XmOptionButtonGadget

Purpose A RowColumn function that obtains the widget ID for the CascadeButtonGadget in
an OptionMenu

Synopsis #include <Xm/RowColumn.h>

Widget XmOptionButtonGadget(
Widget option_men)y

Description

XmOptionButtonGadget provides the application with the means for obtaining the
widget ID for the internally created CascadeButtonGadget. Once the application has
obtained the widget ID, it can adjust the visuals for the CascadeButtonGadget, if
desired.

When an application creates an instance of the OptionMenu widget, the widget creates
two internal gadgets. One is a LabelGadget that is used to display RowColumn’s
XmNIlabelString resource. The other is a CascadeButtonGadget that displays the
current selection and provides the means for posting the OptionMenu’s submenu.

The user can specify resources in a resource file for the automatically created widgets
and gadgets of an OptionMenu. The following list identifies the names of these widgets
(or gadgets) and the associated OptionMenu areas.

Option Menu Label Gadget
OptionLabel

Option Menu Cascade Button
OptionButton

option_menuSpecifies the OptionMenu widget 1D

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

1143

Motif 2.1—Programmer’s Reference

XmOptionButtonGadget(library call)

Return Values

Returns the widget ID for the internal button.

Related Information

XmCreateOptionMenu(3), XmCascadeButtonGadget3),
XmOptionLabelGadget(3), andXmRowColumn(3).

1144

Xm Functions

XmOptionLabelGadget(library call)

XmOptionLabelGadget

Purpose A RowColumn function that obtains the widget ID for the LabelGadget in an
OptionMenu

Synopsis #include <Xm/RowColumn.h>

Widget XmOptionLabelGadget(
Widget option_men)y

Description

XmOptionLabelGadget provides the application with the means for obtaining the
widget ID for the internally created LabelGadget. Once the application has obtained
the widget ID, it can adjust the visuals for the LabelGadget, if desired.

option_menuSpecifies the OptionMenu widget 1D

When an application creates an instance of the OptionMenu widget, the widget creates
two internal gadgets. One is a LabelGadget that is used to display RowColumn’s
XmNIlabelString resource. The other is a CascadeButtonGadget that displays the
current selection and provides the means for posting the OptionMenu’s submenu.

The user can specify resources in a resource file for the automatically created widgets
and gadgets of an OptionMenu. The following list identifies the names of these widgets
(or gadgets) and the associated OptionMenu areas.

Option Menu Label Gadget
OptionLabel

Option Menu Cascade Button
OptionButton

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

1145

Motif 2.1—Programmer’s Reference

XmOptionLabelGadget(library call)

Return Values

Returns the widget ID for the internal label.

Related Information

XmCreateOptionMenu(3), XmLabelGadget(3), XmOptionButtonGadget(3), and
XmRowColumn(3).

1146

Xm Functions

XmParseMappingCreate(library call)

XmParseMappingCreate

Purpose A compound string function to create a parse mapping

Synopsis #include <Xm/Xm.h>

XmParseMapping XmParseMappingCreate(
ArglList arglist,
Cardinal argcounj;

Description

XmParseMappingCreate creates a parse mapping for use in a parse table. This
function allows the application to specify values for components of the parse mapping
using a resource-style argument list.

arglist Specifies the argument list
argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition oKmParseMapping and its associated resources, see
XmParseMapping(3).

Return Values

Returns theXmParseMapping object. The function allocates space to hold the
returned XmParseMapping object. The application is responsible for managing
the allocated space. The application can recover the allocated space by calling
XmParseMappingFree

Related Information

XmParseMapping(3), XmParseMappingFreg3), XmParseMappingGetValueg3),
XmParseMappingSetValue§3), XmParseTablg3), andXmString (3).

1147

Motif 2.1—Programmer’s Reference

XmParseMappingFree(library call)

XmParseMappingFree

Purpose A compound string function to free a parse mapping

Synopsis #include <Xm/Xm.h>

void XmParseMappingFree(
XmParseMapping parse_mapping

Description
XmParseMappingFreerecovers memory used by agmParseMapping.

parse_mapping
Specifies the parse mapping to be freed

Related Information

XmParseMapping(3), XmParseMappingCreatd3),
XmParseMappingGetValueg3), XmParseMappingSetValue$3),
XmParseTablg3), andXmString (3).

1148

Xm Functions

XmParseMappingGetValues(library call)

XmParseMappingGetValues

Purpose A compound string function to retrieve attributes of a parse mapping

Synopsis #include <Xm/Xm.h>

void XmParseMappingGetValues(
XmParseMapping parse_mapping
ArglList arglist,
Cardinal argcounj;

Description

XmParseMappingGetValues retrieves attributes of aiXmParseMapping object,

using a resource-style argument list. If tkenNsubstitute resource is in tharglist,

the function will allocate space to hold the returnétString value. The application

is responsible for managing this allocated space. The application can recover the
allocated space by callingmStringFree.

arglist Specifies the argument list
argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition oKmParseMapping and its associated resources, see
XmParseMapping(3).

Related Information

XmParseMapping(3), XmParseMappingCreatg3), XmParseMappingFreg3),
XmParseMappingSetValue§3), XmParseTablg3), andXmString (3).

1149

Motif 2.1—Programmer’s Reference

XmParseMappingSetValues(library call)

XmParseMappingSetValues

Purpose A compound string function to set attributes of a parse mapping

Synopsis #include <Xm/Xm.h>

void XmParseMappingSetValues(
XmParseMapping parse_mapping
ArglList arglist,
Cardinal argcounj;

Description

XmParseMappingSetValues specifies attributes of aXmParseMapping object,
using a resource-style argument list.

arglist Specifies the argument list
argcount Specifies the number of attribute/value pairs in the argumentligligt)

For a complete definition oKmParseMapping and its associated resources, see
XmParseMapping(3).

Related Information

XmParseMapping(3), XmParseMappingCreatg3), XmParseMappingFreq3),
XmParseMappingGetValueg3), XmParseTablg3), andXmString (3).

1150

Xm Functions

XmParseTableFree(library call)

XmParseTableFree

Purpose A compound string function that recovers memory

Synopsis #include <Xm/Xm.h>

void XmParseTableFree(
XmParseTable parse_table
Cardinal couny;

Description

XmParseTableFreerecovers memory used by aémParseTableand its constituent
XmParseMappings.

parse_table Specifies the parse table to be freed

count Specifies the number of parse mappings in the parse table

Related Information
XmParseTablg3) andXmString (3).

1151

Motif 2.1—Programmer’s Reference

XmGetScaledPixmap(library call)

XmGetScaledPixmap

Purpose read a pixmap file and scale it according to pixmap and print resolution

Synopsis #include <Xm/Xm.h>

XtEnum XmGetScaledPixmap(
Widget widget
String image_namge
Pixel foreground
Pixel background
int depth
Double scaling_ratig;

Description

1152

XmGetScaledPixmapuses itswidgetargument to look up for a Print Shell ancestor
to get the pixmap resolution and the default printer resolution information to be used
if scaling_ratio==0.

If scaling is 0, and a valid PrintShell is presefinGetScaledPixmapapplies a ratio
equals to (printer resolution / default pixmap resolution) before creating the Pixmap on
the widget's Screen. Otherwise, thealing_ratiois used in scaling both dimensions

of the image being converted as a Pixmap.

XmGetScaledPixmap completes theXmGetPixmapByDepth existing APl by
making use of theXmNdefaultPixmapResolutiaf the rootingXmPrintShell. Refer
to the XmGetPixmapByDepth documentation for details.

widget Widget used to determine the default pixmap resolution (of the print
shell ancestor).

image_nameSee XmGetPixmapByDepth for description.
foreground See XmGetPixmapByDepth for description.
background See XmGetPixmapByDepth for description.

Xm Functions

XmGetScaledPixmap(library call)

depth See XmGetPixmapByDepth for description.

scaling_ratio
Indicate the scaling ratio to be applied, or O.

Return Values
Returns Pixmap or NULL if failed.

Errors/Warnings
Same as foXmGetPixmapByDepth.

Related Information
XmPrintSetup(3), XmPrintShell (3), XmRedisplayWidget(3)

1153

Motif 2.1—Programmer’s Reference

XmPrintPopupPDM(library call)

XmPrintPopupPDM

Purpose Send a notification for the PDM to be popped up

Synopsis #include <Xm/Print.h>

XtEnum XmPrintPopupPDM(
Widgetprint_shell
Widgetvideo_transient_fqr

Description

1154

A convenience function that sends a notification to start a Print Dialog Manager on
behalf of the applicationXmPrintPopupPDM hides the details of the X selection
mechanism used to notify the PDM that a new dialog must be popped up for this
application.

XmPrintPopupPDM sends a selection request to either the print display of the
print shell, or the video display of the transient _for video widget (depending on
the environment variablXPDMDISPLAY which can only takes the value "print"
or "video"), asking for the PDM windows to be popped up on behalf of the app.

Return right away with status ®mPDM_NOTIFY_FAlle.g. if the function couldn’t
malloc memory for the selection value, otdPDMDISPLAYis not "print" or "video")

or with XmPDM_NOTIFY_SUCCESSwhich only means a "message" was sent out
to the PDM specified bXPDMSELECTION not that it's already up on the screen
yet.

In order to know if the PDM is up, or not running, the application must register a
XmNpdmNotificationCallback with the Print Shell.

XmPrintPopupPDM puts up annputOnly window on top of the dialog, so that the
end user doesn’t use the print setup dialog while the PDM is trying to come up. This
window is automatically removed when the shell is about to call the callback for the
first time.

print_shell The Print Shell used for this print job and context.

Xm Functions
XmPrintPopupPDM(library call)

video_transient_for
The video widget dealing with application print setup.

Return Values

ReturnsXmPDM_NOTIFY_SUCCESfSthe function was able to send the notification
out to the PDM process{mPDM_NOTIFY_FAllotherwise.

Errors/Warnings
Not applicable.

Examples

Example of callback from a Print set up dialog box "Setup..." button:

PrintSetupCallback(print_dialog...)

if (XmPrintPopupPDM (pshell, XtParent(print_dialog)) !=
XmPDM_NOTIFY_SUCCESS) {
/* some error dialog */

}

Example ofXmNpdmNotificationCallback from a Print Shell:

pdmNotifyCB(print_shell...)

{
XmPrintShellCallBackStruct * pr_cb = ...

switch (pr_cb->reason) {
case XmCR_PDM_NONE:
/* no PDM available */
PostErrorDialog(...);
break;
case XmCR_PDM_VXAUTH:

1155

Motif 2.1—Programmer’s Reference

XmPrintPopupPDM(library call)

/* PDM is not authorized ... */
PostErrorDialog(...);
break;
case XmCR_PDM_UP: the PDM is up and running
[* everything is fine */
break;
default: /* other cases */

Related Information
XmPrintSetup(3), XmPrintShell (3), XmRedisplayWidget(3), XmPrintToFile (3)

1156

Xm Functions

XmPrintSetup(library call)

XmPrintSetup

Purpose setup and create a Print Shell widget

Synopsis #include <Xm/Print.h>

Widget XmPrintSetup(
Widget video_widget
Screen*print_screen
String print_shell_namg
ArglList args
Cardinal num_args,

Description

A function that does the appropriate setting and creates a reafi@eéRtintShellthat

it returns to the caller. This function hides the details of Xteto set up a valid print
shell heirarchy for the application. It is also meant to encourage consistency in the
way applications root their print widget hierarchy.

print_screenmust belong to a Display connection that has already been initialized
with Xt.

The video_widgetis used to get at the application context, application hame and
class, andargc/argv stored on theapplicationShell that roots this widget. If no
applicationShell is found,NULL argv/argc are used.

XmPrintSetup then creates an unrealizégbplicationShell with the same name and
class as the one given by the video display, on the print display and on the print screen
specified.

An XmPrintShell is then created as a child of this toplevel shell, using
XtCreatePopupShell with the nameprint_shell_namgand using thergs provided.
It then realizes and maps the print shell, usktopupwith XtGrabNone

This way, application resource files and users can specify print specific attributes using
the following syntax (ifprint_shell_nameis "Print"):

1157

Motif 2.1—Programmer’s Reference

XmPrintSetup(library call)

Dtpad.Print*textFontList: somefont
*Print*background:white
*Print*highlightThickness:0

video_widget
A video widget to fetch app video data from.

print_screen A print screen on the print display - specifies the screen onto which the
new shell is created.

print_shell_name
Specifies the name of the XmPrintShell created on the X Print server.

args Specifies the argument list from which to get the resources for the
XmPrintShell.

num_args Specifies the number of arguments in the argument list.

Return Values

The id theXmPrintShellwidget created on the X Print Server connection, or NULL
if an error has occured.

Errors/Warnings

None.

Examples
From theOK callback and thesetUp callback of the primary print dialog widget:

static void
printOKCB(Widget, XtPointer call_data, XtPointer client_data)
{
AppPrint *p = (AppPrint *) client_data;
DtPrintSetupCallbackStruct *pbs =
(XmPrintCallbackStruct *) call_data;

[* connect if not already done.

1158

Xm Functions

XmPrintSetup(library call)

the print dialog callback always provides valid
printer name, print display and screen
already initialized: XplnitContext called */
*
p->print_shell = XmPrintSetup (widget, pbs->print_screen,
"Print", NULL, 0);

Related Information

XmPrintShell (3), XmRedisplayWidget(3), XmPrintToFile (3),
XmPrintPopupPDM (3)

1159

Motif 2.1—Programmer’s Reference
XmPrintShell(library call)

XmPrintShell

Purpose a shell widget class used for printing in Motif

Synopsis #include <Xm/Print.h>

Boolean XmlsPrintShell(
Widget);

Description

The XmPrintShell provides the Motif application programmer with an Xt widget
oriented API to some of the X Print resources and a callback to drive the pagination.

The XmPrintShell provides a simple callback to handle the pagination logic, and a
set of resources to get and set common printer attributes.

If not created on anXPrint connection, XmPrintShell behaves as a regular
applicationShell.

The XmPrintShell also initializes theXp extension event handling mechanism, by
registering an extension selector that ca{isSelectinput and event dispatcher for
print and attributesXp events, so applications can uXénsertEventTypeHandler

to register their own handler with thép events.

Arguments

No XmCreate function is provided, since this is a toplevel shell, most likely created
thru someXt shell creation routine oKmPrintSetup.

Classes

XmPrintShell is a subclass ohpplicationShell; it inherits behavior, resources and
traits from all its superclasses. The class pointeXnsPrintShellwidgetClass

1160

Xm Functions

XmPrintShell(library call)

New Resources

XmPrintShell Resource Set
Name Class Type Default Access
XmNstartJobCallback XmCcCallback XtCallbackList NULL CSG
XmNendJobCallback XmCcCallback XtCallbackList NULL CSG
XmNpageSetupCallback XmCcCallback XtCallbackList NULL CSG
XmNminX XmCMinX Dimension dynamic G
XmNminY XmCMinY Dimension dynamic G
XmNmaxX XmCMaxX Dimension dynamic
XmNmaxY XmCMaxyY Dimension dynamic G
XmNdefaultPixmap- XmCDefaultPixmap- unsigned short 100 CSG
Resolution Resolution
XmNpdmNotification- XmCcCallback XtCallbackList NULL CSG
Callback

XmNstartJobCallback
Specifies the callback driving the beginning of rendering. It is safe for
an application to start rendering after this callback has been activated.
XpStartJob must be called to trigger this callback.

XmNendJobCallback
Specifies the callback driving the end of rendering. Notify the client
that all rendering has been processed (whether on print-to-file or regular
spool). XpEndJob is called by the print shell to trigger this callback.

XmNpageSetupCallback
Specifies the callback driving the page layout. It is safe for an app to
start rendering from this callback even if tXenNstartJobCallback is
not used.

XmNminX, XmNminY, XmNmaxX, XmNmaxyY
Specify the imageable area of the page in the current print context.
XmPrintShell also maintains a proper size at all times by updating
its own widget dimension whenever an attribute, such as resolution
or orientation, changes. It is sized in itsitialize routine so that the
application can rely on a proper size before the f8&rtPage call is
issued.

1161

Motif 2.1—Programmer’s Reference
XmPrintShell(library call)

XmNdefaultPixmapResolution
Indicates the resolution in dpi (dot per inch) of the image files read and
converted by Motif for the widget descendants of this shell. It is used
to determine a scaling ratio to be applied to pixmap created thru regular
pixmap/icon conversion of the following Widget resources:

» XmLabellabel*Pixmap, XmlconG*lconPixmap
XmToggleBselectPixmap, XmPushBGrmPixmap,
XmlconG*lconMask, XmMessageBogymbolPixmap,

XmContainerStatePixmap, ...

» Leaving out the pixmap resources being used for
tiling (XmNhighlightPixmap, XmNtopShadowPixmap,
XmNbottomShadowPixmap, XmNbackgroundPixmap, ...)

XmNpdmNotificationCallback
A callback notifying the application about the status of the PDM
(see XmPrintPopupPDM). A XmPrintShellCallbackStruct is used, with
reason:

» XmCR_PDM_NONENno PDM available on this display for the
named selection (provided in detail)

« XMCR_PDM_START _VXAUTHthe PDM is not authorized to
connect to the video display.

« XMCR_PDM_START_PXAUTHthe PDM is not authorized to
connect to the print display.

* XmCR_PDM_UP the PDM is up and running
« XmMCR_PDM_OK the PDM has exited with OK status
* XmMCR_PDM_CANCELthe PDM has exited with CANCEL

* XmCR_PDM_START_ERRORhe PDM cannot start due to some
error (usually logged)

« XmCR_PDM_EXIT_ERRORhe PDM has exited with an error
Callback Information

The XmNstartJobCallback, XmNendJobCallback, XmNpageSetupCallbackand
XmNpdmNotificationCallback operate on aXmPrintShellCallbackStructwhich is
defined as follow:

1162

Xm Functions
XmPrintShell(library call)

typedef struct
{
int reason; /* XmCR_START_JOB, XmCR_END_JOB,
XmCR_PAGE_SETUP, XmCR_PDM_* *
XEvent *event;
XPContext print_context;
Boolean last_page; /* in_out */
XtPointer detail;
} XmPrintShellCallbackStruct;

Additional Behavior

The last_pagefield is only meaningful when the reasonXsnCR_PAGE_SETUP

The page setup callback is called widst_pageFalseto notify the application that

it has to get its internal layout state ready for the next page. Typically, a widget based
application will change the content ofLabel showing the page number, or scroll the
content of theText widget.

When the application has processed its last page, it should sé&sih@agefield in

the callback struct talrue. The callback will be called a last time after that with
last_pageFalse to notify the application that it can safely clean-up its internal state
(e.g., destroy widgets).

No drawing should occur from within the callback function in the application, this is
an Exposure event-driven programming model where widgets render themselves from
their expose methods.

The print shell calls XpStartPage after the pageSetupCallback returns, and
XpEndPage upon reception oStartPageNotify.

Errors/Warnings
XmPrintShellcan generate the following warnings:
* Not connected to a valid X Print Server: behavior undefined.
» Attempt to set an invalid resolution on a printer: %s

» Attempt to set an invalid orientation on a printer: %s

1163

Motif 2.1—Programmer’s Reference

XmPrintShell(library call)

Return Values
Not applicable

Examples

PrintOnePageCB(Widget pshell, XtPointer npages,
JAEEEeE */ XmPrintSetPageCBStruct psp)

static int cur_page = 0;
cur_page++;

if (! psp->last_page
&& curPage > 1) /* no need to scroll for the first page */

{
XmTextScroll(ptext, prows); /* get ready for next page */
} else { [**** I'm done */
XtDestroyWidget(pshell);
XtCloseDisplay(XtDisplay(pshell));
}
if (cur_page == (int) n_pages) psp->last_page = True;
}
PrintOKCallback(...)
£ — */
{

pshell = XmPrintSetup (widget, pbs->print_screen,
"Print", NULL, 0);

XpStartJob(XtDisplay(pshell), XPSpool);
[**** here | get the size of the shell, create my widget

hierarchy: a bulleting board, and then a text widget,
that | stuff with the video text widget buffer */

1164

Xm Functions
XmPrintShell(library call)

/* get the total number of pages to print */
/* same code as previous example to get n_pages */

[¥*** get up my print callback */
XtAddCallback(pshell, XmNpageSetUpCallback,
PrintOnePageCB, n_pages);
}

Examples ofXmNdefaultPixmapResolution usage:

» An application reuses the same image sources it uses for the video interface, in
XBM or XPM, to layout on its printed pages. In this case, scaling is seamless.

! icon.xpm is 30x30 pixels
app*dialog.pushb.labelPixmap:icon.xpm
! print is 400dpi
app.print*form.lab.labelPixmap:icon.xpm
1 120x120 pixels on the paper (auto scaling)

» An application provides a new set of image files, for a given printer resolution
(say 300). It doesn’'t want automatic scaling by the toolkit for that resolution,
it wants scaling based on these 300dpi images for higher resolution. It creates
its print shell inside using the name "printHiRes" and adds the following in its
resource file:

app.printHiRes.defaultPixmapResolution:300
! icon300.xpm is 120x120 pixels
app.printHiRes*form.lab.labelPixmap:icon300.xpm
1 120x120 pixels on the paper (no scaling)

This way a printer resolution of 600 will result in a scale of a 300 dpi image by 2
(dpi=600 divided by base=300), while a printer resolution of 150 (using default print
shell name "print") will use the 100 dpi icon scaled by 1.5 (dpi=150 divided by default
base=100).

Related Information

XmPrintSetup(3), XmRedisplayWidget(3), XmPrintToFile (3),
XmPrintPopupPDM (3)

1165

Motif 2.1—Programmer’s Reference

XmPrintToFile(library call)

XmPrintToFile

Purpose Retrieves and saves data that would normally be printed by the X Print Server.

Synopsis #include <Xm/Print.h>

XtEnumXmPrintToFile(
Display*dpy,
Stringfilename
XPFinishProcfinish_prog
XtPointerclient_datg;

Description

1166

XmPrintToFile hides the details of X display connection akgGetDocumentData
to the Motif application programmer.

This function is a convenience routine that hides the details of the X and Xp internals
to the application programmer by calling tbgGetDocumentData function with
appropriate save and finish callbacks.

This is used in the context of X Printing when the user has specified the "print-to-file"
option from a regular Print Setup Dialog box.

XmPrintToFile first tries to open the given filename for writing and retufredse

if it can’t. Else, it usesXpGetDocumentDatg giving it a save proc that writes the
data received in the file and a finish proc that closes the file or removes it on an
unsuccessful termination. It calfinish_proc at that point, passing it the argument
received from the Xp layerstatus == XPGetDocFinishedneans the file is valid and
was closed, otherwise the file was removed).

XmPrintToFile is non-blocking; if it returns successfully, it just means the file was
opened successfully, not that all the data was received.

dpy Print display connection.

filename Name of the file to put the print data in.

Xm Functions

XmPrintToFile(library call)

finish_proc Called when all the data has been received.

client_data Passed with théinish_proc

Return Values

Returns False if the filename could not be created or opened for writiigJe
otherwise.

Errors/Warnings
Not applicable

Examples
A typical OK callback from aDtPrintSetupBox:

PrintOKCallback(widget...)
{ int save_data = XPSpool;

pshell = XmPrintSetup (widget, pbs->print_screen,
"Print", NULL, 0);

XtAddCallback(pshell, XmNstartJobCallback, startJobCB, data);

if (pbs->destination == DtPRINT_TO_FILE)
save_data = XPGetData;

/* start job must precede XpGetDocumentData in XmPrintToFile */
XpStartJob(XtDisplay(pshell), save_data);
XFlush(XtDisplay(pshell)); /* maintain the sequence

between startjob and getdocument */

[* setup print to file */
if (pbs->destination == DtPRINT_TO_FILE)
XmPrintToFile(XtDisplay(pshell),
pbs->dest_info, FinishPrintToFile, NULL);

1167

Motif 2.1—Programmer’s Reference

XmPrintToFile(library call)

}

static void
startJobCB(Widget, XtPointer call_data, XtPointer client_data)

{
print(p); /* rendering happens here */

XpEndJob(XtDisplay(p->print_shell));
[* clean up */

XtDestroyWidget(p->print_shell);
XtCloseDisplay(XtDisplay(p->print_shell));

Related Information

XmPrintSetup(3), XmPrintShell (3), XmRedisplayWidget(3),
XmPrintPopupPDM (3)

1168

Xm Functions

XmProcessTraversal(library call)

XmProcessTraversal

Purpose A function that determines which component receives keyboard events when a widget
has the focus

Synopsis #include <Xm/Xm.h>

Boolean XmProcessTraversal(
Widget widget
XmTraversalDirection direction);

Description

XmProcessTraversaldetermines which component of a hierarchy receives keyboard
events when the hierarchy that contains the given widget has keyboard focus.

XmProcessTraversal changes focus only when the keyboard focus policy of the
widget hierarchy is explicit. If theXmNkeyboardFocusPolicy of the nearest shell
ancestor of the given widget is nodmEXPLICIT , XmProcessTraversalreturns
False without making any focus changes.

widget Specifies the widget ID of the widget whose hierarchy is to be traversed
direction Specifies the direction of traversal

DEFINITIONS

In order to be eligible to receive keyboard focus when the shell's
XmNkeyboardFocusPolicy is XmEXPLICIT , a widget or gadget must meet
the following conditions:

» The widget and its ancestors are not in the process of being destroyed.

» The widget and its ancestors asensitive A widget is sensitive when its
XmNsensitive and XmNancestorSensitiveresources are both True.

» The XmNtraversalOn resource for the widget and its ancestors is True.

1169

Motif 2.1—Programmer’s Reference

XmProcessTraversal(library call)

1170

» The widget is viewable. This means that the widget and its ancestors are managed,
realized, and (except for gadgets) mapped. Furthermore, in general, some part of
the widget'’s rectangular area must be unobscured by the widget’s ancestors. If an
application unmaps a widget that has ¥mNmappedWhenManagedresource
set to True, the result is undefined.

In a ScrolledWindow with anXmNscrollingPolicy of XmAUTOMATIC , a
widget that is obscured because it is not within the clip window may be able
to receive focus if some part of the widget is within the work area and if an
XmNtraverseObscuredCallback routine can make the widget at least partially
visible by scrolling the window.

In general only primitives, gadgets, and Drawing Area are eligible to receive focus.
Most managers cannot receive focus even if they meet all these conditions.

The direction argument identifies the kind of traversal action to take. The descriptions
of these actions below refer to traversable non-tab-group widgets and traversable tab
groups.

* A traversable non-tab-group widget is a widget that is not a tab group and that
meets all the conditions for receiving focus described above.

* A traversable tab group widget is a tab group widget that meets the same
conditions, except that a manager that is a tab group and meets the other conditions
is also eligible for traversal as long as it contains a descendant that can receive
focus.

A tab group is a widget whos¥mNnavigationType is:

« XmTAB_GROUP or XmSTICKY_TAB_GROUP, if the hierarchy (up to
the nearest shell ancestor) that contains the widget has no widget whose
XmNnavigationType is XmEXCLUSIVE_TAB_GROUP

* XMEXCLUSIVE_TAB_GROUP or XmSTICKY_TAB_GROUP, if the
hierarchy (up to the nearest shell ancestor) that contains the widget has any
widget whoseXmNnavigationType is XmEXCLUSIVE_TAB_GROUP

Traversal Actions

The hierarchy to be traversed is that containing whégetargument. This hierarchy
is traversed only up to the nearest sh&linProcessTraversaldoes not move focus
from one shell to another. If the shell containimgdgetdoes not currently have the
focus, any change thatmProcessTraversalmakes to the element with focus within
that shell does not take effect until the next time the shell receives focus.

Xm Functions

XmProcessTraversal(library call)

XmProcessTraversalbegins the traversal action from the widget in the hierarchy that
currently has keyboard focus or that last had focus when the user traversed away from
the shell hierarchy.

The value of thalirectionargument determines which of three kinds of traversal action
to take:

» Traversal to a non-tab-group widget. This kind of traversal is possible only
when the widget that currently has focus is not a tab group; otherwise,
XmProcessTraversalreturns False for these actions.

These actions do not move focus from one tab group to another. The actions first
determine the containing tab group. This is the tab group containing the widget
that currently has focus. The actions traverse only to a non-tab-group widget
within the containing tab group.

A non-tab-group widget is eligible for this kind of traversal if the widget is
traversable and has no tab group ancestors up to the containing tab group. If the
tab group contains no traversable non-tab-group widgétsProcessTraversal
returns False.

Following are the possible values of tigectionargument. Note that when actions
wrap, wrapping occurs in the traversal direction. The following describes what
happens in a left to right environment:

— XmMTRAVERSE_RIGHT —If the XmNnavigationType of the containing
tab group is noKMEXCLUSIVE_TAB_GROUP , focus moves to the next
traversable non-tab-group widget to the right of the widget that currently has
focus. In a left to right environment, at the right side of the tab group this
action wraps to the non-tab-group widget at the left side and next toward the
bottom. At the rightmost widget in the bottom row of the tab group this action
wraps to the non-tab-group widget at the leftmost widget in the upper row.

In a right to left environment, at the right side of the tab group, this action

wraps to the non-tab-group widget at the left side and next toward the top.
At the rightmost widget in the upper row of the tab group this action wraps

to the non-tab-group widget at the leftmost widget in the bottom row.

If the XmNnavigationType of the containing tab group is
XmEXCLUSIVE_TAB_GROUP, focus moves to the next traversable
non-tab-group widget in the tab group, proceeding in the order in which the
widgets appear in their parent&mNchildren lists. After the last widget in

the tab group, this action wraps to the first non-tab-group widget.

1171

Motif 2.1—Programmer’s Reference

XmProcessTraversal(library call)

1172

— XmTRAVERSE_LEFT —If the XmNnavigationType of the containing tab

group is not XmEXCLUSIVE_TAB_GROUP, focus moves to the next
traversable non-tab-group widget to the left of the widget that currently has
focus. In a left to right environment, at the left side of the tab group this
action wraps to the non-tab-group widget at the right side and next toward
the top. At the leftmost widget in the upper row of the tab group this action
wraps to the non-tab-group widget at the rightmost widget in the bottom row.

In a right to left environment, at the left side of the tab group this action wraps
to the non-tab-group widget at the right side and next toward the bottom. At
the leftmost widget in the bottom row of the tab group this action wraps to
the non-tab-group widget at the rightmost widget in the upper row.

If the XmNnavigationType of the containing tab group s
XmEXCLUSIVE_TAB_GROUP, focus moves to the previous traversable
non-tab-group widget in the tab group, proceeding in the reverse order in
which the widgets appear in their paren¥shNchildren lists. After the first
widget in the tab group, this action wraps to the last non-tab-group widget.

XmTRAVERSE_DOWN —If the XmNnavigationType of the containing tab
group is not XmEXCLUSIVE_TAB_GROUP, focus moves to the next
traversable non-tab-group widget below the widget that currently has focus.
In a left to right environment, at the bottom of the tab group this action
wraps to the non-tab-group widget at the top and next toward the right. At
the bottom widget in the rightmost column of the tab group this action wraps
to the non-tab-group widget at the top widget in the leftmost column.

In a right to left environment, at the bottom of the tab group this action wraps
to the non-tab-group widget at the top and next toward the left. At the bottom
widget of the leftmost widget of the tab group this action wraps to the non-
tab-group widget at the top widget of the rightmost column.

If the XmNnavigationType of the containing tab group s
XmMEXCLUSIVE_TAB_GROUP, focus moves to the next traversable
non-tab-group widget in the tab group, proceeding in the order in which the
widgets appear in their parent&mNchildren lists. After the last widget in

the tab group, this action wraps to the first non-tab-group widget.

XmTRAVERSE_UP—If the XmNnavigationType of the containing tab
group is not XmMEXCLUSIVE_TAB_GROUP, focus moves to the next
traversable non-tab-group widget above the widget that currently has focus.
In a left to right environment, at the top of the tab group this action wraps
to the non-tab-group widget at the bottom and next toward the left. At the

Xm Functions

XmProcessTraversal(library call)

top widget of the leftmost column of the tab group this action wraps to the
non-tab-group widget at the bottom widget of the rightmost column.

In a right to left environment, at the top of the tab group this action wraps
to the non-tab-group widget at the bottom and next toward the right. At the
top widget of the right most column of the tab group this action wraps to the
non-tab-group widget at the bottom widget of the leftmost column.

If the XmNnavigationType of the containing tab group s
XmEXCLUSIVE_TAB_GROUP, focus moves to the previous traversable
non-tab-group widget in the tab group, proceeding in the reverse order in
which the widgets appear in their parentshNchildren lists. After the first
widget in the tab group, this action wraps to the last non-tab-group widget.

XmTRAVERSE_NEXT —Focus moves to the next traversable non-tab-group
widget in the tab group, proceeding in the order in which the widgets appear
in their parents’XmNchildren lists. After the last widget in the tab group,
this action wraps to the first non-tab-group widget.

XmTRAVERSE_PREV—Focus moves to the previous traversable non-tab-
group widget in the tab group, proceeding in the reverse order in which the
widgets appear in their parentEmNchildren lists. After the first widget in

the tab group, this action wraps to the last non-tab-group widget.

XmTRAVERSE_HOME —If the XmNnavigationType of the containing
tab group is noXKMEXCLUSIVE_TAB_GROUP, focus moves to the first
traversable non-tab-group widget at the initial focus of the tab group.

If the XmNnavigationType of the containing tab group s
XmEXCLUSIVE_TAB_GROUP, focus moves to the first traversable
non-tab-group widget in the tab group, according to the order in which the
widgets appear in their parent€mNchildren lists.

Traversal to a tab group. These actions first determine the current widget hierarchy
and the containing tab group. The current widget hierarchy is the widget hierarchy
whose root is the nearest shell ancestor of the widget that currently has focus.
The containing tab group is is the tab group containing the widget that currently

has focus. If the current widget hierarchy contains no traversable tab groups,
XmProcessTraversalreturns False.

Following are the possible values of thdirection argument. If any tab
group in the current widget hierarchy has admNnavigationType of
XmEXCLUSIVE_TAB_GROUP, traversal of tab groups in the hierarchy
proceeds to widgets in the order in which the¥mNnavigationType

1173

Motif 2.1—Programmer’s Reference

XmProcessTraversal(library call)

resources were specified asXmEXCLUSIVE_TAB_GROUP or
XmSTICKY_TAB_GROUP .:

— XMTRAVERSE_NEXT_TAB_GROUP—Finds the hierarchy that contains
widget finds the active tab group (if any), and makes the next tab group the
active tab group in the hierarchy.

— XmTRAVERSE_PREV_TAB_GROUP—Finds the hierarchy that contains
widget finds the active tab group (if any), and makes the previous tab group
the active tab group in the hierarchy.

» Traversal to any widget. In this case tlhddget argument is the widget to
which XmProcessTraversaltries to give focus. If the widget is not traversable,
XmProcessTraversalreturns False.

Following are the possible values of th&ection argument:

— XmMTRAVERSE_CURRENT—Finds the hierarchy and the tab group that
containwidget If this tab group is not the active tab group, this action makes
it the active tab group. Nvidgetis an item in the active tab group, this action
makes it the active item. Mvidgetis the active tab group, this action makes
the first traversable item in the tab group the active item.

CAUTIONS

Using XmProcessTraversatto traverse to MenuBars, Pulldown menu panes, or Popup
menu panes is not supported.

XmProcessTraversal cannot be called recursively. In particular, an application
cannot call this routine from aXmNfocusCallback or XmNlosingFocusCallback
procedure.

Return Values

Returns True if the traversal action succeeded. Returns False if the
XmNkeyboardFocusPolicy of the nearest shell ancestor ofidget is not
XmEXPLICIT , if the traversal action finds no traversable widget to receive focus,
or if the call to the routine has invalid arguments.

Related Information
XmGetVisibility (3) andXmisTraversable(3).

1174

Xm Functions

XmRedisplayWidget(library call)

XmRedisplayWidget

Purpose Synchronously activates thexposemethod of a widget to draw its content

Synopsis #include <Xm/Xm.h>

voidXmRedisplayWidget(
Widgetwidge);

Description

This function is a convenience routine that hides the details of the Xt internals to the
application programmer by calling tlexposemethod of the given widget with a well
formed Exposeevent andRegion corresponding to the total area of the widget. If the
widget doesn’t have aBxposemethod, the function does nothing.

This is primarily used in the context of X Printing if the programming model chosen
by the application issynchronousthat is, it doesn’t rely of X Print events for the

driving of page layout but wants to completely control the sequence of rendering
requests.

XmRedisplayWidget doesn'’t clear the widget window prior to calling tlexpose
method, since this is handled by callsXpStartPage .

widget The widget to redisplay.

Return Values

None.

Errors/Warnings
Not applicable

1175

Motif 2.1—Programmer’s Reference

XmRedisplayWidget(library call)

Examples

In the following, a simple application wants to print the content of a multi-page text
widget (similar todtpad).

PrintOKCallback(print_dialog...)
pshell = XmPrintSetup (print_dialog, pbs->print_screen,
"Print", NULL, 0);
XpStartJob(XtDisplay(pshell), XPSpool);
[**** here | realize the shell, get its size, create my widget
hierarchy: a bulletin board, and then a text widget,
that | stuff with the video text widget buffer */
/* get the total number of pages to print */
XtVaGetValues(ptext, XmNrows, &prows,
XmNrtotalLines, n_lines, NULL);
n_pages = n_lines / prows;
[x**** now print the pages in a loop */
for (cur_page=0; cur_page != n_pages; cur_page++) {
XpStartPage(XtDisplay(pshell), XtWindow(pshell), False);
XmRedisplayWidget(ptext); /* do the drawing */
XpEndPage(XtDisplay(pshell));
XmTextScroll(ptext, prows); /* get ready for next page */

[¥**% I'm done */
XpEndJob(XtDisplay(pshell));

}

Of course, one could change the above code to include itforkg) branch so that
the main program is not blocked while printing is going on. Another way to achieve

1176

Xm Functions

XmRedisplayWidget(library call)

a "print-in-the-background" effect is to use an Xt workproc. Using the same sample
application, that gives us:

Boolean

PrintOnePageWP(XtPointer npages) /* workproc */
/* _____________ ~k/

{

static int cur_page = 0;
cur_page++;

XpStartPage(XtDisplay(pshell), XtWindow(pshell), False);
XmRedisplayWidget(ptext); /* do the drawing */
XpEndPage(XtDisplay(pshell));

XmTextScroll(ptext, prows); /* get ready for next page */

if (cur_page == n_pages) { /**** I'm done */
XpEndJob(XtDisplay(pshell));

XtDestroyWidget(pshell);
XtCloseDisplay(XtDisplay(pshell));

}
return (cur_page == n_pages);
}
PrintOKCallback(...)
£ — */
{

pshell = XmPrintSetup (widget, pbs->print_screen,
"Print", NULL, 0);

XpStartJob(XtDisplay(pshell), XPSpool);
[**** here | get the size of the shell, create my widget
hierarchy: a bulletin board, and then a text widget,

that | stuff with the video text widget buffer */

/* get the total number of pages to print */
/* ... same code as above example */

1177

Motif 2.1—Programmer’s Reference

XmRedisplayWidget(library call)

[**** print the pages in the background */
XtAppAddWorkProc(app_context, PrintOnePageWP, n_pages);

Related Information
XmPrintSetup(3), XmPrintShell (3)

1178

Xm Functions

XmRegisterSegmentEncoding(library call)

XmRegisterSegmentEncoding

Purpose A compound string function that registers a compound text encoding format for a
specified font list element tag

Synopsis #include <Xm/Xm.h>

char * XmRegisterSegmentEncoding(
char *fontlist_tag
char *ct_encoding

Description

XmRegisterSegmentEncodingregisters a compound text encoding format with the
specified font list element tag. TREMCvtXmStringToCT function uses this registry

to map the font list tags of compound string segments to compound text encoding
formats. Registering a font list tag that already exists in the registry overwrites the
original entry. You can unregister a font list tag by passing a NULL value for the
ct_encodingparameter.

fontlist_tag Specifies the font list element tag to be registered. The tag must be a
NULL-terminated 1SO8859-1 string.

ct_encoding Specifies the compound text character set to be used for segments with
the font list tag. The value must be a NULL-terminated 1SO8859-1
string. A value ofXmFONTLIST_DEFAULT_TAG maps the specified
font list tag to the code set of the locale.

Return Values

Returns NULL for a new font list tag or the oldt_encodingvalue for an already
registered font list tag. The application is responsible for freeing the storage associated
with the returned data (if any) by callingtFree.

1179

Motif 2.1—Programmer’s Reference

XmRegisterSegmentEncoding(library call)

Related Information

XmCvtXmStringToCT (3), XmFontList (3), XmMapSegmentEncoding3), and
XmString (3).

1180

Xm Functions

XmRemoveFromPostFromList(library call)

XmRemoveFromPostFromList

Purpose a RowColumn function that disables a menu for a particular widget

Synopsis #include <Xm/RowColumn.h>

void XmRemoveFromPostFromList(
Widget menuy
Widget post_from_widgét

Description

XmRemoveFromPostFromList makes a Popup or Pulldown menu no longer
accessible from a widget. This function does not destroy a menu, or deallocate the
memory associated with it. It simply removes the widget from the menu’s list of
widgets permitted to post that menu.

If the menuargument refers to a Popup menu, the event handlers are removed from the
post_from_widgetvidget. If the argument refers to a Pulldown menu, its ID is removed
from the XmNsubMenuld of the specifiecpost_from_widgetAlso, if the menu is a
Pulldown menu, thepost_from_widgetvidget must be either a CascadeButton or a
CascadeButtonGadget.

menu Specifies the widget ID of a the Popup or Pulldown menu to be made
inaccessible from thpost_from_widgetvidget.

post_from_widget
Specifies the widget ID of the widget which can no longer post the
menu referred to by themenuargument..

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3).

1181

Motif 2.1—Programmer’s Reference

XmRemoveFromPostFromList(library call)

Related Information

XmAddToPostFromList (3), XmGetPostedFromWidge(3), and
XmRowColumn(3).

1182

Xm Functions

XmRemoveProtocolCallback(library call)

XmRemoveProtocolCallback

Purpose A VendorShell function that removes a callback from the internal list

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmRemoveProtocolCallback(
Widget shell
Atom property,
Atom protocol
XtCallbackProc callback
XtPointer closure;

Description
XmRemoveProtocolCallbackremoves a callback from the internal list.

XmRemoveWMProtocolCallback is a convenience interface. It calls
XmRemoveProtocolCallback with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
property Specifies the protocol property

protocol Specifies the protocol atom

callback Specifies the procedure to call when a protocol message is received
closure Specifies the client data to be passed to the callback when it is invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

1183

Motif 2.1—Programmer’s Reference

XmRemoveProtocolCallback(library call)

Related Information

VendorShell(3), XmAddProtocolCallback(3), XminternAtom (3), and
XmRemoveWMProtocolCallback(3).

1184

Xm Functions

XmRemoveProtocols(library call)

XmRemoveProtocols

Purpose A VendorShell function that removes the protocols from the protocol manager and
deallocates the internal tables

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmRemoveProtocols(
Widget shell
Atom property,
Atom * protocols
Cardinal num_protocoly

Description

XmRemoveProtocols removes the protocols from the protocol manager and
deallocates the internal tables. If any of the protocols are active, it will update the
handlers and update the propertysifellis realized.

XmRemoveWMProtocolsis a convenience interface. It calimRemoveProtocols
with the property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
property Specifies the protocol property
protocols Specifies the protocol atoms

num_protocols
Specifies the number of elements in protocols

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

1185

Motif 2.1—Programmer’s Reference

XmRemoveProtocols(library call)

Related Information

VendorShell(3), XmAddProtocols(3), XmInternAtom (3), and
XmRemoveWMProtocolq3).

1186

Xm Functions

XmRemoveTabGroup(library call)

XmRemoveTabGroup

Purpose A function that removes a tab group

Synopsis #include <Xm/Xm.h>

void XmRemoveTabGroup(
Widget tab_group;

Description

This function is obsolete and its behavior is replaced by seXim§navigationType

to XmMNONE. XmRemoveTabGroup removes a widget from the list of tab
groups associated with a particular widget hierarchy and sets the widget's
XmNnavigationType to XmNONE.

tab_group Specifies the widget ID

Related Information
XmAddTabGroup (3), XmManager(3), andXmPrimitive (3).

1187

Motif 2.1—Programmer’s Reference

XmRemoveWMProtocolCallback(library call)

XmRemoveWMProtocolCallback

Purpose A VendorShell convenience interface that removes a callback from the internal list

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmRemoveWMProtocolCallback(
Widget shell
Atom protocol
XtCallbackProc callback
XtPointer closure;

Description

XmRemoveWMProtocolCallback is a convenience interface. It calls
XmRemoveProtocolCallback with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
protocol Specifies the protocol atom

callback Specifies the procedure to call when a protocol message is received
closure Specifies the client data to be passed to the callback when it is invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmAddWMProtocolCallback (3), XmInternAtom (3), and
XmRemoveProtocolCallback3).

1188

Xm Functions
XmRemoveWMProtocols(library call)

XmRemoveWMProtocols

Purpose A VendorShell convenience interface that removes the protocols from the protocol
manager and deallocates the internal tables

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmRemoveWMProtocols(
Widget shell
Atom * protocols
Cardinal num_protocoly

Description

XmRemoveWMProtocolsis a convenience interface. It calimRemoveProtocols
with the property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
protocols Specifies the protocol atoms

num_protocols
Specifies the number of elements in protocols

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information

VendorShell(3), XmAddWMProtocols (3), XminternAtom (3), and
XmRemoveProtocol$3).

1189

Motif 2.1—Programmer’s Reference

XmRenderTableAddRenditions(library call)

XmRenderTableAddRenditions

Purpose Creates a new render table

Synopsis #include <Xm/Xm.h>

XmRenderTable XmRenderTableAddRenditions(
XmRenderTable oldtable
XmRendition *renditions,
Cardinal rendition_count
XmMergeMode merge_mode

Description

1190

XmRenderTableAddRenditions is a function to create a new render table that
includes the renditions listed inldtable if there is one. This function also copies
specified renditionsrénditiong to the new render table. The firgtndition_count
renditions of therenditionsarray are added to the new table. If a rendition is tagged
with a tag that matches a tag alreadyoidtable then the existing rendition using that
tag is either modified or freed and replaced with the new rendition, depending on the
value ofmerge_modelf oldtableis NULL, XmRenderTableAddRenditions creates

a new render table containing only the specified renditions.

This function deallocates the original render table after extracting the required
information. It is the responsibility of the caller to free the renditions ofréralitions
array by calling theXmRenditionFree function.

oldtable Specifies the render table to be added to.
renditions Specifies an array of renditions to be added.

rendition_count
Specifies the number of renditions fraenditionsto be added.

merge_modeSpecifies what to do if thXmNtag of a rendition matches that of one
that already exists inldtable The possible values are as follows:

Xm Functions
XmRenderTableAddRenditions(library call)

XmMERGE_REPLACE
Completely replaces the old rendition with the new one.

XmMERGE_OLD
Replaces any unspecified values of the old rendition with
the corresponding values from the new rendition.

XmMERGE_NEW
Replaces the old rendition with the new rendition,
replacing any unspecified values of the new rendition
with the corresponding values from the old rendition.

XmSKIP Skips over the new rendition, leaving the old rendition
intact.

Return Values

If renditionsis NULL or rendition_countis O (zero), this function returnsldtable
Otherwise, the function returns a ne¥mRenderTable. The function allocates
space to hold this new render table. The application is responsible for managing
this allocated space. The application can recover the allocated space by calling
XmRenderTableFree

Related Information
XmRendition(3) andXmRenderTableFreg3).

1191

Motif 2.1—Programmer’s Reference

XmRenderTableCopy(library call)

XmRenderTableCopy

Purpose A render table function that copies renditions

Synopsis #include <Xm/Xm.h>

XmRenderTable XmRenderTableCopy(
XmRenderTable table,
XmStringTag *tags,
int tag_couny;

Description

XmRenderTableCopy creates a new render table which will contain the renditions
of the table whose tags match those iags

table Specifies the table containing the renditions to be copied.

tags Specifies an array of tags, whose corresponding renditions are to be
copied. NULL indicates that the complete table should be copied.

tag_count Specifies the number of tags tags

Return Values

Returns NULL if table is NULL. Otherwise, this function returns the new render
table. This function allocates space to hold the new render table. The application
is responsible for managing this allocated space. The application can recover this
allocated space by callingmRenderTableFree

Related Information
XmRendition(3) andXmRenderTableFreg3).

1192

Xm Functions
XmRenderTableCvtFromProp(library call)

XmRenderTableCvtFromProp

Purpose A render table function that converts from a string representation to a render table

Synopsis #include <Xm/Xm.h>

XmRenderTable XmRenderTableCvtFromProp(
Widget widget
char *property,
unsigned int length);

Description

XmRenderTableCvtFromProp converts a string of characters representing a render
table to a render table. This routine is typically used by the destination of a data
transfer operation to produce a render table from a transferred representation.

widget Specifies the widget that is the destination for the render table
property Specifies a string of characters representing a render table

length Specifies the number of bytes property

Return Values

Returns a render table. The function allocates space to hold the returned render table.
The application is responsible for managing this allocated space. The application can
recover this allocated space by calliXgnRenderTableFree

Related Information
XmRenderTable(3), XmRenderTableCvtToProp(3), andXmRenderTableFreg3).

1193

Motif 2.1—Programmer’s Reference

XmRenderTableCvtToProp(library call)

XmRenderTableCvtToProp

Purpose A render table function that converts a render table to a string representation

Synopsis #include <Xm/Xm.h>

unsigned int XmRenderTableCvtToProp(
Widget widget
XmRenderTable table,
char ** prop_returr);

Description

XmRenderTableCvtToProp converts a render table to a string of characters
representing the render table. This routine is typically used by the source of a data
transfer operation to produce a representation for transferring a render table to a

destination.
widget Specifies the widget that is the source of the render table
table Specifies a render table to be converted

prop_return Specifies a pointer to a string that is created and returned by this
function. The function allocates space to hold the returned string.
The application is responsible for managing this allocated space. The
application can recover this allocated space by calKiigree.

Return Values

Returns the number of bytes in the string representation.

Related Information
XmRenderTable(3) andXmRenderTableCvtFromProp(3).

1194

Xm Functions

XmRenderTableFree(library call)

XmRenderTableFree

Purpose A render table function that recovers memory

Synopsis #include <Xm/Xm.h>

void XmRenderTableFree(
XmRenderTable table);

Description
XmRenderTableFreefrees the memory associated with the specified retalgde

table Specifies the table to be freed.

Related Information
XmRendition(3).

1195

Motif 2.1—Programmer’s Reference

XmRenderTableGetRendition(library call)

XmRenderTableGetRendition

Purpose A convenience function that matches a rendition tag

Synopsis #include <Xm/Xm.h>

XmRendition XmRenderTableGetRendition(
XmRenderTable table,
XmStringTag tag);

Description

XmRenderTableGetRendition searchedable and returns a copy of the rendition
whoseXmNtag resource matchdag. If no rendition matches, then NULL is returned.
This function is to be used for just one rendition match.

It is the responsibility of the caller to free the returned rendition with the
XmRenditionFree function.

table Specifies the table containing renditions to be searched.

tag Specifies the tag to search for.

Return Values

Returns NULL if there is no match; otherwise, this function returns a new
XmRendition.

Related Information

XmRenderTableGetRenditiong3), XmRenderTableGetTag$3), and
XmRendition(3).

1196

Xm Functions

XmRenderTableGetRenditions(library call)

XmRenderTableGetRenditions

Purpose A convenience function that matches rendition tags

Synopsis #include <Xm/Xm.h>

XmRendition *XmRenderTableGetRenditions(
XmRenderTable table,
XmStringTag *tags,
Cardinal tag_couny;

Description

XmRenderTableGetRenditionssearchesable and returns an array of copies of the
renditions whoseXmNtag resources match a tag fags If no renditions match, then
NULL is returned. The size of the returned arraydg_count The XmNtag resource
of each rendition will match the corresponding tagtdgs If no match is found for
a particular tag, the corresponding slot in the return value will be NULL.

It is the responsibility of the caller to call thémRenditionFree function to free the
new renditions, and th¥tFree function to free the array.

table Specifies the table containing renditions to be searched.
tags Specifies the tags to search for.

tag_count Specifies the number of tags tags

Return Values

Returns NULL if there is no match; otherwise, this function returns an array of new
XmRenditions.

1197

Motif 2.1—Programmer’s Reference

XmRenderTableGetRenditions(library call)

Related Information

XmRenderTableGetRendition(3), XmRenderTableGetTag$3), and
XmRendition(3).

1198

Xm Functions

XmRenderTableGetTags(library call)

XmRenderTableGetTags

Purpose A convenience function that gets rendition tags

Synopsis #include <Xm/Xm.h>

int XmRenderTableGetTags(
XmRenderTable table,
XmStringTag **tag_list);

Description

XmRenderTableGetTagssearches the specifigdble for the XmNtag resources of
all the renditions XmRenditions) entries. These tag resources are then composed into

an array.
table Specifies the table containing tiéenRenditions.
tag_list Is the array ofXmStringTagggenerated by this function. The function

allocates space to hold the returned tags and to holdathdist itself.

The application is responsible for managing this allocated space. This
application can recover this allocated space by calliigree once

for each of the returned tags, and then callXigrree on the returned
tag_listvariable itself.

Return Values

Returns the number of tags tag_list

Related Information
XmRendition(3).

1199

Motif 2.1—Programmer’s Reference

XmRenderTableRemoveRenditions(library call)

XmRenderTableRemoveRenditions

Purpose A convenience function that removes renditions

Synopsis #include <Xm/Xm.h>

XmRenderTable XmRenderTableRemoveRenditions(
XmRenderTable oldtable
XmStringTag *tags,
int tag_couny;

Description

XmRenderTableRemoveRenditiongemoves fronoldtablethe renditions whose tags
match the tags specified iags then places the remaining renditions in a newly created
render table.

oldtable Specifies the render table from which renditions are to be removed. This
function deallocates the original render table and the matching renditions
after extracting the required information.

tags Specifies an array of tags, whose corresponding renditions are to be
removed fromoldtable

tag_count Specifies the number of tags tags

Return Values

If oldtable or tags is NULL, or tag countis O (zero), or no renditions are
removed from oldtable this function returnsoldtable Otherwise, it returns a
newly allocatedXmRenderTable. The application is responsible for managing this
allocated render table. The application can recover this allocated space by calling
XmRenderTableFree

1200

Xm Functions

XmRenderTableRemoveRenditions(library call)

Related Information
XmRendition(3) andXmRenderTableFreg3).

1201

Motif 2.1—Programmer’s Reference

XmRenditionCreate(library call)

XmRenditionCreate

Purpose A convenience function that creates a rendition

Synopsis #include <Xm/Xm.h>

XmRendition XmRenditionCreate(
Widget widget
XmStringTag tag,

ArglList arglist,
Cardinal argcounj;

Description

XmRenditionCreate creates a rendition whose resources are set to the values specified
in arglist. Default values are assigned to resources that are not specified.

widget Specifies the widget used for deriving any necessary information for
creating the rendition. In particular, the X display widget will be
used for loading fonts.

tag Specifies the tag for the rendition. (This will become tKmNtag
resource for the rendition.)

arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argumenaligli$t).

Return Values

Returns the created rendition. The function allocates space to hold the returned
rendition. The application is responsible for managing this allocated space. The
application can recover this allocated space by calkngRenditionFree.

1202

Xm Functions

XmRenditionCreate(library call)

Related Information
XmRendition(3) and XmRenditionFree(3).

1203

Motif 2.1—Programmer’s Reference

XmRenditionFree(library call)

XmRenditionFree

Purpose A convenience function that frees a rendition

Synopsis #include <Xm/Xm.h>

void XmRenditionFree(
XmRendition renditior);

Description
XmRenditionFree recovers memory used bgndition

rendition Specifies the rendition to be freed.

Related Information
XmRendition(3).

1204

Xm Functions

XmRenditionRetrieve(library call)

XmRenditionRetrieve

Purpose A convenience function that retrieves rendition resources

Synopsis #include <Xm/Xm.h>

void XmRenditionRetrieve(
XmRendition rendition
ArglList arglist,
Cardinal argcounj;

Description

XmRenditionRetrieve extracts values for the given resourcemg(ist) from the
specified rendition. Note that the function returns the actual values of the resources,
not copies. Therefore it is necessary to copy before modifying any resource whose
value is an address. This will include such resourceXmdlfontName, XmNfont,

and XmNtabList .

rendition Specifies the rendition.
arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argumenaligli$t).

Related Information
XmRendition(3) andXmTabListCopy (3).

1205

Motif 2.1—Programmer’s Reference

XmRenditionUpdate(library call)

XmRenditionUpdate

Purpose A convenience function that modifies resources

Synopsis #include <Xm/Xm.h>

void XmRenditionUpdate(
XmRendition rendition
ArglList arglist,
Cardinal argcounj;

Description
XmRenditionUpdate modifies resources in the specified rendition.
rendition Specifies the rendition.
arglist Specifies the argument list.

argcount Specifies the number of attribute/value pairs in the argumenaligli$t).

Related Information
XmRendition(3).

1206

Xm Functions

XmRepTypeAddReverse(library call)

XmRepTypeAddReverse

Purpose A representation type manager function that installs the reverse converter for a
previously registered representation type

Synopsis #include <Xm/RepType.h>

void XmRepTypeAddReverse(
XmRepTypeld rep_type_id;

Description

XmRepTypeAddReverseinstalls the reverse converter for a previously registered
representation type. The reverse converter takes a numerical representation type value
and returns its corresponding string value. Certain applications may require this
capability to obtain a string value to display on a screen or to build a resource file.

The valuesargument of theXmRepTypeRegisterfunction can be used to register
representation types with nonconsecutive values or with duplicate names for the same
value. If the list of numerical values for a representation type contains duplicate
values, the reverse converter uses the first name ivdhee_namesist that matches

the specified numeric value. For example, faue_namesarray hasance] proceed
andabort, and the correspondingluesarray contains 0, 1, and 0, the reverse converter
will return cancelinstead ofabort for an input value of 0.

rep_type_id Specifies the identification number of the representation type

Related Information
XmRepTypeGetld(3) andXmRepTypeRegiste(3).

1207

Motif 2.1—Programmer’s Reference

XmRepTypeGetld(library call)

XmRepTypeGetld

Purpose A representation type manager function that retrieves the identification number of a
representation type

Synopsis #include <Xm/RepType.h>

XmRepTypeld XmRepTypeGetld(
String rep_typé;

Description

XmRepTypeGetld searches the registration list for the specified representation type
and returns the associated identification number.

rep_type Specifies the representation type for which an identification number is
requested

Return Values

Returns the identification number of the specified representation type. If the
representation type is not registered, the function retm&EP_TYPE_INVALID .

Related Information
XmRepTypeGetRegistere@3) andXmRepTypeRegiste(3).

1208

Xm Functions
XmRepTypeGetNamelList(library call)

XmRepTypeGetNameList

Purpose A representation type manager function that generates a list of values for a
representation type

Synopsis #include <Xm/RepType.h>

String * XmRepTypeGetNamelList(
XmRepTypeld rep_type_id
Booleanuse_uppercase_format

Description

XmRepTypeGetNamelList generates a NULL-terminated list of the value names
associated with the specified representation type. Each value name is a NULL-
terminated string. This routine allocates memory for the returned data. The application
must free this memory usingtFree.

rep_type_id Specifies the identification number of the representation type.

use_uppercase_format
Specifies a Boolean value that controls the format of the name list. If
the value is True, each value name is in uppercase characters prefixed
by Xm:; if it is False, the names are in lowercase characters.

Return Values

Returns a pointer to an array of the value names.

Related Information
XmRepTypeGetld(3), XmRepTypeGetRegistered3), andXmRepTypeRegiste(3).

1209

Motif 2.1—Programmer’s Reference

XmRepTypeGetRecord(library call)

XmRepTypeGetRecord

Purpose A representation type manager function that returns information about a representation
type

Synopsis #include <Xm/RepType.h>

XmRepTypeEntry XmRepTypeGetRecord(
XmRepTypeld rep_type_id;

Description

XmRepTypeGetRecordretrieves information about a particular representation type
that is registered with the representation type manager. This routine allocates memory
for the returned data. The application must free this memory ustReee.

rep_type_id The identification humber of the representation type

The representation type entry structure contains the following information:
typedef struct
{
String rep_type_name
String *value_names
unsigned char *alues
unsigned char num_values
Booleanreverse_installed
XmRepTypeld rep_type_id
} XmRepTypeEntryRec, *XmRepTypeEntry;

rep_type_name

The name of the representation type
value_namesAn array of representation type value names
values An array of representation type numerical values

num_values The number of values associated with the representation type

1210

Xm Functions

XmRepTypeGetRecord(library call)

reverse_installed
A flag that indicates whether or not the reverse converter is installed

rep_type_id The identification nhumber of the representation type

Return Values

Returns a pointer to the representation type entry structure that describes the
representation type.

Related Information
XmRepTypeGetld(3), XmRepTypeGetRegistered3), andXmRepTypeRegiste(3).

1211

Motif 2.1—Programmer’s Reference

XmRepTypeGetRegistered(library call)

XmRepTypeGetRegistered

Purpose A representation type manager function that returns a copy of the registration list

Synopsis #include <Xm/RepType.h>

XmRepTypeList XmRepTypeGetRegistered(
void);

Description

1212

XmRepTypeGetRegisteredretrieves information about all representation types that
are registered with the representation type manager. The registration list is an array of
structures, each of which contains information for a representation type entry. The end
of the registration list is marked with a representation type entry wiegseype _name

field has a NULL pointer. This routine allocates memory for the returned data. The
application must free this memory usixgFree.

The representation type entry structure contains the following information:
typedef struct
{
String rep_type_name
String *value_names
unsigned char *values
unsigned char num_values
Booleanreverse_installed
XmRepTypeld rep_type_id
} XmRepTypeEntryRec, *XmRepTypelList;

rep_type_name

The name of the representation type
value_namedAn array of representation type value names
values An array of representation type numerical values

num_values The number of values associated with the representation type

Xm Functions

XmRepTypeGetRegistered(library call)

reverse_installed
A flag that indicates whether or not the reverse converter is installed

rep_type_id The identification nhumber of the representation type

Return Values

Returns a pointer to the registration list of representation types.

Related Information
XmRepTypeRegistef3) andXmRepTypeGetRecorda3).

1213

Motif 2.1—Programmer’s Reference

XmRepTypelnstallTearOffModelConverter(library call)

XmRepTypelnstallTearOffModelConverter

Purpose A representation type manager function that installs the resource converter for
XmNtearOffModel.

Synopsis #include <Xm/RepType.h>

void XmRepTypelnstallTearOffModelConverter(
void);

Description

XmRepTypelnstallTearOffModelConverter installs the resource converter that
allows values for the<mNtearOffModel resource to be specified in resource default
files.

Related Information

XmRowColumn(3).

1214

Xm Functions

XmRepTypeRegister(library call)

XmRepTypeRegister

Purpose A representation type manager function that registers a representation type resource

Synopsis #include <Xm/RepType.h>

XmRepTypeld XmRepTypeRegister(
String rep_type
String *value_names
unsigned char *values
unsigned charnum_valueg

Description

XmRepTypeRegisterregisters a representation type resource with the representation
type manager. All features of the representation type management facility become
available for the specified representation type. The function installs a forward type
converter to convert string values to numerical representation type values.

When thevaluesargument is NULL, consecutive numerical values are assumed. The
order of the strings in thealue_namesirray determines the numerical values for the
resource. For example, the first value name is 0 (zero); the second value name is 1;
and so on.

If it is non-NULL, the valuesargument can be used to assign values to representation
types that have nonconsecutive values or have duplicate names for the same value.
Representation types registered in this manner will consume additional storage and
will be slightly slower than representation types with consecutive values.

A representation type can only be registered once; if the same representation type
name is registered more than once, the behavior is undefined.

The functionXmRepTypeAddReverseinstalls a reverse converter for a registered
representation type. The reverse converter takes a representation type numerical value
and returns the corresponding string value. If the list of numerical values for a
representation type contains duplicate values, the reverse converter uses the first name
in the value_namedist that matches the specified numeric value. For example, if a

1215

Motif 2.1—Programmer’s Reference

XmRepTypeRegister(library call)

value_namesrray hasance] proceed andabort, and the correspondingaluesarray
contains 0, 1, and 0O, the reverse converter will rettaincelinstead ofabort for an
input value of 0.

rep_type Specifies the representation type name.

value_namesSpecifies a pointer to an array of value names associated with the
representation type. A value name is specified in lowercase characters
without an Xm prefix. Words within a name are separated with
underscores.

values Specifies a pointer to an array of values associated with the
representation type. A value in this array is associated with the value
name in the corresponding position of thalue_namesrray.

num_values Specifies the number of entries in thelue_namesind valuesarrays.

Return Values

Returns the identification number for the specified representation type.

Related Information

XmRepTypeAddReversé3), XmRepTypeGetld(3), XmRepTypeGetNameLis(3),
XmRepTypeGetRecord3), XmRepTypeGetRegistere@3), and
XmRepTypeValidValue(3).

1216

Xm Functions

XmRepTypeValidValue(library call)

XmRepTypeValidValue

Purpose A representation type manager function that tests the validity of a numerical value of
a representation type resource

Synopsis #include <Xm/RepType.h>

Boolean XmRepTypeValidValue(
XmRepTypeld rep_type_id
unsigned chartest_value
Widget enable_default_warning

Description

XmRepTypeValidValue tests the validity of a numerical value for a given
representation type resource. The function generates a default warning message if the
value is invalid and thenable_default_ warningrgument is non-NULL.

rep_type_id Specifies the identification number of the representation type.
test value Specifies the numerical value to test.

enable_default_warning
Specifies the ID of the widget that contains a default warning message.
If this parameter is NULL, no default warning message is generated and
the application must provide its own error handling.

Return Values

Returns True if the specified value is valid; otherwise, returns False.

Related Information
XmRepTypeGetld(3) andXmRepTypeRegiste(3).

1217

Motif 2.1—Programmer’s Reference

XmResolveAllPartOffsets(library call)

XmResolveAllPartOffsets

Purpose A function that allows writing of upward-compatible applications and widgets

Synopsis #include <Xm/Xm.h>

void XmResolveAllPartOffsets(
WidgetClasswidget_class
XmOffsetPtr * offset
XmOffsetPtr * constraint_offsét

Description

1218

Note: This routine is obsolete and exists for compatibility with previous releases.
You should callXmeResolvePartOffsetsnstead.

The use of offset records requires two extra global variables per widget class. The
variables consist of pointers to arrays of offsets into the widget record and constraint
record for each part of the widget structure. TXimResolveAllPartOffsetsfunction
allocates the offset records needed by an application to guarantee upward-compatible
access to widget instance and constraint records by applications and widgets. These
offset records are used by the widget to access all of the widget's variables. A widget
needs to take the steps described in the following paragraphs.

Instead of creating a resource list, the widget creates an offset resource list. To
accomplish this, use thEmPartResource structure and th&XmPartOffset macro.

The XmPartResource data structure looks just like a resource list, but instead of
having one integer for its offset, it has two shorts. This structure is put into the class
record as if it were a normal resource list. Instead of usitQffset for the offset,

the widget useXmPartOffset.

If the widget is a subclass of the Constraint class and it defines additional constraint
resources, create an offset resource list for the constraint part as well. Instead of using
XtOffset for the offset, the widget usesmConstraintPartOffset in the constraint
resource list.

Xm Functions

XmResolveAllPartOffsets(library call)

XmPartResource resources[] = {

{ BarNxyz, BarCXyz, XmRBoolean, sizeof(Boolean),
XmPartOffset(Bar,xyz), XmRImmediate, (XtPointer)False } };
XmPartResource constraints[] = {
{ BarNmaxWidth, BarNMaxWidth,

XmRDimension, sizeof(Dimension),
XmConstraintPartOffset(Bar,max_width),
XmRImmediate, (XtPointer)100 } };

Instead of putting the widget size in the class record, the widget puts the widget part
size in the same field. If the widget is a subclass of the Constraint class, instead of
putting the widget constraint record size in the class record, the widget puts the widget
constraint part size in the same field.

Instead of puttingtVersion in the class record, the widget pigversionDontCheck
in the class record.

Define a variable, of typ&XmOffsetPtr, to point to the offset record. If the widget is

a subclass of the Constraint class, define a variable of Xyp®ffsetPtr to point to

the constraint offset record. These can be part of the widget's class record or separate
global variables.

In class initialization, the widget callmResolveAllPartOffsets passing it pointers

to the class record, the address of the offset record, and the address of the constraint
offset record. If the widget not is a subclass of the Constraint class, it should pass
NULL as the address of the constraint offset record. This does several things:

» Adds the superclass (which, by definition, has already been initialized) size field
to the part size field

« If the widget is a subclass of the Constraint class, adds the superclass constraint
size field to the constraint size field

* Allocates an array based upon the number of superclasses

« If the widget is a subclass of the constraint class, allocates an array for the
constraint offset record

* Fills in the offsets of all the widget parts and constraint parts with the appropriate
values, determined by examining the size fields of all superclass records

» Uses the part offset array to modify the offset entries in the resource list to be
real offsets, in place

1219

Motif 2.1—Programmer’s Reference

XmResolveAllPartOffsets(library call)

1220

The widget defines a constant that will be the index to its part structure in the
offsets array. The value should be 1 greater than the index of the widget’s superclass.
Constants defined for akm widgets can be found iXmP.h.

#define Barlndex (XmBulletinBindex + 1)

Instead of accessing fields directly, the widget must always go through the offset table.
The XmField and XmConstraintField macros help you access these fields. Because
the XmPartOffset, XmConstraintPartOffset, XmField, and XmConstraintField

macros concatenate things, you must ensure that there is no space after the part
argument. For example, the following macros do not work because of the space after
the part (Label) argument:

XmField(w, offset, Label, text, char *)
XmPartOffset(Label, text).

Therefore, you must not have any spaces after the part (Label) argument, as illustrated
here:

XmField(w, offset, Label, text, char *)
You can define macros for each field to make this easier. Assume an integexyfield

#define BarXyz(w) (*(int *)(((char *) w) + \
offset[Barindex] + XtOffset(BarPart,xyz)))

For constraint fieldmax_width

#define BarMaxWidth(w) \
XmConstraintField(w,constraint_offsets,Bar,max_width,Dimension)

The parameters foKmResolveAllPartOffsetsare

widget_classSpecifies the widget class pointer for the created widget

offset Returns the offset record

constraint_offset
Returns the constraint offset record

Xm Functions

XmResolveAllPartOffsets(library call)

Related Information
XmResolvePartOffset$3).

1221

Motif 2.1—Programmer’s Reference

XmResolvePartOffsets(library call)

XmResolvePartOffsets

Purpose A function that allows writing of upward-compatible applications and widgets

Synopsis #include <Xm/Xm.h>

void XmResolvePartOffsets(
WidgetClasswidget_class
XmOffsetPtr * offsed;

Description

1222

The use of offset records requires one extra global variable per widget class. The
variable consists of a pointer to an array of offsets into the widget record for each
part of the widget structure. ThémResolvePartOffsetsfunction allocates the offset
records needed by an application to guarantee upward-compatible access to widget
instance records by applications and widgets. These offset records are used by the
widget to access all of the widget's variables. A widget needs to take the steps
described in the following paragraphs.

Instead of creating a resource list, the widget creates an offset resource list. To
accomplish this, use thEmPartResource structure and th&mPartOffset macro.

The XmPartResource data structure looks just like a resource list, but instead of
having one integer for its offset, it has two shorts. This structure is put into the class
record as if it were a normal resource list. Instead of usitQffset for the offset,

the widget useXmPartOffset.

XmPartResource resources[] = {

{ BarNxyz, BarCXyz, XmRBoolean,
sizeof(Boolean), XmPartOffset(Bar,xyz),
XmRImmediate, (XtPointer)False }

h

Instead of putting the widget size in the class record, the widget puts the widget part
size in the same field.

Xm Functions

XmResolvePartOffsets(library call)

Instead of puttingtVersion in the class record, the widget pigversionDontCheck
in the class record.

The widget defines a variable, of typ@nOffsetPtr, to point to the offset record. This
can be part of the widget's class record or a separate global variable.

In class initialization, the widget calldmResolvePartOffsets passing it a pointer to
contain the address of the offset record and the class record. This does several things:

» Adds the superclass (which, by definition, has already been initialized) size field
to the part size field

* Allocates an array based upon the number of superclasses

* Fills in the offsets of all the widget parts with the appropriate values, determined
by examining the size fields of all superclass records

» Uses the part offset array to modify the offset entries in the resource list to be
real offsets, in place

The widget defines a constant that will be the index to its part structure in the
offsets array. The value should be 1 greater than the index of the widget’s superclass.
Constants defined for akm widgets can be found iXmP.h.

#define Barlndex (XmBulletinBindex + 1)

Instead of accessing fields directly, the widget must always go through the offset table.
The XmField macro helps you access these fields. BecauseXthBartOffset and
XmField macros concatenate things together, you must ensure that there is no space
after the part argument. For example, the following macros do not work because of
the space after the part (Label) argument:

XmField(w, offset, Label, text, char *)
XmPartOffset(Label, text)

Therefore, you must not have any spaces after the part (Label) argument, as illustrated
here:

XmField(w, offset, Label, text, char *)

You can define macros for each field to make this easier. Assume an integexyfield

1223

Motif 2.1—Programmer’s Reference

XmResolvePartOffsets(library call)

#define BarXyz(w) (*(int *)(((char *) w) + \
offset[Barindex] + XtOffset(BarPart,xyz)))

The parameters foKmResolvePartOffsetsare
widget_classSpecifies the widget class pointer for the created widget

offset Returns the offset record

Related Information
XmResolveAllPartOffsetq3).

1224

Xm Functions

XmScaleGetValue(library call)

XmScaleGetValue

Purpose A Scale function that returns the current slider position

Synopsis #include <Xm/Scale.h>

void XmScaleGetValue(
Widget widget
int * value_return);

Description
XmScaleGetValuereturns the current slider position value displayed in the scale.
widget Specifies the Scale widget ID
value_return Returns the current slider position value

For a complete definition of Scale and its associated resourceXns8ealg3).

Related Information
XmScalg3).

1225

Motif 2.1—Programmer’s Reference

XmScaleSetTicks(library call)

XmScaleSetTicks

Purpose A Scale function that controls tick marks

Synopsis #include <Xm/Scale.h>

void XmScaleSetTicks(
Widget scale
int big_every
Cardinal num_medium
Cardinal num_small
Dimension size_big
Dimension size_medium
Dimension size_sma}t

Description

XmScaleSetTickscontrols the number, location, and size of the tick marks on a Scale.
Each tick mark is a SeparatorGadget oriented perpendicular to the Scale’s orientation.
For example, if the Scale is oriented horizontally, the tick marks will be oriented
vertically.

If you specify tick marks for a Scale and then change the Scale’s orientation, you will
have to do the following:

» Remove all the tick marks. To remove tick marks from a Scale, you must destroy
(with XtDestroyChildreh the SeparatorGadget tick marks. The first two children
of a Scale are its title and scroll bar, and all additional children are tick marks.

» Recreate the tick marks by calliigmScaleSetTicks
scale Specifies the Scale widget ID that is getting the tick marks.
big_every Specifies the number of scale values between big ticks.

num_medium
Specifies the number of medium ticks between big values.

1226

Xm Functions
XmScaleSetTicks(library call)

num_small Specifies the number of small ticks between medium values.
size_big Specifies the size (either width or height) of the big ticks.
size_mediumSpecifies the size (either width or height) of the medium ticks.
size_small Specifies the size (either width or height) of the small ticks.

For a complete definition of Scale and its associated resource¥Xns8ealg3).

Related Information
XmScalg3).

1227

Motif 2.1—Programmer’s Reference

XmScaleSetValue(library call)

XmScaleSetValue

Purpose A Scale function that sets a slider value

Synopsis #include <Xm/Scale.h>

void XmScaleSetValue(
Widget widget
int value);

Description
XmScaleSetValuesets the slidevalue within the Scale widget.
widget Specifies the Scale widget ID.
value Specifies the slider position along the scale. This setsxiinélvalue
resource.

For a complete definition of Scale and its associated resource¥Xns8ealg3).

Related Information
XmScalg3).

1228

Xm Functions

XmScrollBarGetValues(library call)

XmScrollBarGetValues

Purpose A ScrollBar function that returns the ScrollBar’s increment values

Synopsis #include <Xm/ScrollBar.h>

void XmScrollBarGetValues (widget, value_return, slider_size_return,
increment_return, page_increment_return

Widget widget

int *value_return

int *slider_size return

int *increment_return

int * page_increment_retutn

Description

XmScrollBarGetValues returns the the ScrollBar's increment values. The scroll
region is overlaid with a slider bar that is adjusted in size and position using the
main ScrollBar or set slider function attributes.

widget Specifies the ScrollBar widget ID.

value_return Returns the ScrollBar’s slider position between ¥XraNminimum and
XmNmaximum resources. Specify NULL to prevent the return of a
particular value.

slider_size_return
Returns the size of the slider as a value between 0 (zero) and the absolute
value of XmNmaximum minus XmNminimum . The size of the slider
varies, depending on how much of the slider scroll area it represents.

increment_return
Returns the amount of increment and decrement.

page_increment_return
Returns the amount of page increment and decrement.

For a complete definition of ScrollBar and its associated resources, see
XmScrollBar (3).

1229

Motif 2.1—Programmer’s Reference

XmScrollBarGetValues(library call)

Return Values

Returns the ScrollBar’'s increment values.

Related Information
XmScrollBar (3).

1230

Xm Functions

XmScrollBarSetValues(library call)

XmScrollBarSetValues

Purpose A ScroliBar function that changes ScrollBar's increment values and the slider’s size
and position

Synopsis #include <Xm/ScrollBar.h>
void XmScrollBarSetValues (vidget, value, slider_size, increment, page_increment,
notify)
Widget widget
int value
int slider_size
int increment
int page_increment
Boolean notify,

Description

XmSetScrollBarValueshanges the ScrollBar’s increment values and the slider's size
and position. The scroll region is overlaid with a slider bar that is adjusted in size and
position using the main ScrollBar or set slider function attributes.

widget Specifies the ScrollBar widget ID.

value Specifies the ScrollBar's slider position. Refer to th@nNvalue
resource described oimScrollBar (3).

slider_size Specifies the size of the slider. Refer to tkenNsliderSize resource
described orxXmScrollBar (3). This argument sets that resource. Specify
a value of 0 (zero) if you do not want to change the value.

increment Specifies the amount of button increment and decrement. Refer to the
XmNincrement resource described ofmsScrollBar (3). This argument
sets that resource. Specify a value of 0 (zero) if you do not want to
change the value.

1231

Motif 2.1—Programmer’s Reference

XmScrollBarSetValues(library call)

page_increment

notify

Specifies the amount of page increment and decrement. Refer to
the XmNpagelncrement resource described axmsScrollBar(3). This
argument sets that resource. Specify a value of O (zero) if you do not
want to change the value.

Specifies a Boolean value that, when True, indicates a change in
the ScrollBar value and also specifies that the ScrollBar widget
automatically activates the XmNvalueChangedCallback with

the recent change. If it is set to False, it specifies any change
that has occurred in the ScrollBar's value, but does not activate
XmNvalueChangedCallback

For a complete definition of ScrollBar and its associated resources, see
XmScrollBar (3).

Related Information

XmScrollBar (3).

1232

Xm Functions

XmScrollVisible(library call)

XmScrollVisible

Purpose A ScrolledwWindow function that makes an invisible descendant of a ScrolledWindow
work area visible

Synopsis #include <Xm/ScrolledW.h>

void XmScrollVisible(
Widget scrollw_widget
Widget widget
Dimension left_right_margin
Dimension top_bottom_margih

Description

XmScrollVisible makes an obscured or partially obscured widget or gadget descendant
of a ScrolledWindow work area visible. The function repositions the work area and
sets the specified margins between the widget and the nearest viewport boundary.
The widget’s location relative to the viewport determines whether one or both of the
margins must be adjusted. This function requires thaddmdscrollingPolicy of the
ScrolledWindow widget be set t§mAUTOMATIC .

scrollw_widget
Specifies the ID of the ScrolledWindow widget whose work area window
contains an obscured descendant.

widget Specifies the ID of the widget to be made visible.

left_right_margin
Specifies the margin to establish between the left or right edge of
the widget and the associated edge of the viewport. This margin is
established only if the widget must be moved horizontally to make it
visible.

top_bottom_margin
Specifies the margin to establish between the top or bottom edge of
the widget and the associated edge of the viewport. This margin is

1233

Motif 2.1—Programmer’s Reference

XmScrollVisible(library call)

established only if the widget must be moved vertically to make it
visible.

For a complete definition of ScrolledWindow and its associated resources, see
XmScrolledWindow(3)

Related Information
XmScrolledWindow(3).

1234

Xm Functions

XmScrolledWindowSetAreas(library call)

XmScrolledWindowSetAreas

Purpose A ScrolledWindow function that adds or changes a window work region and a
horizontal or vertical ScrollBar widget to the ScrolledWindow widget

Synopsis #include <Xm/ScrolledW.h>

void XmScrolledWindowSetAreas(
Widget widget
Widget horizontal_scrollbay
Widget vertical_scrollbar
Widget work_region);

Description

XmScrolledWindowSetAreasadds or changes a window work region and a horizontal
or vertical ScrollBar widget to the ScrolledWindow widget for the application. Each
widget is optional and may be passed as NULL. This function is obsolete and exists for
compatibility with other releases. Use tenNscrolledWindowChildType resource

of XmScrolledWindow instead.

widget Specifies the ScrolledWindow widget ID.

horizontal_scrollbar
Specifies the ScrollBar widget ID for the horizontal ScrollBar to be
associated with the ScrolledWindow widget. Set this ID only after
creating an instance of the ScrolledWindow widget. The resource name
associated with this argumentXsnNhorizontalScrollBar .

vertical_scrollbar
Specifies the ScrollBar widget ID for the vertical ScrollBar to be
associated with the ScrolledWindow widget. Set this ID only after
creating an instance of the ScrolledWindow widget. The resource name
associated with this argumentisnNverticalScrollBar .

work_region Specifies the widget ID for the work window to be associated with
the ScrolledWindow widget. Set this ID only after creating an instance

1235

Motif 2.1—Programmer’s Reference

XmScrolledWindowSetAreas(library call)

of the ScrolledWindow widget. The attribute name associated with this
argument isXmNworkWindow .

For a complete definition of ScrolledWindow and its associated resources, see
XmScrolledWindow(3).

Related Information
XmScrolledWindow(3).

1236

Xm Functions
XmSelectionBoxGetChild(library call)

XmSelectionBoxGetChild

Purpose A SelectionBox function that is used to access a component

Synopsis #include <Xm/SelectioB.h>

Widget XmSelectionBoxGetChild(
Widget widget
unsigned char child);

Description

XmSelectionBoxGetChildis used to access a component within a SelectionBox. The
parameters given to the function are the SelectionBox widget and a value indicating
which component to access.

NOTE: This routine is obsolete and exists for compatibility with previous releases.
Instead of callingXmSelectionBoxGetChild you should callXtNameToWidget as
described in theXmSelectionBox3) reference page.

widget Specifies the SelectionBox widget ID.

child Specifies a component within the SelectionBox. The following values
are legal for this parameter:

* XmDIALOG_APPLY_BUTTON

* XmDIALOG_CANCEL_BUTTON
* XmDIALOG_DEFAULT_BUTTON
* XmDIALOG_HELP_BUTTON

* XmDIALOG_LIST

* XmDIALOG_LIST_LABEL

* XmDIALOG_OK_BUTTON

*» XmDIALOG_SELECTION_LABEL

1237

Motif 2.1—Programmer’s Reference
XmSelectionBoxGetChild(library call)

*» XmDIALOG_SEPARATOR
* XmDIALOG_TEXT
* XmDIALOG_WORK_AREA

For a complete definition of SelectionBox and its associated resources, see
XmSelectionBox3).

Return Values

Returns the widget ID of the specified SelectionBox component. An application should
not assume that the returned widget will be of any particular class.

Related Information
XmSelectionBox3).

1238

Xm Functions

XmSetColorCalculation(library call)

XmSetColorCalculation

Purpose A function to set the procedure used for default color calculation

Synopsis #include <Xm/Xm.h>

XmColorProc XmSetColorCalculation(
XmColorProc color_prog;

Description

XmSetColorCalculation sets the procedure to calculate default colors. This procedure
is used to calculate the foreground, top shadow, bottom shadow, and select colors on
the basis of a given background color. If called with an argument of NULL, it restores
the default procedure used to calculate colors.

color_proc Specifies the procedure to use for color calculation.

Following is a description of the XmColorProc type wused by
XmSetColorCalculation:

void (*color_prog (background_color, foreground_color, select_color, top_shadow_color,
bottom_shadow_coldr

XColor *background_coloy

XColor *foreground_color

XColor *select_color

XColor *top_shadow_colar

XColor *bottom_shadow_color

color_proc Specifies the procedure used to calculate default colors.

The procedure is passed a pointer toXaolor structure representing the background
color. The pixel, red, green and blue members of this structure are filled in with
values that are valid for the current colormap.

The procedure is passed pointersX@olor structures representing the foreground,
select, top shadow, and bottom shadow colors to be calculated. The procedure

1239

Motif 2.1—Programmer’s Reference

XmSetColorCalculation(library call)

calculates and fills in theed, green and blue members of these structures. The
procedure should not allocate color cells for any of these colors.

background_color
Specifies the background color.

foreground_color
Specifies the foreground color to be calculated.

select_color Specifies the select color to be calculated.

top_shadow_color
Specifies the top shadow color to be calculated.

bottom_shadow_color
Specifies the bottom shadow color to be calculated.

Return Values

Returns the color calculation procedure that was used at the time this routine was
called.

Related Information
XmChangeColon(3), XmGetColors(3), andXmGetColorCalculation(3).

1240

Xm Functions
XmSetFontUnit(library call)

XmSetFontUnit

Purpose A function that sets the font unit value for a display

Synopsis #include <Xm/Xm.h>

void XmSetFontUnit(
Display * display,
int font_unit_valug

Description

XmSetFontUnit provides an external function to initialize font unit values.
Applications may want to specify resolution-independent data based on a global
font size. See theXmNunitType resource description in the reference pages for
XmGadget, XmManager, and XmPrimitive for more information on resolution
independence.

This function sets the font units for all screens on the display.

NOTE: XmSetFontUnit is obsolete and exists for compatibility with previous
releases. Instead of using this function, provide initial values or XtdletValues
for the XmScreen resource@nNhorizontalFontUnit and XmNverticalFontUnit .

display Defines the display for which this font unit value is to be applied.

font_unit_value
Specifies the value to be used for both horizontal and vertical font units
in the conversion calculations.

Related Information

XmConvertUnits(3), XmSetFontUnits(3), XmGadget(3), XmManager(3),
XmPrimitive (3), andXmScreen(3).

1241

Motif 2.1—Programmer’s Reference

XmSetFontUnits(library call)

XmSetFontUnits

Purpose A function that sets the font unit value for a display

Synopsis #include <Xm/Xm.h>

void XmSetFontUnits(
Display * display,
int h_value
int v_value;

Description

XmSetFontUnits provides an external function to initialize font unit values.
Applications may want to specify resolution-independent data based on a global font
size. This function must be called before any widgets with resolution-independent
data are created. See tKenNunitType resource description in the reference pages
for XmGadget, XmManager, and XmPrimitive for more information on resolution
independence.

This function sets the font units for all screens on the display.

NOTE: XmSetFontUnits is obsolete and exists for compatibility with previous
releases. Instead of using this function, provide initial values or XtdletValues
for the XmScreen resource@nNhorizontalFontUnit and XmNverticalFontUnit .

display Defines the display for which this font unit value is to be applied.

h_value Specifies the value to be used for horizontal units in the conversion
calculations.

h_value Specifies the value to be used for vertical units in the conversion
calculations.

1242

Xm Functions

XmSetFontUnits(library call)

Related Information

XmConvertUnits(3), XmSetFontUnit(3), XmGadget(3), XmManager(3),
XmPrimitive (3), andXmScreen(3).

1243

Motif 2.1—Programmer’s Reference

XmSetMenuCursor(library call)

XmSetMenuCursor

Purpose A function that modifies the menu cursor for a client

Synopsis #include <Xm/Xm.h>

void XmSetMenuCursor(
Display * display,
Cursor cursorld);

Description

XmSetMenuCursor programmatically modifies the menu cursor for a client; after
the cursor has been created by the client, this function registers the cursor with the
menu system. After calling this function, the specified cursor is displayed whenever
this client displays a Motif menu on the indicated display. The client can then specify
different cursors on different displays.

This function sets the menu cursor for all screens on the disglagetMenuCursor

is obsolete and exists for compatibility with previous releases. Instead of using
this function, provide initial values or caKtSetValues for the XmScreen resource
XmNmenuCursor.

display Specifies the display to which the cursor is to be associated

cursorld Specifies theX cursor ID

Related Information
XmScreen(3).

1244

Xm Functions

XmSetProtocolHooks(library call)

XmSetProtocolHooks

Purpose A VendorShell function that allows preactions and postactions to be executed when a
protocol message is received from MWM

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmSetProtocolHooks(
Widget shell
Atom property,
Atom protocol
XtCallbackProc prehook
XtPointer pre_closure
XtCallbackProc posthook
XtPointer post_closurg

Description

XmSetProtocolHooksis used by shells that want to have preactions and postactions
executed when a protocol message is received from MWM. Since there is no
guaranteed ordering in execution of event handlers or callback lists, this allows the
shell to control the flow while leaving the protocol manager structures opaque.

XmSetWMProtocolHooks is a convenience interface. It calenSetProtocolHooks
with the property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
property Specifies the protocol property
protocol Specifies the protocol atom

prehook Specifies the procedure to call before calling entries on the client
callback list

pre_closure Specifies the client data to be passed to the prehook when it is invoked

1245

Motif 2.1—Programmer’s Reference

XmSetProtocolHooks(library call)

posthook Specifies the procedure to call after calling entries on the client callback
list

post_closure Specifies the client data to be passed to the posthook when it is invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

Related Information
VendorShell(3), XminternAtom (3), andXmSetWMProtocolHooks(3).

1246

Xm Functions
XmSetWMProtocolHooks(library call)

XmSetWMProtocolHooks

Purpose A VendorShell convenience interface that allows preactions and postactions to be
executed when a protocol message is received from the window manager

Synopsis #include <Xm/Xm.h>
#include <Xm/Protocols.h>

void XmSetWMProtocolHooks(
Widget shell
Atom protocol
XtCallbackProc prehook
XtPointer pre_closure
XtCallbackProc posthook
XtPointer post_closurg

Description

XmSetWMProtocolHooks is a convenience interface. It caknSetProtocolHooks
with the property value set to the atom returned by interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated
protocol Specifies the protocol atom (or @mt cast toAtom)

prehook Specifies the procedure to call before calling entries on the client
callback list

pre_closure Specifies the client data to be passed to the prehook when it is invoked

posthook Specifies the procedure to call after calling entries on the client callback
list

post_closure Specifies the client data to be passed to the posthook when it is invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3).

1247

Motif 2.1—Programmer’s Reference

XmSetWMProtocolHooks(library call)

Related Information
VendorShell(3), XminternAtom (3), andXmSetProtocolHookg3).

1248

Xm Functions

XmSpinBox(library call)

XmSpinBox

Purpose The SpinBox widget class

Synopsis #include <Xm/SpinB.h>

Description

SpinBox allows the user to select a value from a ring of related but mutually exclusive
choices which are displayed in sequence. The SpinBox always has an increment arrow,
a decrement arrow, and one or more other children. The choices are displayed, one at
a time, in a traversable text child{mText or XmTextField. The user clicks Btnl

on an arrow to display the next (or previous) item in the ring of choices. By pressing
and holding Btnl on an arrow, the user continuously cycles through the choices.

The traversable children in a SpinBox can be of t}{seNUMERIC or XmSTRING,

as defined by thXmNspinBoxChildType constraint resource. The ring of choices for
numeric children is defined by minimum, maximum, incremental, and decimal point
values. The ring of choices for string children is defined in an array of compound
strings.

The application programmer can include multiple traversable children in the SpinBox.
For example, a SpinBox might consist of a pair of arrows and month, day, and year
text fields. The arrows only spin the child that currently has focus.

Arrow size is specified by the SpinBox resoubdtmNarrowSize. This value sets both
width and height of each arrow in pixels.

The programmer can display SpinBox arrows in one of several layouts, as specified
by the XmNarrowLayout resource:

XmMARROWS_BEGINNING
Places a pair of left and right arrows before the children.

XmARROWS_END
Places a pair of left and right arrows after the children.

1249

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

1250

XmARROWS_ SPLIT
Places one arrow on each side of the children.

XmMARROWS_FLAT_BEGINNING
Places a pair of arrows side by side before XmSpinBo>xchildren.

XmMARROWS_FLAT_BEGINNING
Places a pair of arrows side by side after ¥raSpinBoxchildren.

Positions forXmARROWS_BEGINNING and XmARROWS_END are dependent

on theVendorShell resourceXmNlayoutDirection. When layout direction is left-to-
right, beginning arrows are positioned to the left of the children. When layout direction
is right-to-left, beginning arrows are positioned to the right.

The actions of the arrows are determined by thendorShell resource
XmNlayoutDirection. For left-to-right layouts, the right arrow is the increment
arrow and the left arrow is the decrement arrow. For right-to-left layouts, the right
arrow is the decrement arrow and the left arrow is the increment arrow.

For a numeric type child, the increment arrow increases the displayed value by the
incremental value up to the maximum. The decrement arrow decreases the displayed
value by the given incremental value down to the minimum.

The increment arrow for a string type child moves toward the last entry of the array
of compound strings (by increasing the SpinBox constraint resa¥incposition).
The decrement arrow moves toward the first entry of the compound string array.

The programmer can also control the sensitivity of each arrow in the SpinBox.
Sensitive arrows spin choices; insensitive arrows do not spin choices. Arrow sensitivity
is set for the SpinBox widget by using txenNdefaultArrowSensitivity resource, but

it can be modified on a per child basis by using KraNarrowSensitivity constraint
resource.

SpinBox provides two callbacks to application programmers. (In addition, the callbacks
of the SpinBox’s children may be invoked.) Each of these callbacks receives a
pointer toXmSpinBoxCallbackStruct. The XmNmodifyVerifyCallback procedures

are called before a new choice is displayed. ThEmNvalueChangedCallback
procedures are calleafter a new choice is displayed.

XmNmodifyVerifyCallback tells the application what the new position will be in the
ring of choices. This callback can be used to make the SpinBox stop at the upper and
lower limits or go to a different, nonconsecutive choice. The application allows the
change in position by leaving thaoit member set to True. The application can spin

to a position other than the next consecutive position by leagisigset to True and

Xm Functions

XmSpinBox(library call)

by changing thgositionmember to the desired position. Wheait is set to False by
an application, there is no change in the choice displayed.

After a new choice is displayed, tbd@nNvalueChangedCallbackprocedure is called.

The application can use this procedure to perform tasks when specific values are

reached or when boundaries are crossed. For example, if the user spins from January
back to December, the application could change to the previous year. If the user spins

from December to January, the application could change to the next year.

SpinBox dimensions can be set using the Core resodfecdgheight and XmNwidth .

If dimensions are not specified, the SpinBox size is determined by the sizes of its
arrows and children. The SpinBox will attempt to grow so that the arrows and all
children are visible.

SpinBox uses thXmQTaccessTextuddait and holds theXmQTnavigatottrait.
Classes

SpinBox inherits behavior, resources, and traits from tBere, Composite
Constraint, and XmManager classes.

The class pointer ismSpinBoxWidgetClass

The class name iXmSpinBox.
New Resources

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited classes
to set attributes for this widget. To reference a resource by name or by class in a
Xdefaults file, remove theXmN or XmC prefix and use the remaining letters. To
specify one of the defined values for a resource iXdefaults file, remove theXm

prefix and use the remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate whether the
given resource can be set at creation time (C), set by u&iSgtValues(S), retrieved

by usingXtGetValues (G), or is not applicable (N/A).

XmSpinBox Resource Set

Name Class Type Default Access

XmNarrowLayout XmCArrowLayout unsigned char XmARROWS_- CSG
BEGINNING

XmNarrowOrientation XmCArrowOrientation unsigned char XmARROWS_- CSG
VERTICAL

1251

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

XmNarrowSize XmCArrowSize Dimension 16 CSG
XmNdefaultArrow- XmCDefaultArrow- unsigned char XmARROWS_- CSG
Sensitivity Sensitivity SENSITIVE
XmNdetailShadow- XmCDetailShadow- Dimension 2 CSG
Thickness Thickness
XmNinitialDelay XmClinitialDelay unsigned int 250 ms CSG
XmNmarginHeight XmCMarginHeight Dimension dynamic CSG
XmNmarginWidth XmCMarginWidth Dimension dynamic CSG
XmNmodifyVerify- XmCcCallback XtCallbackList NULL C
Callback
XmNrepeatDelay XmCRepeatDelay unsigned int 200 ms CSG
XmNspacing XmCSpacing Dimension dynamic CSG
XmNvalueChanged- XmCcCallback XtCallbackList NULL C
Callback

XmNarrowlLayout

Specifies placement of the two arrows in the widget. Possible layouts
are as follows:

XmMARROWS_BEGINNING
Places left and right arrows beside each other, before the
child(ren). Positioning for this layout is dependent on the
VendorShell resourcEmNIlayoutDirection.

XmMARROWS_END
Places left and right arrows beside each other, after the
child(ren). Positioning for this layout is dependent on the
VendorShell resourcEmNIlayoutDirection.

XmMARROWS_FLAT_BEGINNING
Places a pair of arrows side by side beforeXineSpinBox
children. Positioning for this layout is dependent on the
VendorShell resourcEmNIlayoutDirection.

XmMARROWS_FLAT_END
Places a pair of arrows side by side after KraSpinBox
children. Positioning for this layout is dependent on the
VendorShell resourcEmNIlayoutDirection.

1252

Xm Functions

XmSpinBox(library call)

XmMARROWS_SPLIT
Places a left arrow on the left side and a right arrow on
the right side of the child(ren).

XmNarrowSize
Specifies both the width and height of the arrow in pixels.

XmNdefaultArrowSensitivity
Specifies the default sensitivity of the arrows in the widget. Insensitive
arrows change color, cannot be depressed, and perform no action.
(This resource may be overridden by the constraint resource
XmNarrowSensitivity for individual traversable text children of the
SpinBox.) Possible default sensitivity values are as follows:

XmARROWS_ SENSITIVE
Both arrows are sensitive.

XmMARROWS_DECREMENT_SENSITIVE
Only the decrement arrow (as determined by
XmNlayoutDirection) is sensitive. The increment arrow
is insensitive.

XmMARROWS_INCREMENT_SENSITIVE
Only the increment arrow (as determined by
XmNlayoutDirection) is sensitive. The decrement arrow
is insensitive.

XmARROWS_INSENSITIVE
Both arrows are insensitive.

XmNdetailShadowThickness
Specifies the thickness of the inside arrow shadows. The default
thickness is 2 pixels.

XmNinitialDelay
Specifies how long, in milliseconds, the mouse button must be held
down before automatic spinning begins. In other words, when the user
selects the increment or decrement arrow and keeps it depressed, this
delay occurs before the choices start spinning<riNinitialDelay is
0, thenXmNrepeatDelay is used as the initial delay.

1253

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

1254

XmNspacing

XmNmarginHeight

Specifies the amount of blank space between the top edge of the SpinBox
widget and the first item in each column, and the bottom edge of the
SpinBox widget and the last item in each column.

XmNmarginWidth

Specifies the amount of blank space between the left edge of the SpinBox
widget and the first item in each row, and the right edge of the SpinBox
widget and the last item in each row.

XmNmodifyVerifyCallback

This callback is called before the SpinBox position changes (see the
Constraint resourcémNposition). The application can use this callback

to set the next position, change SpinBox resources, or cancel the
impending action. For example, this callback can be used to stop
the spinning just before wrapping at the upper and lower position
boundaries. If thedoit member is set to False, nothing happens.
Otherwise the position changes. Reasons sent by the callback are
XmMCR_SPIN_NEXT, XmCR_SPIN_PRIOR, XmCR_SPIN_FIRST,

or XmCR_SPIN_LAST.

XmNrepeatDelay

When the user selects and keeps an arrow button depressed by
pressing and holding Btn1, spinning begins. After the time specified in
XmNinitialDelay elapses, the SpinBox position changes automatically
until the arrow button is released. ThémNrepeatDelay resource
specifies the delay in milliseconds between each automatic change. If
XmNrepeatDelay is set to 0 (zero), automatic spinning is turned off
and XmNinitialDelay is ignored.

Specifies the horizontal and vertical spacing between items contained
within the SpinBox widget.

XmNvalueChangedCallback

This is calledn+1 times for n SpinBox position changes (see the
Constraint resourceXmNposition). Reasons sent by the callback
are XmCR_OK, XmCR_SPIN_NEXT, XmCR_SPIN_PRIOR,
XMCR_SPIN_FIRST, or XmCR_SPIN_LAST. Other members are
detailed in the callback structure description.

Xm Functions

XmSpinBox(library call)

XmSpinBox Constraint Resource Set
Name Class Type Default Access
XmNarrowSensitivity XmCArrowSensitivity unsigned char | XmARROWS_DEFAULT_- CSG
SENSITIVITY
XmNdecimalPoints XmCDecimalPoints short 0 CSG
XmNincrementValue XmClncrementValue int 1 CSG
XmNmaximumValue XmCMaximumValue int 10 CSG
XmNminimumValue XmCMinimumValue int 0 CSG
XmNnumValues XmCNumValues int 0 CSG
XmNposition XmCPosition int 0 CSG
XmNpositionType XmCPositionType char XmPOSITION_- VALUE CG
XmNspinBoxChildType XmSpinBoxChildType | unsigned char | XmSTRING CG
XmNvalues XmCValues XmStringTable | NULL CSG
XmNarrowSensitivity

Specifies the sensitivity of the arrows for a SpinBox child. By using
this resource in the definition of a SpinBox child, the application
programmer can override the default SpinBox sensitivity (set by
XmNdefaultArrowSensitivity) for a particular child. This allows each
traversable child to have a different arrow sensitivity. The arrow
sensitivity values are as follows:

XmARROWS_SENSITIVE
Both arrows are sensitive.

XmMARROWS_DECREMENT_SENSITIVE
Only the decrement arrow
XmNlayoutDirection) is sensitive.

XmARROWS_INCREMENT_SENSITIVE
Only the increment arrow
XmNIlayoutDirection) is sensitive.

XmARROWS_INSENSITIVE
Both arrows are insensitive.

XmMARROWS_DEFAULT_SENSITIVITY
Use the sensitivity specified in
XmNdefaultArrowSensitivity resource.

(as determined by

(as determined by

the

1255

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

1256

XmNdecimalPoints
Specifies the number of decimal places used when displaying the value
of a SpinBox numeric type child. If the number of decimal places
specified is greater than the number of digits in a displayed value, the
value is padded with O (zeros). For example, wb@nNinitialValueis
1 andXmNmaximumValue is 1000 andXmNdecimalPoints is 3, the
range of values displayed in the SpinBox is 0.001 to 1.000. This is used
only whenXmNspinBoxChildType is XmNUMERIC .

XmNincrementValue
Specifies the amount by which to increment or decrement a SpinBox
numeric type child. This is used only wh&mNspinBoxChildType is
XmNUMERIC .

XmNmaximumValue
Specifies the highest possible value for a numeric SpinBox. This is used
only whenXmNspinBoxChildType is XmNUMERIC .

XmNminimumValue
Specifies the lowest possible value for a numeric SpinBox. This is used
only whenXmNspinBoxChildType is XmNUMERIC .

XmNnumValues
Specifies the number of strings XmNvalues The application must
change this value when strings are added or removed foNvalues
This is used only wheiXmNspinBoxChildType is XmSTRING.

XmNposition
Specifies the position of the currently displayed item. The interpritation
of XmNpositionis dependent upon the value of tkenNpositionType
resource.

When XmNpositionTypeis XmPOSITION_INDEXthe XmNposition
value is interpreted as follows: FoiXmSpinBox children of
type XmMmNUMERIC the XmNposition resource is interpreted
as an index into an array of items. The minimum allowable
value for XmNpositionis 0. The maximum allowable value for
XmNposition s (XmNmaximumValue-XmNminimumValue)/
XmNincrementValue. The value display by theXmSpinBoxchild
is XmNminimumValue+(XmNposition*XmNincrementValue). For
XmSpinBoxchildren of type XmSTRING the XmNpositionresource
is interpreted as an index into an array ¥mNnumValuestems.
The minimum allowable value foXmNpositionis 0. The maximum

Xm Functions

XmSpinBox(library call)

allowable value forXmNpositionis XmNnumValues - 1 The value
displayed by theXmSpinBoxis the XmNpositiorth value in the
XmNvaluesrray.

When XmNpositionTypeis XmPOSITION_VALUEthe XmNposition
value is interpreted as follows:

For XmSpinBoxchildren of type XmNUMERIC the XmNposition
resource is interpreted as the actual value to be displayed. The
minimum allowable value foXmNpositionis XmNminimumValueThe
maximum allowable value foiXmNpositionis XmNmaximumValue
The value displayed by th&XmSpinBoxchild is XmNposition For
XmSpinBoxchildren of typeXmSTRINGthe interpretation is the same
for XmPOSITION_VALURs for XmPOSITION_INDEX

Position values falling outside the specified range are invalid. When
an application assigns a value XanNpositionwhich is less than the
minimum, XmNpositionis set to the minimum and an error message is
displayed. When an application assigns a valuXaNpositionwhich

is greater than the maximunXmNpositionis set to the maximum and
an error message is displayed.

XmNpositionType
Specifies how values thEmNpositionresource are to be interpreted.
Valid values includeXmPOSITION_INDEXndXmPOSITION_VALUE

XmNspinBoxChildType
Specifies the type of data displayed in the child:

XmNUMERIC
The SpinBox choice range is defined by numeric
minimum, maximum, and incremental values.

XmSTRING
The SpinBox choices are alphanumeric.

XmNvalues Specifies the array aKmStrings to be displayed in a SpinBox string
type child. The application must chanenNnumValues when strings
are added to or removed froddmNvalues This is used only when
XmNspinBoxChildType is XmSTRING.

1257

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

Inherited Resources

SpinBox inherits behavior and resources from the superclasses described in the
following tables. For a complete description of each resource, refer to the reference

page for that superclass.

XmManager Resource Set

Name Class Type Default Access
XmNbottomShadow- XmCBottomShadow- Pixel dynamic CSG
Color Color

XmNbottomShadow- XmCBottomShadow- Pixmap XmUNSPECIFIED_- | CSG
Pixmap Pixmap PIXMAP

XmNforeground XmCForeground Pixel dynamic CSG
XmNhelpCallback XmCcCallback XtCallbackList NULL C
XmNhighlightColor XmCHighlightColor Pixel dynamic CSG
XmNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG
XmNinitialFocus XmClinitialFocus Widget dynamic CSG
XmNIlayoutDirection XmCLayoutDirection XmbDirection dynamic CG
XmNnavigationType XmCNavigationType XmNavigationType XmTAB_GROUP CSG
XmNpopupHandler- XmCcCallback XtCallbackList NULL C
Callback

XmNshadowThickness XmCShadowThickness Dimension 0 CSG
XmNstringDirection XmCStringDirection XmStringDirection dynamic CG
XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG
XmNtopShadow- Pixmap [XmCTopShadowPixmap | Pixmap dynamic CSG
XmNtraversalOn XmCTraversalOn Boolean True CSG
XmNunitType XmCUnitType unsigned char dynamic CSG
XmNuserData XmCUserData XtPointer NULL CSG
Composite Resource Set

Name Class Type Default Access
XmNchildren XmCReadOnly WidgetList NULL G
XmNinsertPosition XmClnsertPosition XtOrderProc NULL CSG
XmNnumChildren XmCReadOnly Cardinal 0 G

1258

Xm Functions

XmSpinBox(library call)

Core Resource Set
Name Class Type Default Access
XmNaccelerators XmCAccelerators XtAccelerators dynamic CSG
XmNancestorSensitive XmCSensitive Boolean dynamic G
XmNbackground XmCBackground Pixel dynamic CSG
XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED_- CSG
PIXMAP
XmNborderColor XmCBorderColor Pixel XtDefaultForeground CSG
XmNborderPixmap XmCPixmap Pixmap XmUNSPECIFIED_- CSG
PIXMAP
XmNborderWidth XmCBorderWidth Dimension 0 CSG
XmNcolormap XmCcColormap Colormap dynamic CG
XmNdepth XmCDepth int dynamic CG
XmNdestroyCallback XmCcCallback XtCallbackList NULL C
XmNheight XmCHeight Dimension dynamic CSG
XmNinitialResources- XmClnitialResources- | Boolean True C
Persistent Persistent
XmNmappedWhen- XmCMappedWhen- Boolean True CSG
Managed Managed
XmNscreen XmCScreen Screen * dynamic CG
XmNsensitive XmCSensitive Boolean True CSG
XmNtranslations XmCTranslations XtTranslations dynamic CSG
XmNwidth XmCWwidth Dimension dynamic CSG
XmNXx XmCPosition Position 0 CSG
XmNy XmCPosition Position 0 CSG
Callback

A pointer to the following structure is passed to each callback:

typedef struct
{

int reason
XEvent* event
Widget widget

1259

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

1260

Booleandoit;

int position

XmString value

Booleancrossed_boundary
} XmSpinBoxCallbackStruct;

reason

event
widget
doit

Indicates why the callback was invoked. Reasons may be the following:

XmCR_OK Spinning has stopped because the SpinBox arrow has been
disarmed XmCR_OK is either the last or only call.

XmCR_SPIN_NEXT
The increment arrow has been armed and position is
increasing. Further callbacks will come. For a numeric
type child, the values displayed are approaching the
maximum. For a string SpinBox, the values displayed are
approaching the last entry in the arrayXhString s.

XmCR_SPIN_PRIOR
The decrement arrow has been armed and position is
decreasing. Further callbacks will come. For a numeric
type child, the values displayed are approaching the
minimum. For a string type child, the values displayed
are approaching the first entry in the arrayXshStrings.

XmMCR_SPIN_FIRST
The begin data (osfBeginData) key sequence has been
pressed. The SpinBox is at its first position, displaying the
lowest value or the first entry in the array ¥mStrings.

XmCR_SPIN_LAST
The end data (osfEndData) key sequence has been pressed.
The SpinBox is at its last position, displaying the highest
value or the last entry in the array ¥imStrings.

Points to theXEventthat triggered this callback.
Specifies the child widget affected by this callback.

When the callback isXmNmodifyVerifyCallback , doit indicates
whether or not an action will be performed before the SpinBox
position changes. If the callback leavdsit set to True (the default),
the spinning action is performed. If the callback selsit to

Xm Functions

position

value

XmSpinBox(library call)

False, the spinning action is not performed. When the callback is
XmNvalueChangedCallback doit is ignored.

Specifies the next wvalue of the SpinBox position (same
as XmNposition). This is an output field for the
XmNmodifyVerifyCallback , which may change the next position as
dictated by the needs of an application.

Specifies the newXmString value in the text child widget. The user
program must copy this string if it is to be used outside the callback
routine.

crossed_boundary

Translations

Specifies whether or not the SpinBox has crossed the upper or lower
boundary (the last or first compound string, or the maximum or
minimum value). Thecrossed_boundaryalue is True if the SpinBox

has just crossed a boundary, and False if it has not.

The XmSpinBox translations are as follows:

The following key names are listed in the X standard key event translation table syntax.
This format is the one used by Motif to specify the widget actions corresponding to

a given key. A brief overview of the format is provided undértualBindings (3).

For a complete description of the format, please refer to the X Toolkit Instrinsics

Documentation.

<Btnl1Down>:

<BtnlUp>:

SpinBArm()

SpinBDisarm()

:<Key>osfUp :

SpinBPrior()

:<Key>osfDown :

SpinBNext()

:<Key>osflLeft :

SpinBLeft()

:<Key>osfRight :

SpinBRight()

1261

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

:<Key>osfBeginData:
SpinBFirst()

:<Key>osfEndData :
SpinBLast()

Accelerators

The XmNacceleratorsresource of a SpinBox are added to each traversable text child.
The defaultXmNaccelerators are defined in the following list. The bindings for
<Key>osfUp and <Key>osfDown cannot be changed.

<Key> osfUp.
SpinBPrior()

<Key> osfDown
SpinBNext()

KeyUp osfUp:
SpinBDisarm()

KeyUp osfDown
SpinBDisarm()

<Key> osflLeft:
SpinBLeft()

<Key> osfRight
SpinBRight()

KeyUp osfLeft:
SpinBDisarm()

KeyUp osfRight:
SpinBDisarm()

<Key> osfBeginData
SpinBFirst()

<Key> osfEndData
SpinBLast()

Action Routines
The XmSpinBox action routines are as follows:

SpinBArm(): Visually arms the SpinBox by drawing the armed arrow so that it appears
to be depressed. This action is initiated when the user presses Btnl

1262

Xm Functions

XmSpinBox(library call)

while the pointer is within the boundaries of either the increment or
decrement arrow. The arrow remains visually armed as long as Btnl
remains depressed.

If the time period specified bXmNrepeatDelay is not greater than
zero milliseconds, nothing else happens while Btnl remains depressed.

If the time period specified b)XmNrepeatDelay is greater than zero
milliseconds, and the arrow is disarmed before the time period specified
by XmNinitialDelay has elapsed, nothing else happens in this action.

If the time period specified b)XmNrepeatDelay is greater than zero
milliseconds, and the arrow is still armed after the time period specified
by XmNinitialDelay has elapsed, the following occurs:

» The reason member of the SpinBox callback structure,
XmSpinBoxCallbackStruct, is set to XmCR_SPIN_NEXT if
the increment arrow is armed, or XmCR_SPIN_PRIOR if the
decrement arrow is armed.

» The positionmember is set to the next position.
» The doit member is set to True.

« XmNmodifyVerifyCallback , if it exists, is invoked. The application
may change the value pbsitionanddoit. If the application setdoit
to False, nothing else happens until tkenNrepeatDelay period
has elapsed, or until Btnl is released.

If doit remains set to True, the following occurs:

» The value ofXmNposition is changed to the value gfositionin
the SpinBox callback structure.

» The text corresponding to the new position is displayed in the
traversable text child that currently has focus.

» The reason member of the SpinBox callback structure is set
to XmCR_SPIN_NEXT if the increment arrow is armed, or
XmCR_SPIN_PRIOR if the decrement arrow is armed.

e The position member is set to the current (new) value of
XmNposition.

1263

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

» XmNvalueChangedCallback if it exists, is called. SpinBox
ignores any changes t@osition or doit members made by
XmNvalueChangedCallback

These events are repeated each time XmeNrepeatDelay period
elapses and the arrow remains armed.

SpinBDisarm():
Visually disarms the SpinBox by drawing the previously armed arrow
so that it no longer appears to be depressed.

If the time period specified bXmNrepeatDelay is not greater than
zero milliseconds, or the time period specifiedXyNinitialDelay has
not elapsed, the following then occurs:

» The reason member of the SpinBox callback structure,
XmSpinBoxCallbackStruct, is set to XmCR_SPIN_NEXT if
the increment arrow is armed, or XmCR_SPIN_PRIOR if the
decrement arrow is armed.

» The positionmember is set to the next position.
» Thedoit member is set to True.

» The XmNmodifyVerifyCallback , if there is one, is invoked. The
application may change the value pbsition and doit. If the
application setsdoit to False, nothing else happens until the
XmNrepeatDelay period has elapsed, or until Btnl is released.

If doit remains set to True, the following occurs:

» The value ofXmNposition is changed to the value gfositionin
the SpinBox callback structure.

» The text corresponding to the new position is displayed in the
traversable text child that currently has focus.

» The reason member of the SpinBox callback structure is set
to XmCR_SPIN_NEXT if the increment arrow is armed, or
XmCR_SPIN_PRIOR if the decrement arrow is armed.

» The position member is set to the current (new) value of
XmNposition.

1264

Xm Functions

XmSpinBox(library call)

» XmNvalueChangedCallback if it exists, is called. SpinBox
ignores any changes tposition or doit members made by an
XmNvalueChangedCallback

If an XmNvalueChangedCallbackprocedure is issued after the button
has been armed, regardless of the valu¥rafNrepeatDelay or whether
the XmNinitialDelay has expired:

» The reason member of the SpinBox callback structure is set to
XmCR_OK.

» The positionmember is set to the current value XiNposition.
» XmNvalueChangedCallback if it exists, is called.

SpinBFirst():
The following occurs:

» The reason member of the SpinBox callback structure,
XmSpinBoxCallbackStruct, is set toXmCR_SPIN_FIRST.

» The positionmember is set to the first (0) position.
» The doit member is set to True.

« XmNmodifyVerifyCallback , if it exists, is invoked. The application
may change the value pbsitionanddoit. If the application setdoit
to False, nothing else happens until tkenNrepeatDelay period
has elapsed, or until Btnl is released.

If doit remains set to True, the following occurs:

¢ The value ofXmNposition is changed to the value gfositionin
the SpinBox callback structure.

e The text corresponding to the new position is displayed in the
traversable text child that currently has focus.

* The reason member of the SpinBox callback structure is set to
XmCR_SPIN_FIRST.

* The position member is set to the current (new) value of
XmNposition.

» XmNvalueChangedCallback if it exists, is called.

» The reason member of the SpinBox callback structure is set to
XmCR_OK.

1265

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

1266

» Thepositionmember is set to the current (ne¥inNposition value.

» The XmNvalueChangedCallback is called again. SpinBox
ignores any changes t@osition or doit members made by
XmNvalueChangedCallback

SpinBLast(): The following occurs:

» The reason member of the SpinBox callback structure,
XmSpinBoxCallbackStruct, is set toXmCR_SPIN_LAST.

» The positionmember is set to the last position.
» The doit member is set to True.

+ XmNmodifyVerifyCallback , if it exists, is invoked. The application
may change the value pbsitionanddoit. If the application setdoit
to False, nothing else happens until tiemNrepeatDelay period
has elapsed, or until Btnl is released.

If doit remains set to True, the following occurs:

» The value ofXmNposition is changed to the value gfositionin
the SpinBox callback structure.

» The text corresponding to the new position is displayed in the
traversable text child that currently has focus.

* The reason member of the SpinBox callback structure is set to
XmCR_SPIN_LAST.

» Thepositionmember is set to the current (new) vakimNposition.
» XmNvalueChangedCallback if it exists, is called.

» The reason member of the SpinBox callback structure is set to
XmCR_OK.

» The positionmember is set to the current (new) ¥mNposition.

» XmNvalueChangedCallback is called again. SpinBox ignores
any changes to theposition or doit members made by
XmNvalueChangedCallback

SpinBLeft(): If the VendorShell resourcEmNIlayoutDirection is left-to-right, the
SpinBPrior action is invoked. Otherwise, th8pinBNext action is
invoked.

Xm Functions

XmSpinBox(library call)

SpinBNext():
Visually arms the SpinBox by drawing the increment arrow so that it
appears to be depressed. The following occurs:

» The reason member of the SpinBox callback structure,
XmSpinBoxCallbackStruct, is set toXmCR_SPIN_NEXT.

» The positionmember is set to the next position.
» The doit member is set to True.

» XmNmodifyVerifyCallback , if it exists, is invoked. The application
may change the value pbsitionanddoit. If the application setdoit
to False, nothing else happens until tkenNrepeatDelay period
has elapsed, or until Btnl is released.

If doit remains set to True, the following occurs:

» The value ofXmNposition is changed to the value gfositionin
the SpinBox callback structure.

» The text corresponding to the new position is displayed in the
traversable text child that currently has focus.

» The reason member of the SpinBox callback structure is set to
XmCR_SPIN_NEXT.

» The position member is set to the current (new) value of
XmNposition.

» XmNvalueChangedCallback if it exists, is called.

» The reason member of the SpinBox callback structure is set to
XmCR_OK.

» The positionmember is set to the current (neXmNposition.

» The XmNvalueChangedCallback is called again. SpinBox
ignores any changes t@osition or doit members made by
XmNvalueChangedCallback

SpinBPrior():
Visually arms the SpinBox by drawing the decrement arrow so that it
appears to be depressed. The following occurs:

» The reason member of the SpinBox callback structure,
XmSpinBoxCallbackStruct, is set toXmCR_SPIN_PRIOR.

1267

Motif 2.1—Programmer’s Reference

XmSpinBox(library call)

» The positionmember is set to the next position.
» Thedoit member is set to True.

» XmNmodifyVerifyCallback , if it exists, is invoked. The application
may change the value pbsitionanddoit. If the application setdoit
to False, nothing else happens until tienNrepeatDelay period
has elapsed, or until Btnl is released.

If doit remains set to True, the following occurs:

SpinBRight():

» The value ofXmNposition is changed to the value gfositionin
the SpinBox callback structure.

» The text corresponding to the new position is displayed in the
traversable text child that currently has focus.

» The reason member of the SpinBox callback structure is set to
XmCR_SPIN_PRIOR.

» The position member is set to the current (new) value of
XmNposition.

* XmNvalueChangedCallback if it exists, is called.

» The reason member of the SpinBox callback structure is set to
XmCR_OK.

» The position member is set to the current (new) value of
XmNposition.

» XmNvalueChangedCallback is called again. SpinBox
ignores any changes t@osition or doit members made by
XmNvalueChangedCallback

If the VendorShell resourc&XmNlayoutDirection is left-to-right, the
SpinBNext action is invoked. Otherwise, th8pinBPrior action is
invoked.

Related Information

Compositg3), Constraint(3), Core(3), XmCreateSpinBox3), XmManager(3),
and XmString (3).

1268

Xm Functions

XmSimpleSpinBoxAddltem(library call)

XmSimpleSpinBoxAddItem

Purpose add an item to the XmSimpleSpinBox

Synopsis #include <Xm/SSpinB.h>

void XmSimpleSpinBoxAddltem(
Widget w,
XmString item,
int pog;

Description

The XmSimpleSpinBoxAddltem function adds the given item to the
XmSimpleSpinBox at the given position.

The w argument specifies the widget ID.
The item argument specifies thémString for the new item.

The posargument specifies the position of the new item.

Return Values

The XmSimpleSpinBoxAddItem function returns no value.

Related Information
XmSimpleSpinBox3),
XmSimpleSpinBoxDeletePo), XmSimpleSpinBoxSetlten(3).

1269

Motif 2.1—Programmer’s Reference

XmSimpleSpinBoxDeletePos(library call)

XmSimpleSpinBoxDeletePos

Purpose delete a XmSimpleSpinBox item

Synopsis #include <Xm/SpinB.h>

void XmSimpleSpinBoxDeletePos(
Widget w,
int pos;

Description

The XmSimpleSpinBoxDeletePos function deletes a specified item from a
XmSimpleSpinBox widget.

The w argument specifies the widget ID.

The posargument specifies the position of the item to be deleted. A value of 1 means
the first item in the list; zero means the last item.

Return Values

The XmSimpleSpinBoxDeletePogunction returns no value.

Related Information
XmSimpleSpinBox3),
XmSimpleSpinBoxAddltem(3), XmSimpleSpinBoxSetlten(3).

1270

Xm Functions

XmSimpleSpinBoxSetltem(library call)

XmSimpleSpinBoxSetltem

Purpose set an item in the XmSimpleSpinBox list

Synopsis #include <Xm/SpinB.h>

void XmSimpleSpinBoxSetltem(
Widget w,
XmString item);

Description

The XmSimpleSpinBoxSetltem function selects an item in the list of the given
XmSimpleSpinBox widget and makes it the current value.

The w argument specifies the widget ID.

The item argument specifies theXmString for the item to be set in the
XmSimpleSpinBox. If theitem is not found on the listXmSimpleSpinBoxSetltem
notifies the user via th&tWarning function.

Return Values

The XmSimpleSpinBoxSetltemfunction returns no value.

Related Information
XmSimpleSpinBox3),

XmSimpleSpinBoxAddIltem(3), XmSimpleSpinBoxDeletePog); XtWarning (3).
in the CAE Specification, Window Management: X Toolkit Intrinsics.

1271

Motif 2.1—Programmer’s Reference

XmSpinBoxValidatePosition(library call)

XmSpinBoxValidatePosition

Purpose translate the current value of the specified XmSpinBox child into a valid position

Synopsis #include <Xm/SpinBox.h>

int XmSpinBoxValidatePosition(
Widget textfield
int *position);

Description

1272

The XmSpinBoxValidatePositionfunction is a utility that can be used by applications
wanting to implement a policy for tracking user modifications to editdsteSpinBox
children of typeXmNUMERIC The specifics of when and how the user’s modifications
take effect is left up to the application.

text_field

position

The text_field argument specifies the widget ID of the child of the
XmSpinBox that is being modified. The requirement text_fieldis
that it holds theaccessTextualrait (already a requirement for children
of XmSpinBox). This way, XmSpinBox can extract the string out of
thetext_fieldwidget (even if it is not arKmTextField.

The location pointed to by the position argument is assigned the
result of the translation done byXmSpinBoxValidatePosition
XmSpinBoxValidatePosition first checks to make sure
this is an XmNUMERIC XmSpinBox child. If it is not,
XSmpinBoxValidatePosition sets position to the current position and
returnsXmCURRENT_VALUE

XmSpinBoxValidatePosition attempts to translate the input string to a floating point
number. If this translation failsKmSpinBoxValidatePosition sets position to the
current position and returnSmCURRENT_VALUE

XmSpinBoxValidatePosition converts the floating point number to an integer using
the XmNdecimalPointsesource. Extra decimal places are truncated. The resulting
integer is range checked to make sure it falls within the valid range defined by

Xm Functions

XmSpinBoxValidatePosition(library call)

XmNminimumValuand XmNmaximumValueclusive. If the input falls outside this
range XmSpinBoxValidatePositionsets position to the nearest limit and returns either
XmMINIMUM_VALUEor XmMAXIMUM_VALUE

Finally, XmSpinBoxValidatePosition checks the integer to make sure it belongs

to the series defined byXmNminimumValue ... XmNminumumValue + ((n

- 1) * XmNincrementlValue). If the integer does not belong to this series,

XmSpinBoxValidatePosition sets position to the nearest element which is less than
or equal to the integer and returksnINCREMENT_VALUE

Otherwise, XmSpinBoxValidatePosition assigns the integer to position and returns
XmVALID_VALUE

Return Values

The XmSpinBoxValidatePosition function returns the status of the validation. The
set of possible values returned is as follows:

XmMCURRENT_VALUE
Cannot convert, returning current position_value.

XmMINIMUM_VALUE
Less than min.

XmMAXIMUM_VALUE
More than max.

XmINCREMENT_VALUE
Not on increment.

XmVALID_VALUE
Okay.

Examples

This first example demonstrates how tbanSpinBoxValidatePosition function
could be used from inside axmNmodifyVerifyCallback callback installed on the
XmSpinBox or the XmSimpleSpinBox

/*

* Install a callback on a spin box arrow press.
*

1273

Motif 2.1—Programmer’s Reference

XmSpinBoxValidatePosition(library call)

1274

XtAddCallback(sb, XmNmodifyVerifyCallback, ModifyVerifyCB, NULL);

XtAddCallback(simple_sb, XmNmodifyVerifyCallback, ModifyVerifyCB, NULL);

with the callback doing:

void ModifyVerifyCB(widget, call_data, client_data) {

XmSpinBoxCallbackStruct *cbs = (XmSpinBoxCallbackStruct*) call_data;

int position;
Widget textual = NULL;
if (XtlsSubclass(w, xmSimpleSpinBoxWidgetClass))
{
Arg args[1];
XtSetArg(args[0], XmNtextField, &textual);
XtGetValues(w, args, 1);
}
else if (XtlsSubclass(w, xmSpinBoxWidgetClass))
textual = cbhs->widget;
else
textual = (Widget) NULL;

if (XmSpinBoxValidatePosition(textual, &position) == XmCURRENT_VALUE)

XBell(XtDisplay(w), 0);
else
cbs->position = position;

This second example demonstrates how XmSpinBoxValidatePosition function
could be used from inside aXmNactivateCallback callback installed on the

TextField child of the XmSpinBox:

/*

* Install a callback on a spin box arrow press.

*

XtAddCallback(tf, XmNactivateCallback, ModifyVerifyChildCB, NULL);

with the callback doing:

Xm Functions

XmSpinBoxValidatePosition(library call)

void ModifyVerifyChildCB(widget, call_data, client_data) {

int position;
Widget textual = widget;
Arg args[1];

if (XmSpinBoxValidatePosition (textual, &position) == XmMCURRENT_VALUE)
XBell(XtDisplay(widget), 0);

/* Set the position constraint resource of the textfield */

XtSetArg(args[0], XmNposition, position);
XtSetValues(textual, args, 1);

Related Information
XmSpinBox(3), XmCreateSpinBox3)

1275

Motif 2.1—Programmer’s Reference

XmSimpleSpinBox(library call)

XmSimpleSpinBox

Purpose a simple SpinBox widget class

Synopsis #include <Xm/SSpinB.h>

Description

1276

The XmSimpleSpinBox widget is a user interface control to increment and decrement
an arbitrary TextField. For example, it can be used to cycle through the months of the
year or days of the month.

Widget subclassing is not supported for the XmSimpleSpinBox widget class.

Classes

The XmSimpleSpinBox widget inherits behavior and resources from Gbee,
Compositeand XmManager classes.

The class pointer iXmSimpleSpinBoxWidgetClass
The class name iXmSimpleSpinBoxWidget

New Resources

The following table defines a set of widget resources used by the application to specify
data. The application can also set the resource values for the inherited classes to set
attributes for this widget. To reference a resource by name or by clasxXteéaults

file, the application must remove tk@nNor XmCprefix and use the remaining letters.

To specify one of the defined values for a resource .defaults file, the application

must remove th&Xm prefix and use the remaining letters (in either lower case or upper
case, but including any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by Xt8&gValues

(S), retrieved by usingtGetValues (G), or is not applicable (N/A).

Xm Functions

XmSimpleSpinBox(library call)

XmSimpleSpinBox Resource Set
Name Class Type Default Access
XmNarrowLayout XmCArrowLayout unsigned char XmARROWS_- CSG
END
XmNarrowSensitivity XmCArrow- Sensitivity unsigned char XmARROWS_- CSG
SENSITIVE
XmNcolumns XmCColumn short 20 CSG
XmNdecimalPoints XmCDecimalPoints short 0 CSG
XmNeditable XmCEditable Boolean True CSG
XmNincrementValue XmClncrementValue int 1 CSG
XmNinitialDelay XmClinitialDelay unsigned int 250 CSG
XmNmaximumValue XmCMaximumValue int 10 CSG
XmNminimumValue XmCMinimumValue int 0 CSG
XmNmodifyVerify- XmCcCallback XtCallbackList NULL C
Callback
XmNnumValues XmCNumValues int 0 CSG
XmNposition XmCPosition int 0 CSG
XmNrepeatDelay XmCRepeatDelay unsigned int 200 CSG
XmNspinBoxChildType XmCSpinBox- unsigned char XmSTRING CG
ChildType
XmNtextField XmCTextField Widget dynamic G
XmNvalueChanged- XmCcCallback XtCallbackList NULL C
Callback
XmNvalues XmCValues XmStringTable NULL CSG
XmNarrowlLayout

Specifies the style and position of the SpinBox arrows. The following

values are supported:

XmMARROWS_FLAT_BEGINNING

XmARROWS_FLAT_END
The arrows are placed side by side to the left of the

The arrows are placed side by side to the right of the

TextField.

TextField.

1277

Motif 2.1—Programmer’s Reference

XmSimpleSpinBox(library call)

XmMARROWS_SPLIT
The down arrow is on the left and the up arrow is on the
right of the TextField.

XmMARROWS_BEGINNING
The arrows are stacked and placed on the left of the
TextField.

XmARROWS_END
The arrows are stacked and placed on the right of the
TextField.

XmNarrowSensitivity
Specifies the sensitivity of the arrows in the XmSimpleSpinBox. The
following values are supported:

XmARROWS_ SENSITIVE
Both arrows are active to user selection.

XmMARROWS_DECREMENT_SENSITIVE
The down arrow is active and the up arrow is inactive to
user selection.

XmMARROWS_INCREMENT_SENSITIVE
The up arrow is active and the down arrow is inactive to
user selection.

XmARROWS _INSENSITIVE
Both arrows are inactive to user selection.

XmNcolumns
Specifies the number of columns of the text field.

XmNdecimalPoints
Specifies the position of the radix character within the numeric value
whenXmNspinBoxChildType is XmNUMERIC . This resource is used
to allow for floating point values in the XmSimpleSpinBox widget.

XmNeditable
Specifies whether the text field can take input.

When XmNeditable is used on a widget it sets the dropsite to
XmDROP_SITE_ACTIVE.

1278

Xm Functions

XmSimpleSpinBox(library call)

XmNincrementValue
Specifies the amount to increment or decrement XmeNposition
when the XmNspinBoxChildType is XmNUMERIC . When the
Up action is activated, theXmNincrementValue is added to
the XmNposition value; when the Down action is activated, the
XmNincrementValue is subtracted from theXmNposition value.
When XmNspinBoxChildType is XmSTRING, this resource is
ignored.

XmNinitialDelay
Specifies the amount of time in milliseconds before the Arrow buttons
will begin to spin continuously.

XmNnumValues
Specifies the number of items in thEmNvalues list when the
XmNspinBoxChildType resource isXmSTRING. The value of this
resource must be a positive integer. TkraNnumValues is maintained
by the XmSimpleSpinBox widget when items are added or deleted
from the XmNvalues list. When XmNspinBoxChildType is not
XmSTRING, this resource is ignored.

XmNvalues Supplies the list of strings to cycle through when the
XmNspinButtonChildType resource is XmSTRING. When
XmNspinBoxChildType is not XmSTRING, this resource is
ignored.

XmNmaximumValue
Specifies the upper bound on the XmSimpleSpinBox's range when
XmNspinBoxChildType is XmNUMERIC .

XmNminimumValue
Specifies the lower bound on the XmSimpleSpinBox’'s range when
XmNspinBoxChildType is XmNUMERIC .

XmNmodifyVerifyCallback
Specifies the callback to be invoked just before the XmSimpleSpinBox
position changes. The application can use this callback to implement
new application-related logic (including setting new position spinning
to, or canceling the impending action). For example, this callback can
be used to stop the spinning just before wrapping at the upper and
lower position boundaries. If the application sets i@t member
of the XmSimpleSpinBoxCallbackStruct to False, nothing happens.

1279

Motif 2.1—Programmer’s Reference

XmSimpleSpinBox(library call)

Otherwise, the position changes. Reasons sent by the callback are
XmMCR_SPIN_NEXT, or XmCR_SPIN_PRIOR.

XmNposition
The XmNposition resource has a different value based on the
XmNspinBoxChildType resource. When XmNspinBoxChildType
is XMSTRING, the XmNposition is the index into theXmNvalues
list for the current item. When th¥mNspinBoxChildType resource
is XmMNUMERIC, the XmNposition is the integer value of the
XmSimpleSpinBox that falls within the range gimNmaximumValue
and XmNminimumValue.

XmNrepeatDelay
Specifies the number of milliseconds between repeated calls to
the XmNvalueChangedCallback while the user is spinning the
XmSimpleSpinBox.

XmNspinBoxChildType
Specifies the style of the XmSimpleSpinBox. The following values are
supported:

XmSTRING
The child is a string value that is specified through the
XmNvalues resource and incremented and decremented
by changing theXmNposition resource.

XmNUMERIC
The child is a numeric value that is specified through the
XmNposition resource and incremented according to the
XmNincrementValue resource.

XmtextField
Specifies the textfield widget.

XmNvalueChangedCallback
Specifies the callback to be invoked whenever the value of
the XmNposition resource is changed through the use of the
spinner arrows. The XmNvalueChangedCallback passes the
XmSimpleSpinBoxCallbackStruct call_data structure.

Inherited Resources

The XmSimpleSpinBox widget inherits behavior and resources from the following
named superclasses. For a complete description of each resource, see the man page
for that superclass.

1280

Xm Functions

XmSimpleSpinBox(library call)

XmManager Resource Set

Name Class Type Default Access

XmNbottomShadow- XmCBottomShadow- Pixel dynamic CSG

Color Color

XmNbottomShadow- XmCBottomShadow- Pixmap XmUNSPECIFIED_- CSG

Pixmap Pixmap PIXMAP

XmNforeground XmCForeground Pixel dynamic CSG

XmNhelpCallback XmCcCallback XtCallbackList NULL C

XmNhighlightColor XmCHighlightColor Pixel dynamic CSG

XmNhighlightPixmap XmCHighlight- Pixmap dynamic CSG
Pixmap

XmNinitialFocus XmCinitialFocus Widget NULL CSG

XmNnavigationType XmCNavigation- Type | XmNavigation- dynamic CSG

Type

XmNshadowThickness XmCShadow- Dimension dynamic CSG
Thickness

XmNstringDirection XmCStringDirection XmString- dynamic CG

Direction

XmNtopShadowColor XmCTopShadow- Pixel dynamic CSG
Color

XmNtopShadowPixmap XmCTopShadow- Pixmap dynamic CSG
Pixmap

XmNtraversalOn XmCTraversalOn Boolean dynamic CSG

XmNunitType XmCUnitType unsigned char dynamic CSG

XmNuserData XmCUserData XtPointer NULL CSG

Composite Resource Set

Name Class Type Default Access

XmNchildren XmCReadOnly WidgetList NULL G

XmNinsertPosition XmCinsertPosition XtOrderProc default procedure | CSG

XmNnumChildren XmCReadOnly Cardinal 0 G

1281

Motif 2.1—Programmer’s Reference

XmSimpleSpinBox(library call)

1282

Core Resource Set

Name Class Type Default Access
XmNaccelerators XmCAccelerators XtAccelerators dynamic CSG
XmNancestorSensitive XmCSensitive Boolean dynamic G
XmNbackground XmCBackground Pixel dynamic CSG
XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED_- | CSG
PIXMAP
XmNborderColor XmCBorderColor Pixel XtDefaultForeground | CSG
XmNborderPixmap XmCPixmap Pixmap XmUNSPECIFIED_- | CSG
PIXMAP
XmNborderWidth XmCBorderWidth Dimension 0 CSG
XmNcolormap XmCcColormap Colormap dynamic CG
XmNdepth XmCDepth int dynamic CG
XmNdestroyCallback XmCcCallback XtCallbackList NULL C
XmNheight XmCHeight Dimension dynamic CSG
XmNinitialResources- XmClnitialResources- Boolean True C
Persistent Persistent
XmNmapped- XmCMappedWhen- Boolean True CSG
WhenManaged Managed
XmNscreen XmCScreen Screen * dynamic CG
XmNsensitive XmCSensitive Boolean True CSG
XmNtranslations XmCTranslations XtTranslations dynamic CSG
XmNwidth XmCWwidth Dimension dynamic CSG
XmNx XmCPosition Position 0 CSG
XmNy XmCPosition Position 0 CSG

Callback Information

A pointer to the following structure is passed to each XmSimpleSpinBox callback:

typedef struct {
int
XEvent
Widget
Boolean

doit ;

reason ;
* event ;
widget ;

Xm Functions

XmSimpleSpinBox(library call)

int position

XmString value ;

Boolean crossed_boundary
} XmSimpleSpinBoxCallbackStruct;

Thereasonargument indicates why the callback was invoked. There are three possible
reasons for this callback to be issued. The reasofm€R_OK when this is the first

call to the callback at the beginning of a spin or if it is a single activation of the spin
arrows. If the XmSimpleSpinBox is in the process of being continuously spun, then
the reason will beXmCR_SPIN_NEXT or XmCR_SPIN_PRIOR, depending on the
arrow that is spinning.

The eventargument points to th&Event that triggered the callback. It can bJLL
when the XmSimpleSpinBox is continuously spinning.

The widgetargument is the widget identifier for the simple spin box widget that has
been affected by this callback.

The doit argument is set only when thecall data comes from the
XmNmodifyVerifyCallback . It indicates that the action that caused the callback to
be called should be performed. The action is not performelbiifis set to False.

The positionargument is the new value of thémNposition resource as a result of
the spin.

The value argument is the nelXmString value displayed in the Text widget as a
result of the spin. The application must copy this string if it is used beyond the scope
of the call_datastructure.

The crossed_boundargrgument is True when the spinbox cycles. This is the case
when aXmNspinBoxChildType of XmSTRING wraps from the first item to the
last or the last item to the first. In the case of tKenNspinBoxChildType of
XmNUMERIC , the boundary is crossed when the XmSimpleSpinBox cycles from
the maximum value to the minimum or vice versa.

Errors/Warnings

The toolkit will display a warning if the application tries to set the value of the
XmNtextField resource, which is read-only (marked G in the resource table).

1283

Motif 2.1—Programmer’s Reference

XmSimpleSpinBox(library call)

Related Information

XmSpinBox(3), XmCreateSpinBox3), XmSimpleSpinBoxAddltem(3),
XmSimpleSpinBoxDeletePo&), XmSimpleSpinBoxSetlten(3), Compositg3),
Core(3), XmManager(3), XmText(3), XmTextField(3), XtGetValues(3),
XtSetValueg3)

1284

Xm Functions

XmStringBaseline(library call)

XmStringBaseline

Purpose A compound string function that returns the number of pixels between the top of the
character box and the baseline of the first line of text

Synopsis #include <Xm/Xm.h>

Dimension XmStringBaseline(
XmRenderTable rendertable
XmString string);

Description

XmStringBaseline returns the number of pixels between the top of the character box
and the baseline of the first line of text in the provided compound string.

rendertable Specifies the render table

string Specifies the string

Return Values

Returns the number of pixels between the top of the character box and the baseline
of the first line of text.

Related Information
XmStringCreate(3).

1285

Motif 2.1—Programmer’s Reference

XmStringByteCompare(library call)

XmStringByteCompare

Purpose A compound string function that indicates the results of a byte-by-byte comparison

Synopsis #include <Xm/Xm.h>

Boolean XmStringByteCompare(
XmString s],
XmString s2);

Description

This function is obsolete and exists for compatibility with previous releases.
XmStringByteCompare returns a Boolean indicating the results of a byte-by-byte
comparison of two compound strings.

In general, if two compound strings are created with the sashar(*) string using
XmStringCreatelLocalized in the same language environment, the compound strings
compare as equal. If two compound strings are created with the sdrae {) string

and the same font list element tag set other tXamFONTLIST_DEFAULT_TAG

using XmStringCreate, the strings compare as equal.

In some cases, once a compound string is put into a widget, that string is converted into
an internal form to allow faster processing. Part of the conversion process strips out
unnecessary or redundant information. If an application then dos@etValues to
retrieve a compound string from a widget (specifically, Label and all of its subclasses),
it is not guaranteed that the compound string returned is byte-for-byte the same as the
string given to the widget originally.

sl Specifies a compound string to be compared si2h

s2 Specifies a compound string to be compared sith

Return Values

Returns True if two compound strings are identical byte-by-byte.

1286

Xm Functions

XmStringByteCompare(library call)

Related Information
XmStringCreate(3) and XmStringCreatelLocalized(3).

1287

Motif 2.1—Programmer’s Reference

XmStringByteStreamLength(library call)

XmStringByteStreamLength

Purpose A function that returns the size of a string

Synopsis #include <Xm/Xm.h>
unsigned int XmStringByteStreamLength (string)
unsigned char *string;

Description

XmStringByteStreamLength receives a byte stream format string and returns the size,
in bytes, of that stream, including the header. Because of this header information, even
a NULL string will cause XmStringByteStreamLength to return a non-zero value.

string Specifies the byte stream format string.

Return Values

Returns the size ddtring, including the header.

1288

Xm Functions

XmStringCompare(library call)

XmStringCompare

Purpose A compound string function that compares two strings

Synopsis #include <Xm/Xm.h>

Boolean XmStringCompare(
XmString s],
XmString s2);

Description

XmStringCompare returns a Boolean value indicating the results of a semantically
equivalent comparison of two compound strings.

Semantically equivalent means that the strings have the same text components, font
list element tags, directions, and separators. In general, if two compound strings are
created with the samelfar *) string usingXmsStringCreateLocalized in the same
language environment, the compound strings compare as equal. If two compound
strings are created with the same text and tag argument Xsirf§fringCreate, the

strings compare as equal.

sl Specifies a compound string to be compared sih

s2 Specifies a compound string to be compared sith

Return Values

Returns True if two compound strings are equivalent.

Related Information
XmStringCreate(3) andXmStringCreatelLocalized(3).

1289

Motif 2.1—Programmer’s Reference

XmStringComponentCreate(library call)

XmStringComponentCreate

Purpose A compound string function that creates arbitrary components

Synopsis #include <Xm/Xm.h>

XmString XmStringComponentCreate(
XmStringComponentType c_type
unsigned int length
XtPointer value);

Description

XmStringComponentCreate creates a newKmString component of typec_type
containingvalue If valueis invalid for the particular component type, this function
fails and returns NULL.

c_type Specifies the type of component to be created.

length Specifies the length in bytes ghlue Note that this must be precisely
the length of thevalue string, not including any trailing null characters.

value Specifies the value to be used in the creation of the component.

Refer to theXmStringComponentType(3) reference page for a list of the possible
XmString component types.

Return Values

If valueis invalid for c_type fails and returns NULL. Otherwise, this function returns
a new compound string. When the application no longer needs the returned compound
string, the application should catimStringFree.

1290

Xm Functions

XmStringComponentCreate(library call)

Related Information

XmString (3), XmStringGetNextTriple , XmStringComponentType, and
XmStringFree(3).

1291

Motif 2.1—Programmer’s Reference

XmStringComponentType(library call)

XmStringComponentType

Purpose Data type for compound string components

Synopsis #include <Xm/Xm.h>

Description

XmStringComponentType is the data type specifying compound string component
types. A compound string component identifies some part of a compound string, and
can have a value and length. A compound string component can be one of the following
types. These component types are grouped according to their length and value types.

The following components have values of NULL and lengths of O (zero).
XmSTRING_COMPONENT_SEPARATOR

This component usually maps to a newline or carriage return in displayed
text.

XmSTRING_COMPONENT_TAB

This component may be thought of as a text component containing only
a single tab.

XmMSTRING_COMPONENT_LAYOUT_POP

The layout direction is kept on a stack, with the current direction kept
on top of the stack. When this component is read, the most recently read
layout direction is popped off the stack and replaced by the direction
immediately before it.

XmSTRING_COMPONENT_END

This component marks the end of a compound string. No other
components should follow. If an application does not place an
XmSTRING_COMPONENT_END component at the end of an
XmString, Motif automatically does it for the application.

The following component has a valueXDirection and the length of that direction.

1292

Xm Functions

XmStringComponentType(library call)

XmSTRING_COMPONENT_LAYOUT_PUSH
The layout direction is kept on a stack, with the current direction kept on
top of the stack. This component replaces the current layout direction,
and causes another to be pushed onto the top of this stack.

The following component has a value ¥fStringDirection and the length of that
direction.

XmSTRING_COMPONENT_DIRECTION
This component sets the string direction by overriding the previous string
direction.

The following components have values of typlgar * or some equivalent type, and
the lengths of these types.

XmSTRING_COMPONENT_LOCALE_TEXT
This component contains the multibyte text of a compound string.

XmSTRING_COMPONENT_WIDECHAR_TEXT
This component contains the widechar text of a compound string.

XmSTRING_COMPONENT_TEXT
This component contains the charset text of a compound string. Note
that a compound string cannot contain both charset and locale (multibyte
or widechar) text.

XmSTRING_COMPONENT_RENDITION_BEGIN

This component marks the beginning of a new rendition. All text
following this component will be rendered using this rendition
as the primary one. If there is already a rendition in effect, it
is kept in memory and used to fill in any unspecified values in
the primary rendition. Renditions are kept until a corresponding
XmSTRING_COMPONENT_RENDITION_END component is
encountered.

XmSTRING_COMPONENT_RENDITION_END
This component signifies that the specified rendition will no longer be
used to render text, and will not be available to fill in unspecified values
of newer renditions.

XmSTRING_COMPONENT_UNKNOWN
This component type signifies that the component contents belong to an
unknown component type.

1293

Motif 2.1—Programmer’s Reference

XmStringComponentType(library call)

XmSTRING_COMPONENT_LOCALE
Use this component to specify the locale in which an internationalized
application is to execute. The only valid character string for this
component is MOTIF_DEFAULT_LOCALE .

XmSTRING_COMPONENT_TAG
For charset text, this is the tag of the font to be used to display the text.
This tag is sometimes referred to as the charset tag or the fontlist tag.

XmSTRING_COMPONENT_CHARSET
This component is obsolete and remains for compatibility with previous
releases. It has been replacedXimSTRING_COMPONENT_TAG .

XmMSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
This component is obsolete and remains for compatibility with previous
releases. It has been replacedXimSTRING_COMPONENT_TAG .

Some compound string components depend on values defined in other components.
The XmSTRING_COMPONENT_TAB component definition, for example, depends

on information in the XMmSTRING_COMPONENT_RENDITION_BEGIN . To
account for these dependencies, a typical compound string will have its member
components in the following order:

[
[XMSTRING_COMPONENT_LAYOUT_PUSH]

[XmSTRING_COMPONENT_RENDITION_BEGIN J*
[XMSTRING_COMPONENT_TAG | XmSTRING_COMPONENT_LOCALE]
[XMSTRING_COMPONENT_TAB J*
[XMSTRING_COMPONENT_DIRECTION]
[XMSTRING_COMPONENT_TEXT |
XmSTRING_COMPONENT_LOCALE_TEXT |
XmSTRING_COMPONENT_WIDECHAR_TEXT]
[XMSTRING_COMPONENT_RENDITION_END J*
[XMSTRING_COMPONENT_LAYOUT_POP]
[XMSTRING_COMPONENT_SEPARATOR]
]*
XmSTRING_COMPONENT_END

1294

Xm Functions

XmStringConcat(library call)

XmStringConcat

Purpose A compound string function that appends one string to another

Synopsis #include <Xm/Xm.h>

XmString XmStringConcat(
XmString s],
XmString s2);

Description

XmStringConcat copiess2 to the end ofsl and returns a copy of the resulting

compound string. The original strings are preserved. The function will allocate space
to hold the returned compound string. The application is responsible for managing
the allocated space. The application can recover the allocated space by calling

XmStringFree.
sl Specifies the compound string to which a copysgfis appended
s2 Specifies the compound string that is appended to the esd of

Return Values

Returns a new compound string.

Related Information
XmStringCreate(3) andXmStringFree(3).

1295

Motif 2.1—Programmer’s Reference

XmStringConcatAndFree(library call)

XmStringConcatAndFree

Purpose A compound string function that appends one string to another and frees the original

strings

Synopsis #include <Xm/Xm.h>

XmString XmStringConcatAndFree(
XmString s],
XmString s2);

Description

XmStringConcatAndFree copiess2 to the end ofsl and returns a copy of the
resulting compound string. The original strings are freed. The function will allocate
space to hold the returned compound string. The application is responsible for
managing the allocated space. The application can recover the allocated space by
calling XmStringFree.

sl Specifies the compound string to which a copysgfis appended
s2 Specifies the compound string that is appended to the esd of

The XmStringConcatAndFree function works like theXmStringConcat function,
except that it frees thel ands2 strings, and is therefore more efficient. You should
useXmsStringConcatAndFree instead ofXmStringConcat if you wantsl ands2to

be freed afterwards.

Return Values

1296

Returns a new compound string.

Xm Functions

XmStringConcatAndFree(library call)

Related Information
XmStringConcat(3), XmStringCreate(3), andXmStringFree(3).

1297

Motif 2.1—Programmer’s Reference

XmStringCopy(library call)

XmStringCopy

Purpose A compound string function that makes a copy of a string

Synopsis #include <Xm/Xm.h>

XmString XmStringCopy(
XmString s2);

Description

XmStringCopy makes a copy of an existing compound string. When the application
no longer needs the returned compound string, the application should call
XmStringFree.

sl Specifies the compound string to be copied

Return Values

Returns a compound string.

Related Information
XmStringCreate(3) andXmStringFree(3).

1298

Xm Functions

XmStringCreate(library call)

XmStringCreate

Purpose A compound string function that creates a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringCreate(
char *text
char *tag);

Description

XmStringCreate creates a compound string with two components: text and a font list
element tag. The function will allocate space to hold the returned compound string.
When the application no longer needs the returned compound string, the application
should callXmStringFree.

text Specifies a NULL-terminated string to be used as the text component
of the compound string.

tag Specifies the tag component to be associated with the given text.
The value XmFONTLIST_DEFAULT _TAG identifies a locale text
segment.

Return Values

Returns a new compound string.

Related Information

XmFontList (3), XmFontListAdd (3), XmFontListAppendEntry (3),
XmFontListCopy (3), XmFontListCreate(3), XmFontListEntryCreate (3),
XmFontListEntryFree (3), XmFontListEntryGetFont (3),
XmFontListEntryGetTag (3), XmFontListEntryLoad (3), XmFontListFree(3),

1299

Motif 2.1—Programmer’s Reference

XmStringCreate(library call)

1300

XmFontListFreeFontContext(3), XmFontListGetNextFont(3),
XmFontListinitFontContext (3), XmFontListNextEntry (3),
XmFontListRemoveEntry(3), XmString (3), XmStringBaseling(3),
XmStringByteCompare(3), XmStringCompare(3), XmStringConcat(3),
XmStringCopy(3), XmStringCreateLocalized(3), XmStringCreateLtoR (3),
XmStringCreateSimple(3), XmStringDirection (3), XmStringDirectionCreate (3),
XmStringDraw (3), XmStringDrawlmage (3), XmStringDrawUnderline (3),
XmStringEmpty (3), XmStringExtent (3), XmStringFree(3),
XmStringFreeContext(3), XmStringGetLtoR (3),
XmStringGetNextComponeni(3), XmStringGetNextSegmen(3),
XmStringHasSubstring(3), XmStringHeight (3), XmStringlnitContext (3),
XmStringLength (3), XmStringLineCount (3), XmStringNConcat(3),
XmStringNCopy(3), XmStringPeekNextComponen(3),
XmStringSegmentCreaté3), XmStringSeparatorCreate(3), XmStringTable(3),
and XmStringWidth (3).

Xm Functions

XmStringCreatelLocalized(library call)

XmStringCreatelLocalized

Purpose A compound string function that creates a compound string in the current locale

Synopsis #include <Xm/Xm.h>

XmString XmStringCreatelLocalized(
char *tex®;

Description

XmStringCreatelLocalized creates a compound string containing the specified text in
the current language environment. An identical compound string would result from the
function XmStringCreate called withXmFONTLIST_DEFAULT_TAG explicitly as

the tag component.

The function will allocate space to hold the returned compound string. The application
is responsible for managing the allocated space. The application can recover the
allocated space by callingmStringFree.

text Specifies a NULL-terminated string of text encoded in the current
language environment to be used as the text component of the compound
string

Return Values

Returns a new compound string.

Related Information
XmStringCreate(3).

1301

Motif 2.1—Programmer’s Reference

XmStringCreatelLtoR(library call)

XmStringCreateLtoR

Purpose A compound string function that creates a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringCreatelLtoR(
char *text
char *tag);

Description

This function is obsolete and exists for compatibility with previous releases. It is
replaced byXmsStringGenerate. XmStringCreateLtoR creates a compound string

with two components: text and a tag component. This function scans fdraracters

in the text. When one is found, the text up to that point is put into a segment followed
by a separator component. No final separator component is appended to the end of
the compound string. The direction component defaults to left-to-right. This function
assumes that the encoding is single byte rather than multibyte.

The function will allocate space to hold the returned compound string. The application
is responsible for managing the allocated space. The application can recover the
allocated space by callingmStringFree.

text Specifies a NULL-terminated string to be used as the text component
of the compound string.

tag Specifies the tag component to be associated with the given text. The
value XmFONTLIST_DEFAULT_TAG is retained for compatibility
with previous releases.

Return Values

Returns a new compound string.

1302

Xm Functions

XmStringCreatelLtoR(library call)

Related Information
XmStringCreate(3) and XmStringGenerate(3).

1303

Motif 2.1—Programmer’s Reference

XmStringCreateSimple(library call)

XmStringCreateSimple

Purpose A compound string function that creates a compound string in the language

environment of a widget

Synopsis #include <Xm/Xm.h>

XmString XmStringCreateSimple(
char * text);

Description

XmStringCreateSimple creates a compound string with a text component and a
charset tag. It derives the character set from the current language environment.

The routine attempts to derive a character set from the value of the LANG environment
variable. If this does not result in a valid character set, the routine uses a vendor-
specific default. If the vendor has not specified a different value, this default is
ISO8859-1.

The function will allocate space to hold the returned compound string. The application
is responsible for managing the allocated space. The application can recover the
allocated space by callingmStringFree.

NOTE: This routine is obsolete and exists for compatibility with previous releases. It
has been replaced bBymStringCreatelLocalized.

text Specifies a NULL-terminated string to be used as the text component
of the compound string.

Return Values

1304

Returns a new compound string.

Xm Functions

XmStringCreateSimple(library call)

Related Information
XmStringCreate(3) and XmStringCreatelLocalized(3).

1305

Motif 2.1—Programmer’s Reference
XmStringDirectionCreate(library call)

XmStringDirectionCreate

Purpose A compound string function that creates a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringDirectionCreate(
XmStringDirection direction);

Description

XmStringDirectionCreate creates a compound string with a single component, a
direction with the given value. When the application no longer needs the returned
compound string, the application should céthStringFree.

direction Specifies the value of the direction component. The possible values are:

XmSTRING_DIRECTION_L_TO_R
Specifies left to right display.

XmSTRING_DIRECTION_R_TO_L
Specifies right to left display.

XmSTRING_DIRECTION_DEFAULT
Specifies that the display direction will be set by the
widget in which the compound string is to be displayed.

Return Values

Returns a new compound string.

Related Information
XmStringCreate(3).

1306

Xm Functions

XmStringDirectionToDirection(library call)

XmStringDirectionToDirection

Purpose A function that converts from XmStringDirection to XmDirection

Synopsis #include <Xm/Xm.h>

XmDirection XmStringDirectionToDirection(
XmStringDirection direction);

Description

XmStringDirectionToDirection converts the specifiedmStringDirection direction
value to its equivalentXmDirection value. This function provides backward
compatibility with theXmStringDirection data type.

direction Specifies theXmStringDirection value to be converted.

Return Values
Returns the following<mDirection values:

XmLEFT_TO_RIGHT
If the direction argument iIsXmMSTRING_DIRECTION_L_TO _R.

XmRIGHT_TO_LEFT
If the direction argument iISXmMSTRING_DIRECTION_R_TO L .

XmDEFAULT_DIRECTION
If the direction argument was not either of the above.

Related Information
XmStringDirection (3) and XmDirection (3).

1307

Motif 2.1—Programmer’s Reference

XmStringDraw(library call)

XmStringDraw

Purpose A compound string function that draws a compound string in an X window

Synopsis #include <Xm/Xm.h>

void XmStringDraw(
Display * d,
Window w,
XmRenderTable rendertable
XmString string,
GC g,
Position X,
Position y,
Dimension width,
unsigned charalignment
unsigned charlayout_direction
XRectangle* clip);

Description

XmStringDraw draws a compound string in an X Window. If a compound string
segment uses a rendition that contains a font set, the graphic context passed to this
routine will have the GC font member left in an undefined state. The underlying
XmbStringDraw function called by this routine modifies the font ID field of the GC
passed into it and does not attempt to restore the font ID to the incoming value. If
the compound string segment is not drawn using a font set, the graphic context must
contain a valid font member. Graphic contexts createtiyetGC are not valid for

this routine; instead, usk¥tAllocateGC to create a graphic context.

d Specifies the display.
w Specifies the window.
rendertable Specifies the render table.

string Specifies the string.

1308

Xm Functions

gc

width

alignment

XmStringDraw(library call)

Specifies the graphics context to use.

Specifies a coordinate of the rectangle that will contain the displayed
compound string.

Specifies a coordinate of the rectangle that will contain the displayed
compound string.

Specifies the width of the rectangle that will contain the displayed
compound string.

Specifies how the string will be aligned within the specified
rectangle. It is either XmMALIGNMENT_BEGINNING |,
XMALIGNMENT_CENTER , or XmALIGNMENT_END .

layout_direction

clip

Related Information

Controls the direction in which the segments of the compound string will
be laid out. It also determines the meaning of #ignmentparameter.

Allows the application to restrict the area into which the compound
string will be drawn. If the value is NULL, clipping will be determined
by the GC.

XmStringCreate(3).

1309

Motif 2.1—Programmer’s Reference

XmStringDrawlmage(library call)

XmStringDrawlmage

Purpose A compound string function that draws a compound string in an X Window and creates
an image

Synopsis #include <Xm/Xm.h>

void XmStringDrawlmage(
Display * d,
Window w,
XmRenderTable rendertable
XmString string,
GC g,
Position X,
Position y,
Dimension width,
unsigned charalignment
unsigned charlayout_direction
XRectangle* clip);

Description

XmStringDrawlmage draws a compound string in an X Window and paints both the
foreground and background bits of each character. If a compound string segment uses
a rendition that contains a font set, the graphic context passed to this routine will have
the GC font member left in an undefined state. The underly{ngoStringDraw
function called by this routine modifies the font ID field of the GC passed into it
and does not attempt to restore the font ID to the incoming value. If the compound
string segment is not drawn using a font set, the graphic context must contain a valid
font member. Graphic contexts createdXigsetGC are not accepted by this routine;
instead, usétAllocateGC to create a graphic context.

d Specifies the display.

w Specifies the window.

1310

Xm Functions

XmStringDrawlmage(library call)

rendertable Specifies the render table.

string

gc
X

width

alignment

Specifies the string.
Specifies the graphics context to use.

Specifies a coordinate of the rectangle that will contain the displayed
compound string.

Specifies a coordinate of the rectangle that will contain the displayed
compound string.

Specifies the width of the rectangle that will contain the displayed
compound string.

Specifies how the string will be aligned within the specified
rectangle. It is either XmMALIGNMENT_BEGINNING |,
XmALIGNMENT_CENTER , or XmALIGNMENT_END .

layout_direction

clip

Related Information

Controls the direction in which the segments of the compound string will
be laid out. It also determines the meaning of dtignmentparameter.

Allows the application to restrict the area into which the compound
string will be drawn. If NULL, clipping will be determined by the GC.

XmStringCreate(3).

1311

Motif 2.1—Programmer’s Reference

XmStringDrawUnderline(library call)

XmStringDrawUnderline

Purpose A compound string function that underlines a string drawn in an X Window

Synopsis #include <Xm/Xm.h>

void XmStringDrawUnderline(
Display * d,
Window w,
XmRenderTable rendertable
XmString string,
GC g,
Position X,
Position y,
Dimension width,
unsigned charalignment
unsigned charlayout_direction
XRectangle* clip,
XmString underling;

Description

1312

XmStringDrawUnderline draws a compound string in an X Window. If the substring
identified byunderlinecan be matched istring, the substring will be underlined. Once

a match has occurred, no further matches or underlining will be done. Only the first
text component ofinderlineis used for matching.

If a compound string segment uses a rendition that contains a font set, the graphic
context passed to this routine will have the GC font member left in an undefined
state. The underlyingmbStringDraw function called by this routine modifies the
font ID field of the GC passed into it and does not attempt to restore the font ID to
the incoming value. If the compound string segment is not drawn using a font set,
the graphic context must contain a valid font member. Graphic contexts created by
XtGetGC are not accepted by this routine; instead, X$AllocateGC to create a
graphic context.

Xm Functions

XmStringDrawUnderline(library call)

d Specifies the display.
w Specifies the window.

rendertable Specifies the render table.

string Specifies the string.
gc Specifies the graphics context to use.
X Specifies a coordinate of the rectangle that will contain the displayed

compound string.

y Specifies a coordinate of the rectangle that will contain the displayed
compound string.

width Specifies the width of the rectangle that will contain the displayed
compound string.

alignment Specifies how the string will be aligned within the specified
rectangle. It is one of XMALIGNMENT_BEGINNING |,
XmALIGNMENT_CENTER , or XmALIGNMENT_END .

layout_direction
Controls the direction in which the segments of the compound string will
be laid out. It also determines the meaning of #lignmentparameter.

clip Allows the application to restrict the area into which the compound
string will be drawn. If it is NULL, clipping will be determined by the
GC.

underline Specifies the substring to be underlined.

Related Information
XmStringCreate(3).

1313

Motif 2.1—Programmer’s Reference

XmStringEmpty(library call)

XmStringEmpty

Purpose A compound string function that provides information on the existence of non-zero-
length text components

Synopsis #include <Xm/Xm.h>

Boolean XmStringEmpty(
XmString s1);

Description

XmStringEmpty returns a Boolean value indicating whether any non-zero-length text
components exist in the provided compound string. It returns True if there are no text
segments in the string. If this routine is passed NULL as the string, it returns True.

sl Specifies the compound string

Return Values

Returns True if there are no text segments in the string. If this routine is passed NULL
as the string, it returns True.

Related Information
XmStringCreate(3).

1314

Xm Functions

XmStringExtent(library call)

XmStringExtent

Purpose A compound string function that determines the size of the smallest rectangle that
will enclose the compound string

Synopsis #include <Xm/Xm.h>

void XmStringExtent(
XmRenderTable rendertable
XmString string,
Dimension *width,
Dimension *height);

Description

XmStringExtent determines the width and height, in pixels, of the smallest rectangle
that will enclose the provided compound string.

rendertable Specifies the render table

string Specifies the string
width Specifies a pointer to the width of the rectangle
height Specifies a pointer to the height of the rectangle

Related Information
XmStringCreate(3).

1315

Motif 2.1—Programmer’s Reference

XmStringFree(library call)

XmStringFree

Purpose A compound string function that conditionally deallocates memory

Synopsis #include <Xm/Xm.h>

void XmStringFree(
XmString string);

Description

XmStringFree conditionally recovers memory used by a compound string.
Applications should calKmStringFree when the application no longer neestsing.

string Specifies the compound string to be freed

Related Information
XmStringCreate(3).

1316

Xm Functions

XmStringFreeContext(library call)

XmStringFreeContext

Purpose A compound string function that releases the string scanning context data structure

Synopsis #include <Xm/Xm.h>

void XmStringFreeContext(
XmStringContext contexj;

Description
XmStringFreeContext releases the string scanning context data structure.

context Specifies the string context structure that was allocated by the
XmStringlnitContext function

Related Information
XmStringCreate(3) andXmStringlnitContext (3).

1317

Motif 2.1—Programmer’s Reference

XmStringGenerate(library call)

XmStringGenerate

Purpose A convenience function that generates a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringGenerate(
XtPointer text
XmStringTag tag,
XmTextType type
XmStringTag rendition);

Description

XmStringGenerate calls theXmStringParseText function with a default parse table
of entries consisting of \n’, which maps to Separator, and '\t’, which maps to
Tab. MatchingRENDITION_BEGINand RENDITION_ENDcomponents containing
rendition are placed around the resultiXgnString.

text

tag

type

rendition

1318

Specifies a NULL-terminated string containing characters of a type
determined bytype

Specifies the tag to be used in creating the result. The type
of tag created (charset or locale) depends on the text type and
the value given. If specified value is NULL, antype indicates
that a charset tag should be created, then the tag will have the
value of XmFONTLIST_DEFAULT _TAG . If tag is NULL, and
type indicates a locale tag, then the tag will have the value of
_MOTIF_DEFAULT_LOCALE .

Specifies the type of text to be passed in, and the tag type. If
a locale tag should be created, théype has a value of either
XmMULTIBYTE_TEXT or XmWIDECHAR_TEXT . If a charset
should be createdypehas a value oOXmCHARSET_TEXT .

Specifies the renditon tag to be used in an
XmSTRING_COMPONENT_RENDITION_BEGIN

Xm Functions

XmStringGenerate(library call)

component which will begin the returned string and in an
XmSTRING_COMPONENT_RENDITION_END component which
will end it. If renditionis NULL, no rendition tag is placed.

Return Values

Returns a new compound string. The function will allocate space to hold the returned
compound string. When the application no longer needs the returned compound string,
the application should cakmStringFree.

Related Information
XmString (3) andXmStringFree(3).

1319

Motif 2.1—Programmer’s Reference
XmStringGetLtoR(library call)

XmStringGetLtoR

Purpose A compound string function that searches for a text segment in the input compound
string

Synopsis #include <Xm/Xm.h>

Boolean XmStringGetLtoR(
XmString string,
XmStringCharSet tag,
char ** tex;

Description

This function is obsolete and exists for compatibility with previous releases. It is
replaced byXmStringUnparse. XmStringGetLtoR returns the first text component

in the input compound string that is tagged with the given tag component. The returned
text is to be a NULL-terminated sequence of single byte characters. If the function
returns True, the function will allocate space to hold the retutartd The application

is responsible for managing the allocated space. The application can recover the
allocated space by callingtFree.

string Specifies the compound string.

tag Specifies the font list element tag associated with the text. A value of
XmFONTLIST_DEFAULT_TAG identifies a locale text segment.

text Specifies a pointer to a NULL terminated string.

Return Values

Returns True if the matching text segment can be found. On retextwill have a
NULL terminated byte sequence containing the matched segment.

1320

Xm Functions
XmStringGetLtoR(library call)

Related Information
XmStringCreate(3).

1321

Motif 2.1—Programmer’s Reference

XmStringGetNextComponent(library call)

XmStringGetNextComponent

Purpose A compound string function that returns the type and value of the next component in
a compound string

Synopsis #include <Xm/Xm.h>

XmStringComponentType XmStringGetNextComponent(
XmStringContext context
char ** text,
XmStringTag *tag,
XmStringDirection * direction,
XmStringComponentType *unknown_tag
unsigned short *unknown_length
unsigned char *unknown_valug

Description

This function is obsolete and exists for compatibility with previous releases. It
is replaced byXmStringGetNextTriple . XmStringGetNextComponent returns the

type and value of the next component in the compound string identifiecbbtext
Components are returned one at a time. On return, only some output parameters will
be valid; which ones can be determined by examining the returned component type.
The following table describes the valid returns for each component type.

Valid Fields Component Type

tag XmSTRING_COMPONENT_LOCALE,
XmSTRING_COMPONENT_TAG

text XmSTRING_COMPONENT_LOCALE_TEXT,

XmMSTRING_COMPONENT_TEXT,
XmSTRING_COMPONENT_WIDECHAR_TEXT

direction XmSTRING_COMPONENT_DIRECTION

1322

Xm Functions

XmStringGetNextComponent(library call)

unknown_tag, XmSTRING_COMPONENT_LAYOUT_POP,
unknown_length, XmSTRING_COMPONENT_LAYOUT_PUSH,
unknown_value XMSTRING_COMPONENT_TAB,

XmSTRING_COMPONENT_RENDITION_BEGIN,
XmSTRING_COMPONENT_RENDITION_END

no valid field XmSTRING_COMPONENT_SEPARATOR,
XmSTRING_COMPONENT_END,
XmMSTRING_COMPONENT_UNKNOWN

Note that several components produce a return value of
XmSTRING_COMPONENT_UNKNOWN . The data returned by these
components is returned in thenknown_tag unknown_lengthand unknown_value
fields. This apparent inconsistency is designed to accomodate older applications that
may not be equipped to handle the newer component types of Motif version 2.0
and beyond. Consequently, the use of this procedure is not recommended. Instead,
use theXmsStringGetNextTriple procedure, which provides all the functionality of
XmStringGetNextComponent and is fully compatible with the newer component

types.

If the function return value isSXmMSTRING_COMPONENT_ LOCALE_TEXT

or XmSTRING_COMPONENT_TEXT, the the function allocates
space to hold the returnedtext |If the function return value s
XmMSTRING_COMPONENT_FONTLIST_ELEMENT_TAG , or
XmSTRING_COMPONENT_TAG, then the function allocates space to
hold the returnedag. The application is responsible for managing the allocated
space. The application can recover the allocated space by cAllitrge.

context Specifies the string context structure that was allocated by the
XmStringlnitContext function.

text Specifies a pointer to a NULL terminated string.

tag Specifies a pointer to the tag component associated with the text.
The value XmFONTLIST_DEFAULT _TAG identifies a locale text
segment.

direction Specifies a pointer to the direction of the text.

unknown_tag
Specifies a pointer to the tag of an unknown component.

unknown_length
Specifies a pointer to the length of an unknown component.

1323

Motif 2.1—Programmer’s Reference

XmStringGetNextComponent(library call)

unknown_value
Specifies a pointer to the value of an unknown component.

Return Values

Returns the type of component found. Refer to ¥mStringComponentType(3)
reference page for a list of component types.

Related Information
XmStringComponentType(3), XmStringCreate(3), andXmStringlnitContext (3).

1324

Xm Functions

XmStringGetNextSegment(library call)

XmStringGetNextSegment

Purpose A compound string function that fetches the bytes in the next segment of a compound
string

Synopsis #include <Xm/Xm.h>

Boolean XmStringGetNextSegment(
XmStringContext context
char ** text,

XmStringTag *tag,
XmStringDirection * direction,
Boolean *separatoy;

Description

This routine is obsolete and exists for compatibility with previous releases. To

read the contents of a compound string, read each component of the string with
XmStringGetNextTriple . This XmString function returns the type, length, and value

of the next component in the compound stridgnStringGetNextSegmentfetches

the bytes in the next segment; repeated calls fetch sequential segmentsx{Ttas,

and direction of the fetched segment are returned each time. A Boolean status is
returned to indicate whether a valid segment was successfully parsed.

If the function returns True, then the function allocates space to hold the returned
text and tag. The application is responsible for managing the allocated space. The
application can recover the allocated space by calitigree.

context Specifies the string context structure which was allocated by the
XmStringlnitContext function

text Specifies a pointer to a NULL-terminated string

tag Specifies a pointer to the font list element tag associated with the text

direction Specifies a pointer to the direction of the text

1325

Motif 2.1—Programmer’s Reference

XmStringGetNextSegment(library call)

separator Specifies whether the next component of the compound string is a
separator

Return Values

Returns True if a valid segment is found.

Related Information
XmStringCreate(3) andXmStringlnitContext (3).

1326

Xm Functions

XmStringGetNextTriple(library call)

XmStringGetNextTriple

Purpose An XmsString function that returns the type, length, and value of the next component
in the compound string

Synopsis #include <Xm/Xm.h>

XmStringComponentType XmStringGetNextTriple(
XmStringContext context
unsigned int *length,
XtPointer *value);

Description

XmStringGetNextTriple returns the type, length, and value of the next component
in the compound string identified gontext This function returns one component at

a time.

context Specifies the string context structure that was allocated by the
XmStringlnitContext function.

length Specifies a pointer to the length of the value of the returned component.

value Specifies a pointer to the value of the returned component. If the returned

value is not NULL, the function allocates space to hold the returned
value. When the application no longer needs the returned compound
string, the application should calltFree.

Return Values

Returns the type of the component found. Refer toXhestringComponentType(3)
reference page for a list of component types.

1327

Motif 2.1—Programmer’s Reference

XmStringGetNextTriple(library call)

Related Information

XmDirection (3), XmString (3), XmStringComponentType(3),
XmStringGetNextComponen{3), andXmStringPeekNextTriple(3).

1328

Xm Functions

XmStringHasSubstring(library call)

XmStringHasSubstring

Purpose A compound string function that indicates whether one compound string is contained
within another

Synopsis #include <Xm/Xm.h>

Boolean XmStringHasSubstring(
XmString string,
XmString substring;

Description

XmStringHasSubstring indicates whether or not one compound string is contained
within another.

string Specifies the compound string to be searched

substring Specifies the compound string to be searched for

Return Values

Returns True ifsubstringhas a single text component and if its text is completely
contained within any single text componentsifing; otherwise, it returns False.

Related Information
XmStringCreate(3) andXmStringCreatelLocalized(3).

1329

Motif 2.1—Programmer’s Reference

XmStringHeight(library call)

XmStringHeight

Purpose A compound string function that returns the line height of the given compound string

Synopsis #include <Xm/Xm.h>

Dimension XmStringHeight(
XmRenderTable rendertable
XmString string);

Description

XmStringHeight returns the height, in pixels, of the sum of all the line heights of
the given compound string. Separator components delimit lines.

rendertable Specifies the render table

string Specifies the string

Return Values
Returns the height of the specified string.

Related Information
XmStringCreate(3).

1330

Xm Functions

XmStringlnitContext(library call)

XmStringlnitContext

Purpose A compound string function that creates a data structure for scanning an XmString
component by component

Synopsis #include <Xm/Xm.h>

Boolean XmStringlnitContext(
XmStringContext * context
XmString string);

Description

XmStringlnitContext creates a context to allow applications to read out the contents
of a compound string component by component. A Boolean status is returned to
indicate that the context could not be initalized.

If the function returns True, the function will allocate space to hold the returned
context The application is responsible for managing the allocated space. The memory
can be recovered by callingmStringFreeContext.

context Specifies a pointer to the allocated context

string Specifies the string

Return Values

Returns True if the context was allocated

Related Information
XmStringCreate(3).

1331

Motif 2.1—Programmer’s Reference

XmStringlsVoid(library call)

XmStringls\Void

Purpose A compound string function that provides information on the existence of non-zero-
length text components, tab components, or separator components

Synopsis #include <Xm/Xm.h>

Boolean XmStringlsVoid(
XmString s1);

Description
XmStringlsVoid returns a Boolean value indicating whether or not stsfgs void.

sl Specifies the compound string

Return Values

Returns True if any non-zero-length text components, tab components, or separator
components exist isl That is, the function returns True if the string has no text,
tabs, or separators. 1 contains the NULL string, the function returns True.

Related Information
XmStringCreate(3).

1332

Xm Functions
XmStringLength(library call)

XmStringLength

Purpose A compound string function that obtains the length of a compound string

Synopsis #include <Xm/Xm.h>

int XmStringLength(
XmString sl);

Description

This function is obsolete and exists for compatibility with previous releases. It is
replaced byXmsStringByteStreamLength. XmStringLength obtains the length of a
compound string. It returns the number of bytessihincluding all tags, direction

indicators, and separators. If the compound string has an invalid structure, 0 (zero) is
returned.

sl Specifies the compound string

Return Values

Returns the length of the compound string.

Related Information
XmStringByteStreamLength(3) andXmStringCreate(3).

1333

Motif 2.1—Programmer’s Reference

XmStringLineCount(library call)

XmStringLineCount

Purpose A compound string function that returns the number of separators plus one in the
provided compound string

Synopsis #include <Xm/Xm.h>

int XmStringLineCount(
XmString string);

Description

XmStringLineCount returns the number of separators plus one in the provided
compound string. In effect, it counts the lines of text.

string Specifies the string

Return Values

Returns the number of lines in the compound stringstiing is empty, the function
returns 1. If NULL is passed intstring, the function returns O (zero).

Related Information
XmStringCreate(3).

1334

Xm Functions

XmStringNConcat(library call)

XmStringNConcat

Purpose A compound string function that appends a specified number of bytes to a compound
string

Synopsis #include <Xm/Xm.h>

XmString XmStringNConcat(
XmString s],
XmString s2,
int num_bytes

Description

This function is obsolete and exists for compatibility with previous releases. It is
replaced byXmStringConcat. XmStringNConcat appends a specified number of
bytes froms2 to the end ofs], including tags, directional indicators, and separators.

It then returns the resulting compound string. The original strings are preserved.
The function allocates space for the resulting compound string. The application is
responsible for managing the allocated space. The application can recover the allocated
space by callingKmStringFree.

sl Specifies the compound string to which a copysgfis appended.
s2 Specifies the compound string that is appended to the esd of

num_bytes Specifies the number of bytes s?to append tesl If this value is less
than the length 02, as many bytes as possible, but possibly fewer than
this value, will be appended &l such that the resulting string is still a
valid compound string.

Return Values

Returns a new compound string.

1335

Motif 2.1—Programmer’s Reference

XmStringNConcat(library call)

Related Information
XmStringCreate(3) and XmStringFree(3).

1336

Xm Functions

XmStringNCopy(library call)

XmStringNCopy

Purpose A compound string function that creates a copy of a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringNCopy(
XmString sl,
int num_byteg

Description

This function is obsolete and exists for compatibility with previous releases.
XmStringNCopy creates a copy o$1 that contains a specified number of bytes,
including tags, directional indicators, and separators. It then returns the resulting
compound string. The original strings are preserved. The function allocates space
for the resulting compound string. The application is responsible for managing
the allocated space. The application can recover the allocated space by calling
XmStringFree.

sl Specifies the compound string.

num_bytes Specifies the number of bytes sl to copy. If this value is less than
the length ofs1, as many bytes as possible, but possibly fewer than this
value, will be appended ®1 such that the resulting string is still a valid
compound string.

Return Values

Returns a new compound string.

Related Information
XmStringCreate(3) andXmStringFree(3).

1337

Motif 2.1—Programmer’s Reference

XmStringParseText(library call)

XmStringParseText

Purpose A function that converts a character string to a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringParseText(
XtPointer text
XtPointer *text_end
XmStringTag tag,
XmTextType type
XmParseTable parse_table
Cardinal parse_count
XtPointer call_data);

Description

XmStringParseText converts characters specified@xtto corresponding components

in the returned compound string. The resulting compound string consists of at least one
locale or charset tag component and a seriesmftring text components and other
components. The conversion proceeds according to the parse information contained
in parse_table See theMotif 2.1—Programmer’s Guidér more information about
parsing and parse tables.

» If typeis XmCHARSET_TEXT , the associatedhg is interpreted as a charset
name. Iftag has a value of NULL, a charset component whose value is the result
of mappingXmFONTLIST_DEFAULT_TAG is created.

* If typeis XmMMULTIBYTE_TEXT or XmWIDECHAR_TEXT , the associated
tag is interpreted as a language environment nam&adfhas a value of NULL,
a locale component with a value oMOTIF_DEFAULT_LOCALE is created.
If typeis XmMULTIBYTE_TEXT or XmWIDECHAR_TEXT , tag must be
NULL or _MOTIF_DEFAULT_LOCALE .

1338

Xm Functions

XmStringParseText(library call)

XmStringParseText also scans the string for characters that have matches in
parse_table Whenever a match is found, the text up to that point is concatenated
with the mapped component.

text Specifies the NULL-terminated string containing characters of a type
determined bytype This is updated to point to after the last character
scanned.

text_end Specifies a pointer intéext If a NULL is supplied to thetext_end
parameter, thenXmStringParseText parses text until NULL is
encountered, or until it reaches a pointtaxt where it is directed to
stop (for example, by parse_prog. Otherwise, the value supplied to
thetext_endparameter is the pointer intext where parsing is to stop,
and the returned character is the one where parsing did stop.

tag Specifies the tag to be used in creating the result. The type of string tag
created (charset or locale) depends on the text type and the pasagd in
value. If thetag value is NULL and iftypeindicates that a charset string
tag should be created, the string tag has the value that is the result of
mapping XmFONTLIST_DEFAULT_TAG . If typeindicates a locale
string tag, the string tag has the valudOTIF_DEFAULT _LOCALE .

type Specifies the type of text and the tag type. If a locale tag should
be createdtype has a value of eitheXmMULTIBYTE_TEXT or
XmWIDECHAR_TEXT . If typehas value oXmCHARSET_TEXT,
a charset tag will be created.

parse_table Specifies the parse table to be used in scanning for characters to be
converted to other compound string components.

parse_count Specifies the number of entries jparse_table

call_data Specifies data to be passed to the parse procedures.

Return Values

Returns a new compound string. The function allocates space to hold the returned
compound string. When the application no longer needs the returned compound string,
the application should cakmStringFree.

1339

Motif 2.1—Programmer’s Reference

XmStringParseText(library call)

Related Information
XmString (3), XmStringFree(3), XmParseTablg3), XmParseMapping(3).

1340

Xm Functions

XmStringPeekNextComponent(library call)

XmStringPeekNextComponent

Purpose A compound string function that returns the component type of the next component
to be fetched

Synopsis #include <Xm/Xm.h>

XmStringComponentType XmStringPeekNextComponent(
XmStringContext contexj;

Description

This function is obsolete and exists for compatibility with previous releases. It is
replaced byXmsStringPeekNextTriple. XmStringPeekNextComponent examines
the next component that would be fetched XynStringGetNextComponent and
returns the component type.

context Specifies the string context structure that was allocated by the
XmStringlnitContext function

Return Values

Returns the type of component found. Refer to ¥mStringComponentType(3)
reference page for a list of component types.

Related Information

XmStringComponentType(3), XmStringCreate(3),
XmStringGetNextComponeni{3), andXmStringlnitContext (3).

1341

Motif 2.1—Programmer’s Reference

XmStringPeekNextTriple(library call)

XmStringPeekNextTriple

Purpose A function that returns the component type of the next component

Synopsis #include <Xm/Xm.h>

XmStringComponentType XmStringPeekNextTriple(
XmStringContext contexj;

Description

XmStringPeekNextTriple examines the next component that would be fetched by
XmStringGetNextTriple and returns the component type.

context Specifies the string context structure that was allocated by the
XmStringlnitContext function.

Return Values

Returns the type of the component found. Refer toXhestringComponentType(3)
reference page for a list of component types.

Related Information
XmString (3), XmStringComponentType(3), andXmStringGetNextTriple (3).

1342

Xm Functions

XmStringPutRendition(library call)

XmStringPutRendition

Purpose A convenience function that places renditions around strings

Synopsis #include <Xm/Xm.h>

XmString XmStringPutRendition(
XmString string,
XmStringTag renditior);

Description
XmStringPutRendition places matching
Xm_STRING_COMPONENT_RENDITION_BEGIN and

XMSTRING_COMPONENT_RENDITION_END components containing
rendition aroundstring. The original string is preserved.

string Specifies the compound string to which begin and end rendition
components should be added.

rendition Specifies the renditon tag to be used in an
XmSTRING_COMPONENT_RENDITION_BEGIN
component which will begin the returned string and in an
XmSTRING_COMPONENT_RENDITION_END component which
will end it.

Return Values

Returns a new compound string. The function allocates space to hold this returned
compound string. When the application no longer needs the returned compound string,
the application should cakKmStringFree.

1343

Motif 2.1—Programmer’s Reference

XmStringPutRendition(library call)

Related Information
XmString (3).

1344

Xm Functions

XmStringSegmentCreate(library call)

XmStringSegmentCreate

Purpose A compound string function that creates a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringSegmentCreate(
char * text,
XmStringTag tag,
XmStringDirection direction,
Boolean separatoy};

Description

This function is obsolete and exists for compatibility with previous releases. It
can be replaced by using a combination ¥mStringComponentCreate and
XmStringConcat. XmStringSegmentCreateis a high-level function that assembles

a compound string consisting of a font list element tag, a direction component, a text
component, and an optional separator component.

The function allocates space for the returned compound string. The application is
responsible for managing the allocated space. The application can recover the allocated
space by callingKmStringFree.

text Specifies a NULL-terminated string to be used as the text component
of the compound string.

tag Specifies the tag component to be associated with the text. The value
XmFONTLIST_DEFAULT_TAG is for compatibility with previous
releases.

direction Specifies the direction of the text.

separator A value of False means the compound string does not have a separator
at the end. A value of True, means a separator immediately follows the
text component.

1345

Motif 2.1—Programmer’s Reference

XmStringSegmentCreate(library call)

Return Values

Returns a new compound string.

Related Information
XmStringCreate(3).

1346

Xm Functions

XmStringSeparatorCreate(library call)

XmStringSeparatorCreate

Purpose A compound string function that creates a compound string

Synopsis #include <Xm/Xm.h>

XmString XmStringSeparatorCreate(
void

Description

XmStringSeparatorCreate creates a compound string with a single component, a
separator.

Return Values

Returns a new compound string. When the application no longer needs the returned
compound string, the application should céihStringFree.

Related Information
XmStringCreate(3).

1347

Motif 2.1—Programmer’s Reference

XmStringTableParseStringArray(library call)

XmStringTableParseStringArray

Purpose A convenience function that converts an array of strings to a compound string table

Synopsis #include <Xm/Xm.h>

XmStringTable XmStringTableParseStringArray(
XtPointer *strings,
Cardinal count
XmStringTag tag,
XmTextType type
XmParseTable parse
Cardinal parse_count
XtPointer call_data);

Description

XmStringTableParseStringArray takes an array of strings, allocates an
XmStringTable with an equal number of slots, callmStringParseText on each
string in strings and inserts the resultingmString in the corresponding slot in the

XmStringTable.

strings Specifies an array of strings of characters as determindgsy

count Specifies the number of strings #trings

tag Specifies the tag to be used in creating the result. The type of tag

created (charset or locale) depends on the type of the text and the
value given. If the value specified is NULL, angpe indicates that

a charset tag should be created, then the tag will have the value of
XmFONTLIST_DEFAULT_TAG . If typeindicates a locale tag, then
the tag will have the value KmFONTLIST_DEFAULT_TAG .

type Specifies the type of text to be passed in and the type of tag. If the
type is eitherXmMULTIBYTE_TEXT or XmWIDECHAR_TEXT ,
a locale tag should be created. If the typeXimsCHARSET_TEXT, a
charset tag will be created.

1348

Xm Functions

XmStringTableParseStringArray(library call)

parse Specifies the parse table to be used.
parse_count Specifies the number of entries in the parse table.

call_data Specifies data to be passed to the parse procedures.

Return Values

Returns a new XmStringTable. The function allocates space to hold the
XmStringTable. When the application no longer needs the returdedbstringTable,
the application should calKmStringFree counttimes (that is, one time for each
returned compound string) and then cxliFree to deallocate theXmStringTable
itself.

Related Information
XmStringFree(3) andXmTabList (3).

1349

Motif 2.1—Programmer’s Reference

XmStringTableProposeTablist(library call)

XmStringTableProposeTablist

Purpose A convenience function that returns a tab list

Synopsis #include <Xm/Xm.h>

XmTabList XmStringTableProposeTablist(
XmStringTable strings
Cardinal num_strings
Widget widget
float pad_value
XmOffsetModel offset_modéj

Description

XmStringTableProposeTablist takes an XmStringTable structure containing
tabbed compound strings, information on padding between columns, and rendering
information and returns a tab list that, if used to render the strings in the table, would
cause the strings to line up in columns with no overlap and with the specified amount
of padding between the widest item in each column and the start of the next column.
Each tab in the tablist would have the same unit typaumits an offset model of
offset_modeland an alignment type ofmALIGNMENT_BEGINNING .

strings Specifies an array of compound strings.
num_strings Specifies the number of compound stringssirings

widget Specifies the widget used for deriving any necessary information for
creating the rendition. In particular, témNunitType of widget will
be used to specify the unit type to be used in determining the amount
of padding separating columns and for the tabs in the proposed tab list.
Also, widgets render table will be used in interpreting rendition tags
within the strings.

pad_value Specifies the value of the amount of padding to be used to separate
columns. The units for this parameter are specified aXthHunitType

1350

Xm Functions

XmStringTableProposeTablist(library call)

set for thewidgetparameter. Refer to thémNunitType resource of the
XmGadget, XmManager, or XmPrimitive reference page.

offset_modelSpecifies the offset model to be used in creating the tabs. Can be
XmABSOLUTE or XmRELATIVE .

Return Values

Returns a newXmTabList. The function allocates space to hold the returned tab list.
The application is responsible for managing the allocated space. The application can
recover the allocated space by calliXghTabListFree.

Related Information
XmTablList (3) andXmTabListFree(3).

1351

Motif 2.1—Programmer’s Reference

XmStringTableToXmString(library call)

XmStringTableToXmString

Purpose A convenience function that converts a compound string table to a single compound

string

Synopsis #include <Xm/Xm.h>

XmString XmStringTableToXmString(
XmStringTable table,
Cardinal count
XmString break_componejt

Description

1352

XmStringTableToXmString takes as inputable of compound strings and a specified
string component (such as a tab) and returns a single compound string consisting
of each of the elements dfable concatenated together with a single copy of
break_componerinserted between each element.

table Specifies anXmStringTable containing the compound strings to be
converted.
count Specifies the number of compound stringgable

break_component

Specifies the XmStringComponentthat will be inserted in the
result to separate the individual elementstable The most useful
types will be XmSTRING_COMPONENT_SEPARATOR
and XMSTRING_COMPONENT_TAB. Refer to the
XmStringComponentType(3) reference page for a complete
list of possible component types. Note, however, that the
XmSTRING_COMPONENT_UNKNOWN component is not a
possible type.

Xm Functions

XmStringTableToXmString(library call)

Return Values

Returns a newXmsString. The function will allocate space to hold the returned
compound string. When the application no longer needs the returned compound string,
the application should cakmStringFree.

Related Information
XmString (3), XmStringComponentType(3), andXmStringFree(3).

1353

Motif 2.1—Programmer’s Reference

XmStringTableUnparse(library call)

XmStringTableUnparse

Purpose A convenience function that converts a table of compound strings to an array of text

Synopsis #include <Xm/Xm.h>

XtPointer * XmStringTableUnparse(
XmStringTable table,
Cardinal count
XmStringTag tag,
XmTextType tag_type
XmTextType output_type
XmParseTable parse
Cardinal parse_count
XmParseModel parse_mod¢]

Description

XmStringTableUnparse takes an array of compound strings, allocates a string array
for the type of characters determined type with an equal number of slots, calls
XmStringUnparse on each compound string table and inserts the resulting string

in the corresponding slot in the array.

table Specifies anXmStringTable containing the compound string to be
converted.

count Specifies the number of compound stringgable

tag Specifies the tag to be used in matching with text segments. The

two types of tag types ar&KmFONTLIST_DEFAULT _TAG and
_MOTIF_DEFAULT_LOCALE . Only segments tagged witiag will
be returned. Itagis NULL, all segments will be matched.

tag_type Specifies the type of tag to be searched for. These types
include XmMULTIBYTE_TEXT , XmWIDECHAR_TEXT ,
andXmCHARSET_TEXT .

1354

Xm Functions

XmStringTableUnparse(library call)

output_type Specifies the type of text to be generated. These types include
XmMULTIBYTE_TEXT , XmWIDECHAR_TEXT , and
XmMCHARSET_TEXT .

parse Specifies the parse table to be used.
parse_count Specifies the number of items parse

parse_modelSpecifies which non-text components to be considered in matching in
parse_tablePossible values are:

XmOUTPUT_ALL
Puts out all matching components.

XmOUTPUT_BETWEEN
Puts out only those matching components that are between
two matching text components.

XmOUTPUT_BEGINNING
Puts out only those matching components that are at the
beginning of a matching text component.

XmOUTPUT_END
Puts out only those matching components that are at the
end of a matching text component.

XmOUTPUT_BOTH
Puts out only those matching components that are at the
beginning or end of a matching text component.

Return Values

Returns an allocated array of allocated strings. The application is responsible for
managing the allocated space. The application can recover the allocated strings space
by calling XtFree counttimes (that is, one time for each allocated string). The
application can then recover the allocated array by calltigree on the allocated

array itself.

Related Information
XmStringTab.

1355

Motif 2.1—Programmer’s Reference

XmStringToXmsStringTable(library call)

XmStringToXmStringTable

Purpose A convenience function that converts a single compound string to a table of compound

strings

Synopsis #include <Xm/Xm.h>

Cardinal XmStringToXmStringTable(
XmString string,
XmString break_component
XmStringTable *table);

Description

1356

XmStringToXmStringTable takes as input a single compound string and a specified
string component (such as a tab) and returns a table of compound strings consisting
of portions of string delimited by components matchingreak _componentThe
components marking breaks will not appear in the resulting table.

string Specifies theXmString to be converted.

break_component
Specifies theXmStringComponerthat will be used to indicate where
to split string to form the individual elements dgable The most useful
types will be XmSTRING_COMPONENT_SEPARATOR
and XMSTRING_COMPONENT_TAB. Refer to the
XmStringComponentType(3) reference page for a complete
list of possible component types. Note, however, that the
XmSTRING_COMPONENT_UNKNOWN component is not a
possible type.

table Returns the equivalenKmStringTable. The function will allocate
space to hold the returnedmStringTable. When the applicaiton no
longer needs the returneXimStringTable, the application should call
XmStringFree once for each compound string in the table, and then
calling XtFree to deallocate theXmStringTable itself.

Xm Functions

XmStringToXmsStringTable(library call)

Return Values

Returns the number of compound stringgable

Related Information
XmStringTable(3).

1357

Motif 2.1—Programmer’s Reference

XmStringUnparse(library call)

XmStringUnparse

Purpose A compound string function that unparses text

Synopsis #include <Xm/Xm.h>

XtPointer XmStringUnparse(
XmString string,
XmStringTag tag,
XmTextType tag_type
XmTextType output_type
XmParseTable parse_table
Cardinal parse_count
XmParseModel parse_modé¢]

Description

XmStringUnparse looks in the inputstring for text segments that are tagged with
locale or charset tags that matigy. Thetag_typeparameter specifies whether the tag

is a locale or charset type. t&g has a value of NULL, all the segments are matched.
When a text segment is found with a matching tag, it is added to the end of a resulting
string. The characters in the resulting string are of tgpgput_type

XmStringUnparse also checksstring for components that match components in
parse_table and also to see if the component matches the condition specified by
parse_modellf the string component matches in both checks, then the associated
character is added to the end of the resulting string.

string Specifies theXmString to be converted.

tag Specifies the tag to be used in matching with text segments. Only text
segments that matdag will be included in the resulting string. kag
has a value of NULL, all segments are considered as matches, and
tag_typeis ignored.

1358

Xm Functions

XmStringUnparse(library call)

tag_type Specifies the type of tag to be searched for, including
XmMULTIBYTE_TEXT , XmWIDECHAR_TEXT , and
XmMCHARSET_TEXT .

output_type Specifies the type of text to be returned in the string, including
XmMULTIBYTE_TEXT , XmWIDECHAR_TEXT , and
XmMCHARSET_TEXT .

parse_table Specifies the parse table to be used in scanning for compound string
components to be converted to other characters.

parse_count Specifies how many entries areparse_table

parse_modelSpecifies which non-text components to be considered in matching in
parse_tableThese include:

XmOUTPUT_ALL
Puts out all matching components.

XmOUTPUT_BETWEEN
Puts out only those matching components that are between
two matching text components.

XmOUTPUT_BEGINNING
Puts out only those matching components that are at the
beginning of a matching text component.

XmOUTPUT_END
Puts out only those matching components that are at the
end of a matching text component.

XmOUTPUT_BOTH
Puts out only those matching components that are at the
beginning or end of a matching text component.

Return Values

Returns a newly allocated string containing characters of a type determined by
output_type The application is responsible for managing this allocated space. The
application can recover this allocated space by calitigree.

1359

Motif 2.1—Programmer’s Reference

XmStringUnparse(library call)

Related Information
XmString (3), XmParseTablg3), XmParseMapping(3).

1360

Xm Functions
XmStringWidth(library call)

XmStringWidth

Purpose A compound string function that returns the width of the widest line in a compound
string

Synopsis #include <Xm/Xm.h>

Dimension XmStringWidth(
XmRenderTable rendertable
XmString string);

Description

XmStringWidth returns the width, in pixels, of the widest line in the provided
compound string.

rendertable Specifies the render table

string Specifies the string

Return Values

Returns the width of the compound string.

Related Information
XmStringCreate(3).

1361

Motif 2.1—Programmer’s Reference

XmTabCreate(library call)

XmTabCreate

Purpose A convenience function that creates a tab stop

Synopsis #include <Xm/Xm.h>

XmTab XmTabCreate(
float valueg
unsigned charunits,
XmOffsetModel offset_model
unsigned charalignment
char *decimal);

Description

1362

XmTabCreate creates a tab stop at a position defined byiideeandunitsarguments.

value

units

Specifies the floating point value to be used in conjunction witfis
to calculate the location of the tab stop. Note that negative values are
not permitted.

Specifies the unit type (for examplEmMMILLIMETERS) to be used

in conjunction withvalue to calculate the location of the tab stop.
You can specify any unit described by tKenConvertUnits reference
page. For resources of type, dimension, or position, you can specify
units as described in thEmNunitType resource of theXmGadget,
XmManager, or XmPrimitive reference page.

offset_modelSpecifies whether the tab value represents an absolute position or a

alignment

relative offset from the previous tab. Valid values 2®ABSOLUTE
andXmRELATIVE .

Specifies how the text should be aligned relative to this tab stop. Valid
values areXmALIGNMENT_BEGINNING .

Xm Functions

XmTabCreate(library call)

decimal Specifies the multibyte character in the current language environment
to be used as the decimal point for a decimal aligned tab stop. This is
currently unused.

Return Values

Returns a newly allocatedkmTab. The application is responsible for managing
this allocated space. The application can recover this allocated space by calling
XmTabFree.

Related Information
XmTab(3) andXmTabFree(3).

1363

Motif 2.1—Programmer’s Reference

XmTabFree(library call)

XmTabFree

Purpose A convenience function that frees a tab

Synopsis #include <Xm/Xm.h>

void XmTabFree(
XmTab tab);

Description
XmTabFree frees the memory associated with the specified tab.

tab Specifies the tab to be freed.

Related Information
XmTab(3).

1364

Xm Functions

XmTabGetValues(library call)

XmTabGetValues

Purpose A convenience function that returns tab values

Synopsis #include <Xm/Xm.h>

float XmTabGetValues(
XmTab tab,
unsigned char *units,
XmOffsetModel *offset,
unsigned char*alignment
char **decimal);

Description

XmTabGetValues takes anXmTab structure, returns the floating point number that
is set as the value of the tab, and then sets values founitg offset alignment
anddecimalarguments where they are not NULL. The returned floating point number
represents the distance that the rendering ofXhestring segment associated with
tab will be offset. The offset is from either the beginning of the rendering or from the
previous tab stop, depending on the setting fordfisetmodel. The distance will use
the unit type pointed at bynit.

tab Specifies the tab to get the value from.
units Specifies a pointer to the unit type.
offset Specifies a pointer to the offset model.

alignment Specifies a pointer to the alignment type.

decimal Specifies a pointer to the multibyte character used as the decimal point.

Return Values

Returns a floating point number that is set as the value of the tab.

1365

Motif 2.1—Programmer’s Reference

XmTabGetValues(library call)

Related Information
XmTab(3).

1366

Xm Functions

XmTabListCopy(library call)

XmTabListCopy

Purpose A convenience function that creates a new tab list from an existing list

Synopsis #include <Xm/Xm.h>

XmTabList XmTabListCopy(
XmTablList tablist,
int offset
Cardinal couny;

Description

XmTabListCopy creates a new tab list consisting of a copy of a portion of the contents
of the tablist argument. This function starts copying at the specified offset value of
the tab list and copiesountvalues.

tablist Specifies a tab list to be copied.

offset Specifies where to start copying. A value of 0 (zero) indicates begin at
the beginning, a value of 1 indicates to skip the first tab, and so on. A
negative indicates to begin counting backwards from the end. A value
of -1 indicates to start copying from the last tab.

count Specifies the number of tabs to copy. A value of 0 (zero) indicates to
copy all elements from the starting point to the end (beginniraffefet
is negative) of the tab list.

Return Values

If tablist is NULL, this function returns NULL. Otherwise, this function returns

a newly allocatedXmTabList. If the function does allocate aKkmTablList, then

the application is responsible for managing the allocated space. The application can
recover the allocated space by calliKghTabListFree.

1367

Motif 2.1—Programmer’s Reference

XmTabListCopy(library call)

Related Information
XmTablList (3) andXmTabListFree(3).

1368

Xm Functions
XmTablListFree(library call)

XmTabListFree

Purpose A convenience function that frees the memory of a new tab list

Synopsis #include <Xm/Xm.h>

void XmTabListFree(
XmTabList tablist);

Description

XmTablListFree recovers memory used by a tab list. In addition, this function frees
all contained tabs. If th&ablistis NULL, the function returns immediately.

tablist Specifies the tab list to be freed.

Related Information
XmTablList (3).

1369

Motif 2.1—Programmer’s Reference
XmTabListGetTab(library call)

XmTabListGetTab

Purpose A convenience function that returns a copy of a tab

Synopsis #include <Xm/Xm.h>

XmTab XmTabListGetTab(
XmTablList tablist,
Cardinal position);

Description

XmTabListGetTab returns a copy of the tab that is located at the specified position
in the tab list.

tablist Specifies the tab list.

position Specifies the position of the tab to be returned. A value of 0 (zero)
returns the first tab in the tab list, a value of 1 returns the second tab,
and so on.

Return Values

Returns a copy of the tab that is located at the specified position in the tab list. If
positionis greater than or equal to the number of tabs in the tab list, this function

returns NULL. The application is responsible for managing the space allocted by
the returned tab copy. The application can recover this allocated space by calling
XmTabFree.

Related Information
XmTabFree(3) andXmTabList (3).

1370

Xm Functions

XmTablListInsertTabs(library call)

XmTabListlnsertTabs

Purpose A convenience function that inserts tabs into a tab list

Synopsis #include <Xm/Xm.h>

XmTabList XmTabListInsertTabs(
XmTabList oldlist,
XmTab *tabs,

Cardinal tab_count
int position;

Description

XmTablListinsertTabs creates a new tab list that includes the tabsoidlist.
This function copies specified tabs to the tab list at the given position. The first
tab_counttabs of thetabs array are added to the tab list. dfdlist is NULL,
XmTablListinsertTabs creates a new tab list containing only the tabs specified.

oldlist

tabs

tab_count

position

Specifies the tab list to add the tabs to. The function deallocdtiist
after extracting the required information.

Specifies a pointer to the tabs to be added to the tab list. It is the caller’s
responsibility to free the tabs it@absby usingXmTabFree.

Specifies the number of tabs tabs

Specifies the position of the first new tab in the tab list. A value of O
(zero) makes the first new tab the first tab in the tab list, a value of 1
makes it the second tab, and so ompdsitionis greater than the number
of tabs inoldlist, then the tabs will be inserted at the endpdtsition

is negative, the count will be backwards from the end. A value of -1
makes the first new tab the last tab, and so on.

1371

Motif 2.1—Programmer’s Reference

XmTablListInsertTabs(library call)

Return Values

If tabsis NULL or tab_countis O (zero), this function returneldlist. Otherwise,

it returns a new tab list. The function allocates space to hold the returned tab list.
The application is responsible for managing the allocated space. The application can
recover the allocated space by calliXghTabListFree.

Related Information
XmTablList (3) andXmTabListFree(3).

1372

Xm Functions

XmTabListRemoveTabs(library call)

XmTabListRemoveTabs

Purpose A convenience function that removes noncontiguous tabs

Synopsis #include <Xm/Xm.h>

XmTabList XmTabListRemoveTabs(
XmTablList oldlist,
Cardinal *position_list,
Cardinal position_coun,

Description

XmTabListRemoveTabsremoves noncontiguous tabs from a tab list. The function
creates a new tab list by copying the contentsotdlist and removing all tabs
whose corresponding positions appear in plosition_listarray. A warning message

is displayed if a specified position is invalid; for example, if the value is a number
greater than the number of tabs in the tab list.

tablist Specifies the tab list. The function deallocatddlist and the tabs it
contains after extracting the required information.

position_list Specifies an array of the tab positions to be removed. The position of
the first tab in the list is O (zero), the position of the second tab is 1,
and so on.

position_count
Specifies the number of elements in hesition_list

Return Values

If oldlist or position_listis NULL, or position_countis 0 (zero), returnsoldlist.
Otherwise, this function returns the new tab list. The function allocates space to hold
the returned tab list. The application is responsible for managing the allocated space.
The application can recover the allocated space by cakimJabListFree.

1373

Motif 2.1—Programmer’s Reference

XmTabListRemoveTabs(library call)

Related Information
XmTablList (3) andXmTabListFree(3).

1374

Xm Functions

XmTabListReplacePositions(library call)

XmTabListReplacePositions

Purpose A convenience function that creates a new tab list with replacement tabs

Synopsis #include <Xm/Xm.h>

XmTabList XmTabListReplacePositions(
XmTablList oldlist,
Cardinal *position_list,
XmTab *tabs,
Cardinal tab_couny;

Description

XmTabListReplacePositions creates a new tab list that contains the contents of
oldlist, but with the tabs at the positions position_listreplaced with copies of the
corresponding tabs itabs A warning message is displayed if a specified position is
invalid; for example, if the value is a number greater than the number of tabs in the
tab list.

This function deallocates the original tab list after extracting the required information.
It is the caller's responsibility to free the tabs fabs by using theXmTabFree
function.

oldlist Specifies the tab list. The function deallocates the tab list after extracting
the required information.

position_list Specifies an array of positions of the tabs to be replaced. The position
of the first tab is O (zero), the position of the second tab is 1, and so on.

tabs Specifies an array of the replacement tabs.

tab_count Specifies the number of elementsposition_listandtabs

1375

Motif 2.1—Programmer’s Reference
XmTabListReplacePositions(library call)

Return Values

If tabs oldlist, or position_listis NULL, or tab_countis O (zero), returnldlist.
Otherwise, this function returns the new tab list. The function allocates space to hold
the returned tab list. The application is responsible for managing the allocated space.
The application can recover the allocated space by cakimJabListFree.

Related Information
XmTablList (3).

1376

Xm Functions
XmTabListTabCount(library call)

XmTabListTabCount

Purpose A convenience function that counts the number of tabs

Synopsis #include <Xm/Xm.h>

Cardinal XmTabListTabCount(
XmTabList tablist);

Description
XmTabListTabCount counts the number of tabs in the speciftadlist

tablist Specifies the tab list.

Return Values

Returns the number of tabs tablist

Related Information
XmTablList (3).

1377

Motif 2.1—Programmer’s Reference
XmTabSetValue(library call)

XmTabSetValue

Purpose A convenience function that sets a tab stop

Synopsis #include <Xm/Xm.h>

void XmTabSetValue(
XmTab tab,
float valug;

Description
XmTabSetValue sets thevaluefield of the XmTab structure associated witiab.
tab Specifies the tab to set the value of.
value Specifies the floating point number which represents the distance that

the rendering of theXmString segment associated witlab will be
offset. The offset is from either the beginning of the rendering or from
the previous tab stop, depending on the setting foioffeetmodel. The
distance depends on the tab’s unit type. Note that negative values are
not permitted, and that if a tab stop would cause text to overlap, the x
position for the segment is set immediately after the end of the previous
segment.

Related Information

See also th#otif 2.1—Programmer’s Guidér more information about tabs and
tab lists.XmTab(3).

1378

Xm Functions

XmTargetsAreCompatible(library call)

XmTargetsAreCompatible

Purpose A function that tests whether the target types match between a drop site and source
object

Synopsis #include <Xm/DragDrop.h>

Boolean XmTargetsAreCompatible(
Display *display,
Atom * export_targets
Cardinal num_export_targefs
Atom *import_targets
Cardinal num_import_targels

Description

XmTargetsAreCompatible determines whether the import targets of the destination
match any of the export targets of a source. If there is at least one target in common,
the function returns True.

display Specifies the display connection.

export_targets
Specifies the list of target atoms associated with the source object. This
resource identifies the selection targets the source can convert to.

num_export_targets

Specifies the number of entries in the list of export targets.
import_targets

Specifies the list of targets to be checked againskth&lexportTargets

of the source associated with the specified DragContext
num_import_targets

Specifies the number of entries in timeport_targetslist.

1379

Motif 2.1—Programmer’s Reference

XmTargetsAreCompatible(library call)

Return Values

Returns a Boolean value that indicates whether the destination targets are compatible
with the source targets. If there is at least one target in common, the routine returns
True; otherwise, returns False.

Related Information
XmDragContext(3) andXmDropSite(3).

1380

Xm Functions

XmTextClearSelection(library call)

XmTextClearSelection

Purpose A Text function that clears the primary selection

Synopsis #include <Xm/Text.h>

void XmTextClearSelection(
Widget widget
Time time);

Description
XmTextClearSelectionclears the primary selection in the Text widget.
widget Specifies the Text widget ID.
time Specifies the server time at which the selection value is desired. This

should be the time of the event that triggered this request. One source
of a valid time stamp is the functiodtLastTimestampProcessed()

For a complete definition of Text and its associated resources{radext(3).

Related Information
XmText(3).

1381

Motif 2.1—Programmer’s Reference

XmTextCopy(library call)

XmTextCopy

Purpose A Text function that copies the primary selection to the clipboard

Synopsis #include <Xm/Text.h>

Boolean XmTextCopy(
Widget widget
Time time);

Description
XmTextCopy copies the primary selected text to the clipboard.

This routine calls th&XmNconvertCallback procedures, possibly multiple times, with
the selectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with
the parm member set t&mCOPY.

widget Specifies the Text widget ID.

time Specifies the server time at which the selection value is to be
modified. This should be the time of the event which triggered
this request. One source of a valid time stamp is the function
XtLastTimestampProcessed()

For a complete definition of Text and its associated resources{radext(3).

Return Values

This function returns False if the primary selection is NULL, if tve@lgetdoes not
own the primary selection, if the function is unable to gain ownership of the clipboard
selection, or if no data is placed on the clipboard. Otherwise, it returns True.

1382

Xm Functions

XmTextCopy(library call)

Related Information
XmText(3).

1383

Motif 2.1—Programmer’s Reference

XmTextCopyLink(library call)

XmTextCopyLink

Purpose A Text function that copies a link to the primary selection to the clipboard

Synopsis #include <Xm/Text.h>

Boolean XmTextCopyLink(
Widget widget
Time time);

Description

XmTextCopyLink copies a link to the primary selected text to the clipboard. This
routine calls theXmNconvertCallback procedures, possibly multiple times, with the
selectionmember of theXmConvertCallbackStruct set to CLIPBOARDand with

the parm member set toKmLINK . The Text widget itself does not copy any links;
XmNconvertCallback procedures are responsible for copying the link to the clipboard
and for taking any related actions.

widget Specifies the Text widget ID.

time Specifies the time of the transfer. This should be the time of the event
which triggered this request. One source of a valid time stamp is the
function XtLastTimestampProcessed

For a complete definition of Text and its associated resources{radext(3).

Return Values

This function returns False if the primary selection is NULL, if tve@lgetdoes not
own the primary selection, if the function is unable to gain ownership of the clipboard
selection, or if no data is placed on the clipboard. Otherwise, it returns True.

1384

Xm Functions

XmTextCopyLink(library call)

Related Information
XmText(3).

1385

Motif 2.1—Programmer’s Reference

XmTextCut(library call)

XmTextCut

Purpose A Text function that copies the primary selection to the clipboard and deletes the

selected text

Synopsis #include <Xm/Text.h>

Boolean XmTextCut(
Widget widget
Time time);

Description

1386

XmTextCut copies the primary selected text to the clipboard and then deletes the
primary selected text. This routine calls the widgeXsiNvalueChangedCallback

and verification callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists
are registered, the procedures of tiemmNmodifyVerifyCallback list are executed
first and the resulting data is passed to tHenNmodifyVerifyCallbackWcs
callbacks.

This routine calls th&XmNconvertCallback procedures, possibly multiple times, with
the selectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with
the parmmember set tKmMOVE . If the transfer is successful, this routine then calls
the XmNconvertCallback procedures for th€LIPBOARDselection and thBELETE
target.

widget Specifies the Text widget ID.

time Specifies the server time at which the selection value is to be
modified. This should be the time of the event that triggered
this request. One source of a valid time stamp is the function
XtLastTimestampProcessed()

For a complete definition of Text and its associated resources{radext(3).

Xm Functions
XmTextCut(library call)

Return Values

This function returns False if the primary selection is NULL, if tvegetdoes not
own the primary selection, if the function is unable to gain ownership of the clipboard
selection, or if no data is placed on the clipboard. Otherwise, it returns True.

Related Information
XmText(3).

1387

Motif 2.1—Programmer’s Reference

XmTextDisableRedisplay(library call)

XmTextDisableRedisplay

Purpose A Text function that temporarily prevents visual update of the Text widget

Synopsis #include <Xm/Text.h>

void XmTextDisableRedisplay(
Widget widge);

Description

XmTextDisableRedisplayprevents redisplay of the specified Text widget even though
its visual attributes have been modified. The visual appearance of the widget remains
unchanged untiXmTextEnableRedisplay is called, although the insertion cursor is

not displayed. This allows an application to make multiple changes to the widget
without causing intermediate visual updates.

widget Specifies the Text widget 1D

Related Information
XmTextEnableRedisplay(3).

1388

Xm Functions

XmTextEnableRedisplay(library call)

XmTextEnableRedisplay

Purpose A Text function that forces the visual update of a Text widget

Synopsis #include <Xm/Text.h>

void XmTextEnableRedisplay(
Widget widge);

Description

XmTextEnableRedisplay is used in conjunction withXmTextDisableRedisplay

which suppresses visual update of the Text widget. WXmaiTextEnableRedisplayis
called, it determines if any visual attributes have been set or modified for the specified
widget sinceXmTextDisableRedisplaywas called. If so, it forces the widget to update

its visual display for all of the intervening changes. Any subsequent changes that
affect visual appearance cause the widget to update its visual display. This function

also causes the insertion cursor, which is not shown while redisplay is disabled, to be
restored.

widget Specifies the Text widget 1D

Related Information
XmTextDisableRedisplay3).

1389

Motif 2.1—Programmer’s Reference

XmTextFieldClearSelection(library call)

XmTextFieldClearSelection

Purpose A TextField function that clears the primary selection

Synopsis #include <Xm/TextF.h>

void XmTextFieldClearSelection(
Widget widget
Time time);

Description

XmTextFieldClearSelectionclears the primary selection in the TextField widget.
widget Specifies the TextField widget ID.
time Specifies the time at which the selection value is desired. This should

be the time of the event that triggered this request.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

1390

XmTextField(3).

Xm Functions

XmTextFieldCopy(library call)

XmTextFieldCopy

Purpose A TextField function that copies the primary selection to the clipboard

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldCopy(
Widget widget
Time time);

Description
XmTextFieldCopy copies the primary selected text to the clipboard.

This routine calls th&XmNconvertCallback procedures, possibly multiple times, with
the selectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with
the parm member set t&mCOPY.

widget Specifies the TextField widget ID.

time Specifies the time at which the selection value is to be modified. This
should be the time of the event that triggered this request.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

This function returns False if the primary selection is NULL, if tve@getdoes not
own the primary selection, if the function is unable to gain ownership of the clipboard
selection, or if no data is placed on the clipboard. Otherwise, it returns True.

Related Information
XmTextField(3).

1391

Motif 2.1—Programmer’s Reference

XmTextFieldCopyLink(library call)

XmTextFieldCopyLink

Purpose A TextField function that copies a link to the primary selection to the clipboard

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldCopyLink(
Widget widget
Time time);

Description

XmTextFieldCopyLink copies a link to the primary selected text to the clipboard.
This routine calls th&XmNconvertCallback procedures, possibly multiple times, with
the selectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with

the parm member set toKmLINK . The TextField widget itself does not copy any
links; XmNconvertCallback procedures are responsible for copying the link to the
clipboard and for taking any related actions.

widget Specifies the TextField widget ID.

time Specifies the time of the transfer. This should be the time of the event
which triggered this request. One source of a valid time stamp is the
function XtLastTimestampProcessed

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

This function returns False if the primary selection is NULL, if tve@lgetdoes not
own the primary selection, if the function is unable to gain ownership of the clipboard
selection, or if no data is placed on the clipboard. Otherwise, it returns True.

1392

Xm Functions

XmTextFieldCopyLink(library call)

Related Information
XmTextField(3).

1393

Motif 2.1—Programmer’s Reference

XmTextFieldCut(library call)

XmTextFieldCut

Purpose A TextField function that copies the primary selection to the clipboard and deletes the

selected text

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldCut(
Widget widget
Time time);

Description

1394

XmTextFieldCut copies the primary selected text to the clipboard and then deletes the
primary selected text. This routine calls the widgeXsiNvalueChangedCallback

and verification callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists
are registered, the procedures of tiemmNmodifyVerifyCallback list are executed

first and the resulting data is passed to tHenNmodifyVerifyCallbackWcs
callbacks.

This routine calls th&XmNconvertCallback procedures, possibly multiple times, with
the selectionmember of theXmConvertCallbackStruct set toCLIPBOARDand with
the parmmember set tKmMOVE . If the transfer is successful, this routine then calls
the XmNconvertCallback procedures for th€LIPBOARDselection and thBELETE
target.

widget Specifies the TextField widget ID.

time Specifies the time at which the selection value is to be modified. This
should be the time of the event that triggered this request.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Xm Functions
XmTextFieldCut(library call)

Return Values

This function returns False if the primary selection is NULL, if tvegetdoes not
own the primary selection, if the function is unable to gain ownership of the clipboard
selection, or if no data is placed on the clipboard. Otherwise, it returns True.

Related Information
XmTextField(3).

1395

Motif 2.1—Programmer’s Reference

XmTextFieldGetBaseline(library call)

XmTextFieldGetBaseline

Purpose A TextField function that accesses the y position of the baseline

Synopsis #include <Xm/TextF.h>

int XmTextFieldGetBaseline(
Widget widge);

Description

XmTextFieldGetBaseline accesses thg position of the baseline in the TextField
widget, relative to they position of the top of the widget.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns an integer value that indicates thgosition of the baseline in the TextField
widget. The calculation takes into account the margin height, shadow thickness,
highlight thickness, and font ascent of the first font (set) in the fontlist used for
drawing text. In this calculation, the position of the top of the widget is O (zero).

Related Information

1396

XmTextField(3).

Xm Functions
XmTextFieldGetEditable(library call)

XmTextFieldGetEditable

Purpose A TextField function that accesses the edit permission state

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldGetEditable(
Widget widge);

Description
XmTextFieldGetEditable accesses the edit permission state of the TextField widget.
widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns a Boolean value that indicates the state oiinéleditable resource.

Related Information
XmTextField(3).

1397

Motif 2.1—Programmer’s Reference

XmTextFieldGetInsertionPosition(library call)

XmTextFieldGetlnsertionPosition

Purpose A TextField function that accesses the position of the insertion cursor

Synopsis #include <Xm/TextF.h>

XmTextPosition XmTextFieldGetinsertionPosition(
Widget widge);

Description

XmTextFieldGetInsertionPosition accesses the insertion cursor position of the
TextField widget.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns anXmTextPosition value that indicates the state of tienNcursorPosition
resource. This is an integer number of characters from the beginning of the text buffer.
The first character position is O (zero).

Related Information
XmTextField(3).

1398

Xm Functions

XmTextFieldGetLastPosition(library call)

XmTextFieldGetLastPosition

Purpose A TextField function that accesses the position of the last text character

Synopsis #include <Xm/TextF.h>

XmTextPosition XmTextFieldGetLastPosition(
Widget widge);

Description

XmTextFieldGetLastPosition accesses the position of the last character in the text
buffer of the TextField widget.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns anXmTextPosition value that indicates the position of the last character in
the text buffer. This is an integer number of characters from the beginning of the
buffer. The first character position is 0 (zero). The last character position is equal to
the number of characters in the text buffer.

Related Information
XmTextField(3).

1399

Motif 2.1—Programmer’s Reference

XmTextFieldGetMaxLength(library call)

XmTextFieldGetMaxLength

Purpose A TextField function that accesses the value of the current maximum allowable length

of a text string entered from the keyboard

Synopsis #include <Xm/TextF.h>

int XmTextFieldGetMaxLength(
Widget widge);

Description

XmTextFieldGetMaxLength accesses the value of the current maximum allowable
length of the text string in the TextField widget entered from the keyboard. The
maximum allowable length prevents the user from entering a text string larger than
this limit. Note that the maximum allowable length is the same as the value of the
widget’s XmNmaxLength resource.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns the integer value that indicates the string’s maximum allowable length that
can be entered from the keyboard.

Related Information

1400

XmTextField(3).

Xm Functions

XmTextFieldGetSelection(library call)

XmTextFieldGetSelection

Purpose A TextField function that retrieves the value of the primary selection

Synopsis #include <Xm/TextF.h>

char * XmTextFieldGetSelection(
Widget widge);

Description

XmTextFieldGetSelectionretrieves the value of the primary selection. It returns a
NULL pointer if no text is selected in the widget. The application is responsible for
freeing the storage associated with the string by calitigree.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns a character pointer to the string that is associated with the primary selection.

Related Information
XmTextField(3) and XmTextFieldGetSelectionWcg3).

1401

Motif 2.1—Programmer’s Reference

XmTextFieldGetSelectionPosition(library call)

XmTextFieldGetSelectionPosition

Purpose A TextField function that accesses the position of the primary selection

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldGetSelectionPosition(
Widget widget
XmTextPosition *left,
XmTextPosition *right);

Description

XmTextFieldGetSelectionPositionaccesses the left and right position of the primary
selection in the text buffer of the TextField widget.

widget Specifies the TextField widget ID

left Specifies the pointer in which the position of the left boundary of the
primary selection is returned. This is an integer number of characters
from the beginning of the buffer. The first character position is 0 (zero).

right Specifies the pointer in which the position of the right boundary of the
primary selection is returned. This is an integer number of characters
from the beginning of the buffer. The first character position is 0 (zero).

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

This function returns True if the widget owns the primary selection; otherwise, it
returns False.

1402

Xm Functions

XmTextFieldGetSelectionPosition(library call)

Related Information
XmTextField(3).

1403

Motif 2.1—Programmer’s Reference
XmTextFieldGetSelectionWcs(library call)

XmTextFieldGetSelectionWcs

Purpose A TextField function that retrieves the value of a wide character encoded primary
selection

Synopsis #include <Xm/TextF.h>

wchar_t * XmTextFieldGetSelectionWcs(
Widget widge);

Description

XmTextFieldGetSelectionWcsretrieves the value of the primary selection, encoded
in a wide character format. It returns a NULL pointer if no text is selected in the
widget. The application is responsible for freeing the storage associated with the wide
character buffer by callingtFree.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns the wide character string that is associated with the primary selection in the
TextField widget.

Related Information
XmTextField(3) and XmTextFieldGetSelectior(3).

1404

Xm Functions
XmTextFieldGetString(library call)

XmTextFieldGetString

Purpose A TextField function that accesses the string value

Synopsis #include <Xm/TextF.h>

char * XmTextFieldGetString(
Widget widge);

Description

XmTextFieldGetString accesses the string value of the TextField widget. The
application is responsible for freeing the storage associated with the string by calling
XtFree.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns a character pointer to the string value of the TextField widget. This returned
value is a copy of the value of thémNvalue resource. Returns an empty string if
the length of the TextField widget's string is O (zero).

Related Information
XmTextField(3) and XmTextFieldGetStringWcs(3).

1405

Motif 2.1—Programmer’s Reference

XmTextFieldGetStringWcs(library call)

XmTextFieldGetStringWcs

Purpose A TextField function that retrieves a copy of the wide character string value of a

TextField widget

Synopsis #include <Xm/TextF.h>

wchar_t * XmTextFieldGetStringWes(
Widget widge);

Description

XmTextFieldGetStringWcs retrieves a copy of the wide character string value of
the TextField widget. The application is responsible for freeing the storage associated
with the string by callingXtFree.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns the wide character string value of the TextField widget. The function returns
an empty string if the length of the TextField widget's string is O (zero).

Related Information

1406

XmTextField(3) andXmTextFieldGetString(3).

Xm Functions
XmTextFieldGetSubstring(library call)

XmTextFieldGetSubstring

Purpose A TextField function that retrieves a copy of a portion of the internal text buffer

Synopsis #include <Xm/TextF.h>

int XmTextFieldGetSubstring(
Widget widget
XmTextPosition start,
int num_chars
int buffer_size
char *buffer);

Description

XmTextFieldGetSubstring retrieves a copy of a portion of the internal text buffer of

a TextField widget. The function copies a specified number of characters from a given
start position in the internal text buffer into a buffer provided by the application. A
NULL terminator is placed at the end of the copied data.

The size of the required buffer depends on the maximum number of bytes per character
(MB_CUR_MAX) for the current localeMB_CUR_MAX is a macro defined in
stdlib.h. The buffer should be large enough to contain the substring to be copied and
a NULL terminator. Use the following equation to calculate the size of buffer the
application should provide:

buffer_size= (hum_chars MB_CUR_MAX) + 1

widget Specifies the TextField widget ID.

start Specifies the beginning character position from which the data will be
retrieved. This is an integer number of characters from the beginning of
the text buffer. The first character position is 0 (zero).

num_chars Specifies the number of characters to be copied into the provided buffer.

1407

Motif 2.1—Programmer’s Reference
XmTextFieldGetSubstring(library call)

buffer_size Specifies the size of the supplied buffer in bytes. This size should
account for a NULL terminator.

buffer Specifies the character buffer into which the internal text buffer will be
copied.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

XmCOPY_SUCCEEDED
The function was successful.

XmCOPY_FAILED
The function failed because it was unable to copy the specified
number of characters into the buffer provided. The buffer size may be
insufficient. The contents diuffer are undefined.

XmCOPY_TRUNCATED
The requested number of characters extended beyond the internal buffer.
The function copied characters betwestart and the end of the widget's
buffer and terminated the string with a NULL terminator; fewer than
num_charscharacters were copied.

Related Information
XmTextField(3) and XmTextFieldGetSubstringWcg3).

1408

Xm Functions
XmTextFieldGetSubstringWcs(library call)

XmTextFieldGetSubstringWcs

Purpose A TextField function that retrieves a portion of a wide character internal text buffer

Synopsis #include <Xm/TextF.h>

int XmTextFieldGetSubstringWes(
Widget widget
XmTextPosition start,
int num_chars
int buffer_size
wchar_t *buffen);

Description

XmTextFieldGetSubstringWcsretrieves a copy of a portion of the internal text buffer

of a TextField widget that is stored in a wide character format. The function copies a
specified number of characters from a given start position in the internal text buffer
into a buffer provided by the application. A NULL terminator is placed at the end of
the copied data.

widget Specifies the TextField widget ID.

start Specifies the beginning character position from which the data will be
retrieved. This is an integer number of characters from the beginning of
the text buffer. The first character position is 0 (zero).

num_chars Specifies the number ofvchar_t characters to be copied into the
provided buffer.

buffer_size Specifies the size of the supplied buffer as a numbevatfar_t storage
locations. The minimum size isum_chars+ 1.

buffer Specifies the wide character buffer into which the internal text buffer
will be copied.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

1409

Motif 2.1—Programmer’s Reference
XmTextFieldGetSubstringWcs(library call)

Return Values

XmCOPY_SUCCEEDED
The function was successful.

XmCOPY_FAILED
The function failed because it was unable to copy the specified
number of characters into the buffer provided. The buffer size may be
insufficient. The contents diuffer are undefined.

XmCOPY_TRUNCATED
The requested number of characters extended beyond the internal buffer.
The function copied characters to the end of the buffer and terminated
the string with a NULL terminator; fewer thanum_charscharacters
were copied.

Related Information
XmTextField(3) and XmTextFieldGetSubstring(3).

1410

Xm Functions

XmTextFieldInsert(library call)

XmTextFieldlnsert

Purpose A TextField function that inserts a character string into a text string

Synopsis #include <Xm/TextF.h>

void XmTextFieldlnsert(
Widget widget
XmTextPosition position
char * value);

Description

XmTextFieldlnsert inserts a character string into the text string in the TextField
widget. The character positions begin at 0 (zero) and are numbered sequentially from
the beginning of the text. For example, to insert a string after the fourth character, the
position parameter must be 4.

This routine calls the widget'sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmaodifyVerifyCallbackWcs callbacks. If theXmNcursorPosition resource
is greater than or is the same valuepasition the XmNmotionVerifyCallback is

called.

widget Specifies the TextField widget ID

position Specifies the position in the text string where the character string is to
be inserted

value Specifies the character string value to be added to the text widget

For a complete definition of TextField and its associated resources, see
XmTextField(3).

1411

Motif 2.1—Programmer’s Reference

XmTextFieldInsert(library call)

Related Information
XmTextField(3) and XmTextFieldIinsertWcs(3).

1412

Xm Functions

XmTextFieldInsertWcs(library call)

XmTextFieldlnsertWcs

Purpose A TextField function that inserts a wide character string into a TextField widget

Synopsis #include <Xm/TextF.h>

void XmTextFieldlnsertWcs(
Widget widget
XmTextPosition position
wchar_t *wcstring);

Description

XmTextFieldlnsertWcs inserts a wide character string into the TextField widget at

a specified location. The character positions begin at 0 (zero) and are numbered
sequentially from the beginning of the text. For example, to insert a string after the
fourth character, thposition parameter must be 4.

This routine calls the widget'sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,
or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmaodifyVerifyCallbackWcs callbacks. If theXmNcursorPosition resource
is greater than or is the same valuepasition the XmNmotionVerifyCallback is

called.
widget Specifies the TextField widget ID
position Specifies the position in the text string where the new character string

is to be inserted

wcstring Specifies the wide character string value to be added to the TextField
widget

For a complete definition of TextField and its associated resources, see
XmTextField(3).

1413

Motif 2.1—Programmer’s Reference

XmTextFieldInsertWcs(library call)

Related Information
XmTextField(3) and XmTextFieldlnsert(3).

1414

Xm Functions

XmTextFieldPaste(library call)

XmTextFieldPaste

Purpose A TextField function that inserts the clipboard selection

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldPaste(
Widget widge);

Description

XmTextFieldPaste inserts the clipboard selection at the insertion cursor of the
destination widget. IXmNpendingDeleteis True and the insertion cursor is inside
the current selection, the clipboard selection replaces the selected text.

This routine calls the widget'sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,

or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks.

This routine calls the widget'sXmNdestinationCallback procedures with the
selectionmember of theXmDestinationCallbackStruct set toCLIPBOARDand with
theoperationmember set tKmCOPY . If the XmNcursorPosition resource is greater

than or is the same value as the position where the selection is to be inserted, the
XmNmotionVerifyCallback is called.

widget Specifies the TextField widget ID.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

This function returns False if no transfers take place. Otherwise, it returns True.

1415

Motif 2.1—Programmer’s Reference

XmTextFieldPaste(library call)

Related Information
XmTextField(3).

1416

Xm Functions
XmTextFieldPasteLink(library call)

XmTextFieldPasteLink

Purpose A TextField function that inserts a link to the clipboard selection

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldPasteLink(
Widget widge);

Description

XmTextFieldPasteLink inserts a link to the clipboard selection at the insertion
cursor. This routine calls the widget¥mNdestinationCallback procedures with
the selectionmember of theXmDestinationCallbackStruct set to CLIPBOARDand
with the operationmember set t&XmLINK . The TextField widget itself performs no
transfers; theXmNdestinationCallback procedures are responsible for inserting the
link to the clipboard selection and for taking any related actions.

widget Specifies the TextField widget ID.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

This function returns False if no transfers take place. Otherwise, it returns True.

Related Information
XmTextField(3).

1417

Motif 2.1—Programmer’s Reference

XmTextFieldPosToXY (library call)

XmTextFieldPosToXY

Purpose A TextField function that accesses the x and y position of a character position

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldPosToXY (

Description

1418

Widget widget
XmTextPosition position
Position *x,

Position *y);

XmTextFieldPosToXY accesses the andy position, relative to the upper left corner
of the TextField widget, of a given character position in the text buffer.

widget

position

Specifies the TextField widget ID

Specifies the character position in the text for whichxttaandy position
is accessed. This is an integer number of characters from the beginning
of the buffer. The first character position is 0.

Specifies the pointer in which the position is returned. The returned
position is the distance from the left side of the widget to the left border
of the character. This value is meaningful only if the function returns
True.

Specifies the pointer in which theposition is returned. The returned
position is the distance from the top of the widget to the character’s
baseline. This value is meaningful only if the function returns True.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Xm Functions
XmTextFieldPosToXY (library call)

Return Values

This function returns True if the character position is displayed in the TextField widget;
otherwise, it returns False, and rmr y value is returned.

Related Information
XmTextField(3).

1419

Motif 2.1—Programmer’s Reference

XmTextFieldRemove(library call)

XmTextFieldRemove

Purpose A TextField function that deletes the primary selection

Synopsis #include <Xm/TextF.h>

Boolean XmTextFieldRemove(
Widget widge);

Description

XmTextFieldRemove deletes the primary selected text. If there is a selection,
this routine also calls the widget¥mNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,

or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. This function may also call the
XmNmotionVerifyCallback callback.

widget Specifies the TextField widget ID.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

This function returns False if the primary selection is NULL or if thiglgetdoes not
own the primary selection. Otherwise, it returns True.

Related Information
XmTextField(3).

1420

Xm Functions

XmTextFieldReplace(library call)

XmTextFieldReplace

Purpose A TextField function that replaces part of a text string

Synopsis #include <Xm/TextF.h>

void XmTextFieldReplace(
Widget widget
XmTextPosition from_pos
XmTextPosition to_pos
char * value);

Description

XmTextFieldReplace replaces part of the text string in the TextField widget. The
character positions begin at 0 (zero) and are numbered sequentially from the beginning
of the text.

An example text replacement would be to replace the second and third characters
in the text string. To accomplish this, the paramdtem_posmust be 1 ando_pos

must be 3. To insert a string after the fourth character, both paramitens,posand
to_pos must be 4.

This routine calls the widget'sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,

or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks. TheXmNmotionVerifyCallback is
generated ito_posis less than or equal to the cursor position and the lengtlahfe

is not the same as the length of the text being replaced, or if the cursor position is
betweenfrom_posandto_pos and the distance from the cursor positionfiam_pos

is greater than the length ehlue

widget Specifies the TextField widget ID

from_pos Specifies the start position of the text to be replaced

1421

Motif 2.1—Programmer’s Reference

XmTextFieldReplace(library call)

to_pos Specifies the end position of the text to be replaced
value Specifies the character string value to be added to the text widget

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information
XmTextField(3). XmTextFieldReplaceWcg3).

1422

Xm Functions

XmTextFieldReplaceWcs(library call)

XmTextFieldReplaceWcs

Purpose A TextField function that replaces part of a wide character string in a TextField widget

Synopsis #include <Xm/TextF.h>

void XmTextFieldReplaceWcs(
Widget widget
XmTextPosition from_pos
XmTextPosition to_pos
wchar_t *wcstring;

Description

XmTextFieldReplaceWcsreplaces part of the wide character string in the TextField
widget. The character positions begin at 0 (zero) and are numbered sequentially from
the beginning of the text.

An example text replacement would be to replace the second and third characters
in the text string. To accomplish this, the paramdtem_posmust be 1 ando_pos

must be 3. To insert a string after the fourth character, both paramitens,posand
to_pos must be 4.

This routine calls the widget'sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,

or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks. If theXmNcursorPosition resource

is greater than or is the same valuef@en_pos the XmNmotionVerifyCallback is
called.

widget Specifies the TextField widget ID
from_pos Specifies the start position of the text to be replaced

to_pos Specifies the end position of the text to be replaced

1423

Motif 2.1—Programmer’s Reference

XmTextFieldReplaceWcs(library call)

wcstring Specifies the wide character string value to be added to the TextField
widget

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information
XmTextField(3) and XmTextFieldReplacg3).

1424

Xm Functions
XmTextFieldSetAddMode(library call)

XmTextFieldSetAddMode

Purpose A TextField function that sets the state of Add mode

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetAddMode(
Widget widget
Booleanstatg);

Description

XmTextFieldSetAddMode controls whether or not the TextField widget is in Add
mode. When the widget is in Add mode, the insert cursor can be moved without
disturbing the primary selection.

widget Specifies the TextField widget ID

state Specifies whether or not the widget is in Add mode. A value of True
turns on Add mode; a value of False turns off Add mode.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information
XmTextField(3).

1425

Motif 2.1—Programmer’s Reference

XmTextFieldSetEditable(library call)

XmTextFieldSetEditable

Purpose A TextField function that sets the edit permission

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetEditable(
Widget widget
Boolean editablg);

Description

XmTextFieldSetEditable sets the edit permission state of the TextField widget. When
set to True, the text string can be edited.

widget Specifies the TextField widget ID
editable Specifies a Boolean value that when True allows text string edits

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

1426

XmTextField(3).

Xm Functions

XmTextFieldSetHighlight(library call)

XmTextFieldSetHighlight

Purpose A TextField function that highlights text

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetHighlight(

Description

Widget widget
XmTextPosition left,
XmTextPosition right,
XmHighlightMode modg);

XmTextFieldSetHighlight highlights text between the two specified character
positions. Thenodeparameter determines the type of highlighting. Highlighting text
merely changes the visual appearance of the text; it does not set the selection.

widget
left

right

mode

Specifies the TextField widget ID

Specifies the position of the left boundary of text to be highlighted. This
is an integer number of characters from the beginning of the text buffer.
The first character position is O (zero).

Specifies the position of the right boundary of text to be highlighted.
This is an integer number of characters from the beginning of the text
buffer. The first character position is O (zero).

Specifies the type of highlighting to be done. A value of
XmHIGHLIGHT_NORMAL removes highlighting. A value of
XmHIGHLIGHT_SELECTED highlights the test using reverse
video. A value of XmHIGHLIGHT_SECONDARY_SELECTED
highlights the text using underlining.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

1427

Motif 2.1—Programmer’s Reference

XmTextFieldSetHighlight(library call)

Related Information
XmTextField(3).

1428

Xm Functions

XmTextFieldSetinsertionPosition(library call)

XmTextFieldSetinsertionPosition

Purpose A TextField function that sets the position of the insertion cursor

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetinsertionPosition(
Widget widget
XmTextPosition position);

Description

XmTextFieldSetlnsertionPosition sets the insertion cursor position of the TextField
widget. This routine also calls the widget@nNmotionVerifyCallback callbacks if
the insertion cursor position changes.

widget Specifies the TextField widget ID

position Specifies the position of the insert cursor. This is an integer number
of characters from the beginning of the text buffer. The first character
position is O (zero).

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information
XmTextField(3).

1429

Motif 2.1—Programmer’s Reference
XmTextFieldSetMaxLength(library call)

XmTextFieldSetMaxLength

Purpose A TextField function that sets the value of the current maximum allowable length of
a text string entered from the keyboard

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetMaxLength(
Widget widget
int max_lengthy

Description

XmTextFieldSetMaxLength sets the value of the current maximum allowable length
of the text string in the TextField widget. The maximum allowable length prevents
the user from entering a text string from the keyboard that is larger than this limit.
Strings that are entered using ti@nNvalue (or XmNvalueWcs) resource, or the
XmTextFieldSetString (or XmTextFieldSetStringWcs) function ignore this resource.

widget Specifies the TextField widget ID
max_length Specifies the maximum allowable length of the text string

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information
XmText(3), XmTextFieldSetString(3), andXmTextFieldSetStringWceH3).

1430

Xm Functions

XmTextFieldSetSelection(library call)

XmTextFieldSetSelection

Purpose A TextField function that sets the primary selection of the text

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetSelection(
Widget widget
XmTextPosition first,
XmTextPosition last,
Time time);

Description

XmTextFieldSetSelectionsets the primary selection of the text in the widget. It also
sets the insertion cursor position to the last position of the selection and calls the
widget’s XmNmotionVerifyCallback callbacks. XmTextFieldSetSelection always
generates arKXmNgainPrimaryCallback unless it fails to take ownership of the
primary text selection.

widget Specifies the TextField widget ID

first Marks the first character position of the text to be selected

last Marks the last position of the text to be selected

time Specifies the time at which the selection value is desired. This should be

the same as the time of the event that triggered this request. One source
of a valid time stamp is the functiodtLastTimestampProcessed

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information
XmTextField(3).

1431

Motif 2.1—Programmer’s Reference

XmTextFieldSetString(library call)

XmTextFieldSetString

Purpose A TextField function that sets the string value

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetString(
Widget widget
char * value);

Description

XmTextFieldSetString sets the string value of the TextField widget. This
routine calls the widget’simNvalueChangedCallback and verification callbacks,
either XmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs, or
both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is
passed to theXmNmodifyVerifyCallbackWcs callbacks. It also sets the
insertion cursor position to the beginning of the string and calls the widget's
XmNmotionVerifyCallback callbacks.

widget Specifies the TextField widget ID

value Specifies the character pointer to the string value and places the string
into the text edit window

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information

1432

XmTextField(3) and XmTextFieldSetStringWcd3).

Xm Functions
XmTextFieldSetStringWcs(library call)

XmTextFieldSetStringWcs

Purpose A TextField function that sets a wide character string value

Synopsis #include <Xm/TextF.h>

void XmTextFieldSetStringWcs(
Widget widget
wchar_t *wcstring;

Description

XmTextFieldSetStringWcs sets the wide character string value of the TextField
widget. This routine calls the widget’$mNvalueChangedCallbackand verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,

or both. If both verification callback lists are registered, the procedures of
the XmNmodify\VerifyCallback list are executed first and the resulting data
is passed to theXmNmodifyVerifyCallbackWcs callbacks. It also sets the
insertion cursor position to the beginning of the string and calls the widget's
XmNmotionVerifyCallback callbacks.

widget Specifies the TextField widget ID
wcstring Specifies the wide character string value

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information
XmTextField(3) and XmTextFieldSetString(3).

1433

Motif 2.1—Programmer’s Reference

XmTextFieldShowPosition(library call)

XmTextFieldShowPosition

Purpose A TextField function that forces text at a given position to be displayed

Synopsis #include <Xm/TextF.h>

void XmTextFieldShowPosition(
Widget widget
XmTextPosition position);

Description

XmTextFieldShowPositionforces text at the specified position to be displayed. The
cursor position is not updated nor is the cursor shown at this position.

widget Specifies the TextField widget ID

position Specifies the character position to be displayed. This is an integer
number of characters from the beginning of the text buffer. The first
character position is 0 (zero). S¥enTextPosition(3) for details on the
XmTextPosition data type.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Related Information
XmTextField(3) and XmTextPosition(3).

1434

Xm Functions
XmTextFieldXYToPos(library call)

XmTextFieldXYToPos

Purpose A TextField function that accesses the character position nearest an x and y position

Synopsis #include <Xm/TextF.h>

XmTextPosition XmTextFieldXYToPos(
Widget widget
Position X,
Position y);

Description

XmTextFieldXYToPos accesses the character position nearest to the spexiéind
y position, relative to the upper left corner of the TextField widget.

widget Specifies the TextField widget ID
X Specifies thex position, relative to the upper left corner of the widget.
y Specifies they position, relative to the upper left corner of the widget.

For a complete definition of TextField and its associated resources, see
XmTextField(3).

Return Values

Returns the character position in the text neareskttedy position specified. This is
an integer number of characters from the beginning of the buffer. The first character
position is O (zero).

Related Information
XmTextField(3).

1435

Motif 2.1—Programmer’s Reference

XmTextFindString(library call)

XmTextFindString

Purpose A Text function that finds the beginning position of a text string

Synopsis #include <Xm/Xm.h>

Boolean XmTextFindString(
Widget widget
XmTextPosition start,
char *string,
XmTextDirection direction,
XmTextPosition *position);

Description

XmTextFindString locates the beginning position of a specified text string. This
routine searches forward or backward for the first occurrence of the string starting
from the given start position. If it finds a match, the function returns the position of
the first character of the string iposition If the match string begins at the current
position, this routine returns the current position.

widget Specifies the Text widget ID.

start Specifies the character position from which the search proceeds. This is
an integer number of characters from the beginning of the text buffer.
The first character position is O (zero).

string Specifies the search string.

direction Indicates the search direction. It is relative to the primary direction of
the text. The possible values are

XmTEXT_FORWARD
The search proceeds toward the end of the text buffer.

XmTEXT_BACKWARD
The search proceeds toward the beginning of the text
buffer.

1436

Xm Functions
XmTextFindString(library call)

position Specifies the pointer in which the first character position of the string
match is returned. This is an integer number of characters from the
beginning of the buffer. The first character position is 0 (zero). If the
function returns False, this value is undefined.

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns True if a string match is found; otherwise, returns False.

Related Information
XmText(3) and XmTextFindStringWces(3).

1437

Motif 2.1—Programmer’s Reference

XmTextFindStringWecs(library call)

XmTextFindStringWcs

Purpose A Text function that finds the beginning position of a wide character text string

Synopsis #include <Xm/Text.h>

Boolean XmTextFindStringWcs(
Widget widget
XmTextPosition start,
wchar_t *wcstring
XmTextDirection direction,
XmTextPosition *position);

Description

XmTextFindStringWcs locates the beginning position of a specified wide character
text string. This routine searches forward or backward for the first occurrence of the
string, starting from the given start position. If a match is found, the function returns
the position of the first character of the stringgosition If the match string begins

at the current position, this routine returns the current position.

widget

start

wcstring

direction

1438

Specifies the Text widget ID.

Specifies the character position from which the search proceeds. This is
an integer number of characters from the beginning of the text buffer.
The first character position is O (zero).

Specifies the wide character search string.

Indicates the search direction. It is relative to the primary direction of
the text. The possible values are

XmTEXT_FORWARD
The search proceeds toward the end of the buffer.

XmTEXT_BACKWARD
The search proceeds toward the beginning of the buffer.

Xm Functions
XmTextFindStringWcs(library call)

position Specifies the pointer in which the first character position of the string
match is returned. This is an integer number of characters from the
beginning of the buffer. The first character position is 0 (zero). If the
function returns False, this value is undefined.

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns True if a string match is found; otherwise, returns False.

Related Information
XmText(3) and XmTextFindString (3).

1439

Motif 2.1—Programmer’s Reference

XmTextGetBaseline(library call)

XmTextGetBaseline

Purpose A Text function that accesses the y position of the baseline

Synopsis #include <Xm/Text.h>

int XmTextGetBaseline(
Widget widge);

Description

XmTextGetBaselineaccesses thgposition of the baseline in the Text widget, relative
to they position of the top of the widget.

In vertical mode (when the XmNlayoutDirection resource is
XmTOP_TO_BOTTOM) this function returns O and the program should
use XmTextGetCenterline

widget Specifies the Text widget 1D

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns an integer value that indicates yiosition of the baseline in the Text widget.
The calculation takes into account the margin height, shadow thickness, highlight
thickness, and font ascent of the first font (set) in the fontlist used for drawing text.
In this calculation, they position of the top of the widget is O (zero).

Related Information
XmText(3), XmTextGetCenterline(3).

1440

Xm Functions

XmTextGetCenterline(library call)

XmTextGetCenterline

Purpose Return the height (length) of a character string when the writing direction is vertical

Synopsis #include <Xm/Text.h>

int XmTextGetCenterline(
Widget widge);

Description

XmTextGetCenterline accesses the x position of the centerline in Teat widget,
relative to the x position of the top of the widget.

widget Specifies theText widget ID.

Return Values
In the case of horizontal writing, this function accesses 0.

In the case of vertical writing, this function accesses the x position of the first centerline
in the Text widget, relative to the x position of the left of the widget. The calculation
takes into account the margin width, shadow thickness, highlight thickness, and a half
of font width of the first font(set) in the fontlist used for drawing text.

Related Information
XmText(3), XmTextGetBaseling3)

1441

Motif 2.1—Programmer’s Reference

XmTextGetEditable(library call)

XmTextGetEditable

Purpose A Text function that accesses the edit permission state

Synopsis #include <Xm/Text.h>

Boolean XmTextGetEditable(
Widget widge);

Description
XmTextGetEditable accesses the edit permission state of the Text widget.
widget Specifies the Text widget 1D

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns a Boolean value that indicates the state oiinéleditable resource.

Related Information
XmText(3).

1442

Xm Functions

XmTextGetlnsertionPosition(library call)

XmTextGetlnsertionPosition

Purpose A Text function that accesses the position of the insert cursor

Synopsis #include <Xm/Text.h>

XmTextPosition XmTextGetlnsertionPosition(
Widget widge);

Description
XmTextGetlnsertionPosition accesses the insertion cursor position of the Text
widget.
widget Specifies the Text widget 1D

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns anXmTextPosition value that indicates the state of tienNcursorPosition
resource. This is an integer number of characters from the beginning of the text buffer.
The first character position is 0 (zero).

Related Information
XmText(3).

1443

Motif 2.1—Programmer’s Reference

XmTextGetLastPosition(library call)

XmTextGetLastPosition

Purpose A Text function that accesses the last position in the text

Synopsis #include <Xm/Text.h>

XmTextPosition XmTextGetLastPosition(
Widget widge);

Description

XmTextGetLastPosition accesses the last position in the text buffer of the Text
widget. This is an integer number of characters from the beginning of the buffer,
and represents the position that text added to the end of the buffer is placed after. The
first character position is O (zero). The last character position is equal to the number
of characters in the text buffer.

widget Specifies the Text widget 1D

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns anXmTextPosition value that indicates the last position in the text buffer.

Related Information
XmText(3).

1444

Xm Functions
XmTextGetMaxLength(library call)

XmTextGetMaxLength

Purpose A Text function that accesses the value of the current maximum allowable length of
a text string entered from the keyboard

Synopsis #include <Xm/Text.h>

int XmTextGetMaxLength(
Widget widge);

Description

XmTextGetMaxLength accesses the value of the current maximum allowable length
of the text string in the Text widget entered from the keyboard. The maximum
allowable length prevents the user from entering a text string larger than this limit.
Note that the maximum allowable length is the same as the value of the widget's
XmNmaxLength resource.

widget Specifies the Text widget 1D

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns the integer value that indicates the string’s maximum allowable length that
can be entered from the keyboard.

Related Information
XmText(3).

1445

Motif 2.1—Programmer’s Reference

XmTextGetSelection(library call)

XmTextGetSelection

Purpose A Text function that retrieves the value of the primary selection

Synopsis #include <Xm/Text.h>

char * XmTextGetSelection(
Widget widge);

Description

XmTextGetSelectionretrieves the value of the primary selection. It returns a NULL
pointer if no text is selected in the widget. The application is responsible for freeing
the storage associated with the string by calligree.

widget Specifies the Text widget 1D

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns a character pointer to the string that is associated with the primary selection.

Related Information
XmText(3) and XmTextGetSelectionWcg3).

1446

Xm Functions

XmTextGetSelectionPosition(library call)

XmTextGetSelectionPosition

Purpose A Text function that accesses the position of the primary selection

Synopsis #include <Xm/Text.h>

Boolean XmTextGetSelectionPosition(
Widget widget
XmTextPosition *left,
XmTextPosition *right);

Description

XmTextGetSelectionPosition accesses the left and right position of the primary
selection in the text buffer of the Text widget.

widget Specifies the Text widget 1D

left Specifies the pointer in which the position of the left boundary of the
primary selection is returned. This is an integer number of characters
from the beginning of the buffer. The first character position is 0 (zero).

right Specifies the pointer in which the position of the right boundary of the
primary selection is returned. This is an integer number of characters
from the beginning of the buffer. The first character position is 0 (zero).

For a complete definition of Text and its associated resources{radext(3).

Return Values

This function returns True if the widget owns the primary selection; otherwise, it
returns False.

1447

Motif 2.1—Programmer’s Reference

XmTextGetSelectionPosition(library call)

Related Information
XmText(3).

1448

Xm Functions

XmTextGetSelectionWcs(library call)

XmTextGetSelectionWcs

Purpose A Text function that retrieves the value of a wide character encoded primary selection

Synopsis #include <Xm/Text.h>

wchar_t * XmTextGetSelectionWcs(
Widget widge);

Description

XmTextGetSelectionWcsretrieves the value of the primary selection that is encoded
in a wide character format. It returns a NULL pointer if no text is selected in the
widget. The application is responsible for freeing the storage associated with the wide
character buffer by callingtFree.

widget Specifies the Text widget 1D

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns the wide character string that is associated with the primary selection in the
Text widget.

Related Information
XmText(3) and XmTextGetSelectior(3).

1449

Motif 2.1—Programmer’s Reference

XmTextGetSource(library call)

XmTextGetSource

Purpose A Text function that accesses the source of the widget

Synopsis #include <Xm/Text.h>

XmTextSource XmTextGetSource(
Widget widge);

Description

XmTextGetSource accesses the source of the Text widget. Text widgets can share
sources of text so that editing in one widget is reflected in another. This function
accesses the source of one widget so that it can be made the source of another widget,
using the functiolXmTextSetSourcg3).

Setting a new text source destroys the old text source if no other Text widgets are using
that source. To replace a text source but keep it for later use, create an unmanaged
Text widget and set its source to the text source you want to keep.

widget Specifies the Text widget 1D

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns anXmTextSource value that represents the source of the Text widget.

Related Information
XmText(3).

1450

Xm Functions

XmTextGetString(library call)

XmTextGetString

Purpose A Text function that accesses the string value

Synopsis #include <Xm/Text.h>

char * XmTextGetString(
Widget widge);

Description

XmTextGetString accesses the string value of the Text widget. The application is
responsible for freeing the storage associated with the string by c3tige.

widget Specifies the Text widget 1D

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns a character pointer to the string value of the text widget. This returned value
is a copy of the value of thEmNvalue resource. Returns an empty string if the length
of the Text widget'’s string is O (zero).

Related Information
XmText(3) and XmTextGetStringWcs(3).

1451

Motif 2.1—Programmer’s Reference
XmTextGetStringWcs(library call)

XmTextGetStringWcs

Purpose A Text function that retrieves a copy of the wide character string value of a Text
widget

Synopsis #include <Xm/Text.h>

wchar_t * XmTextGetStringWes(
Widget widge);

Description

XmTextGetStringWcs retrieves a copy of the wide character string value of the Text
widget. The application is responsible for freeing the storage associated with the string
by calling XtFree.

widget Specifies the Text widget 1D

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns the wide character string value of the Text widget. The function returns an
empty string if the length of the Text widget'’s string is O (zero).

Related Information
XmText(3) and XmTextGetString(3).

1452

Xm Functions

XmTextGetSubstring(library call)

XmTextGetSubstring

Purpose A Text function that retrieves a copy of a portion of the internal text buffer

Synopsis #include <Xm/Text.h>

int XmTextGetSubstring(
Widget widget
XmTextPosition start,
int num_chars
int buffer_size
char *buffer);

Description

XmTextGetSubstring retrieves a copy of a portion of the internal text buffer of a
Text widget. The function copies a specified humber of characters from a given start
position in the internal text buffer into a buffer provided by the application. A NULL
terminator is placed at the end of the copied data.

The size of the required buffer depends on the maximum number of bytes per character
(MB_CUR_MAX) for the current localeMB_CUR_MAX is a macro defined in
stdlib.h. The buffer should be large enough to contain the substring to be copied and
a NULL terminator. Use the following equation to calculate the size of buffer the
application should provide:

buffer_size= (hum_chars MB_CUR_MAX) + 1

widget Specifies the Text widget ID.

start Specifies the beginning character position from which the data will be
retrieved. This is an integer number of characters from the beginning of
the text buffer. The first character position is 0 (zero).

num_chars Specifies the number of characters to be copied into the provided buffer.

buffer_size Specifies the size of the supplied buffer in bytes. This size should
account for a NULL terminator.

1453

Motif 2.1—Programmer’s Reference

XmTextGetSubstring(library call)

buffer Specifies the character buffer into which the internal text buffer will be
copied.

For a complete definition of Text and its associated resources{radext(3).

Return Values

XmCOPY_SUCCEEDED
The function was successful.

XmCOPY_FAILED
The function failed because it was unable to copy the specified
number of characters into the buffer provided. The buffer size may be
insufficient. The contents dfuffer are undefined.

XmCOPY_TRUNCATED
The requested number of characters extended beyond the internal buffer.
The function copied characters betwestart and the end of the widget's
buffer and terminated the string with a NULL terminator; fewer than
num_charscharacters were copied.

Related Information
XmText(3) and XmTextGetSubstringWcg3).

1454

Xm Functions

XmTextGetSubstringWcs(library call)

XmTextGetSubstringWcs

Purpose A Text function that retrieves a portion of a wide character internal text buffer

Synopsis #include <Xm/Text.h>

int XmTextGetSubstringWes(
Widget widget
XmTextPosition start,
int num_chars
int buffer_size
wchar_t *buffen);

Description

XmTextGetSubstringWcsretrieves a copy of a portion of the internal text buffer of a
Text widget that is stored in a wide character format. The function copies a specified
number of characters from a given start position in the internal text buffer into a buffer
provided by the application. A NULL terminator is placed at the end of the copied

data.
widget Specifies the Text widget ID.
start Specifies the beginning character position from which the data will be

retrieved. This is an integer number of characters from the beginning of
the text buffer. The first character position is 0O (zero).

num_chars Specifies the number ofvchar_t characters to be copied into the
provided buffer.

buffer_size Specifies the size of the supplied buffer as a numbevatfar_t storage
locations. The minimum size isum_chars+ 1.

buffer Specifies the wide character buffer into which the internal text buffer
will be copied.

For a complete definition of Text and its associated resources{radext(3).

1455

Motif 2.1—Programmer’s Reference

XmTextGetSubstringWcs(library call)

Return Values

XmCOPY_SUCCEEDED
The function was successful.

XmCOPY_FAILED
The function failed because it was unable to copy the specified
number of characters into the buffer provided. The buffer size may be
insufficient. The contents diuffer are undefined.

XmCOPY_TRUNCATED
The requested number of characters extended beyond the internal buffer.
The function copied characters betwestart and the end of the widget's
buffer and terminated the string with a NULL terminator; fewer than
num_charscharacters were copied.

Related Information
XmText(3) and XmTextGetSubstring(3).

1456

Xm Functions

XmTextGetTopCharacter(library call)

XmTextGetTopCharacter

Purpose A Text function that accesses the position of the first character displayed

Synopsis #include <Xm/Text.h>

XmTextPosition XmTextGetTopCharacter(
Widget widge);

Description

XmTextGetTopCharacter accesses the position of the text at the top of the Text
widget. If there is no text in the Text widget (in other wordsnNvalue contains an
empty string), thetxXmTextGetTopCharacter returns O.

Suppose that th&mNtopCharacter resource has been set to a value greater than
the number of characters in the text widget. In this cd@aTextGetTopCharacter
returns anXmTextPosition value identifying the position of the first character in the
last line of text in a multiline case; otherwise, it identifies the position of the last
character in the line.

widget Specifies the Text widget 1D

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns anKmTextPosition value that indicates the state of tkenNtopCharacter
resource. This is an integer number of characters from the beginning of the text buffer.
The first character position is 0 (zero).

Related Information
XmText(3).

1457

Motif 2.1—Programmer’s Reference

XmTextInsert(library call)

XmTextlnsert

Purpose A Text function that inserts a character string into a text string

Synopsis #include <Xm/Text.h>

void XmTextlnsert(
Widget widget
XmTextPosition position
char * value);

Description

XmTextlnsert inserts a character string into the text string in the Text widget. The
character positions begin at 0 (zero) and are numbered sequentially from the beginning
of the text. For example, to insert a string after the fourth character, the parameter
positionmust be 4.

This routine calls the widget'sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,

or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmaodifyVerifyCallbackWcs callbacks. If theXmNcursorPosition resource

is greater than or is the same valuepasition the XmNmotionVerifyCallback is
called.

Note that, if value is a null string, no callbacks will be generated, since no
modifications will have been made.

widget Specifies the Text widget ID.

position Specifies the position in the text string where the character string is to
be inserted.

value Specifies the character string value to be added to the text widget.

For a complete definition of Text and its associated resources{redext(3).

1458

Xm Functions

XmTextInsert(library call)

Related Information
XmText(3) andXmTextInsertWcs(3).

1459

Motif 2.1—Programmer’s Reference

XmTextinsertWcs(library call)

XmTextlnsertWcs

Purpose A Text function that inserts a wide character string into a Text widget

Synopsis #include <Xm/Text.h>

void XmTextlinsertWcs(
Widget widget
XmTextPosition position
wchar_t *wcstring);

Description

XmTextlnsertWcs inserts a wide character string into the Text widget at a specified
location. The character positions begin at O (zero) and are numbered sequentially from
the beginning of the text. For example, to insert a string after the fourth character, the
position parameter must be 4.

This routine calls the widget'sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,

or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmaodifyVerifyCallbackWcs callbacks. If theXmNcursorPosition resource

is greater than or is the same valuepasition the XmNmotionVerifyCallback is
called.

Note that, if value is a null string, no callbacks will be generated, since no
modifications will have been made.

widget Specifies the Text widget 1D

position Specifies the position in the text string where the new character string
is to be inserted

wcstring Specifies the wide character string value to be added to the Text widget

For a complete definition of Text and its associated resources{redext(3).

1460

Xm Functions

XmTextinsertWcs(library call)

Related Information
XmText(3) andXmTextlnsert(3).

1461

Motif 2.1—Programmer’s Reference

XmTextPaste(library call)

XmTextPaste

Purpose A Text function that inserts the clipboard selection

Synopsis #include <Xm/Text.h>

Boolean XmTextPaste(
Widget widge);

Description

XmTextPasteinserts the clipboard selection at the insertion cursor of the destination
widget. If XmNpendingDeleteis True and the insertion cursor is inside the current
selection, the clipboard selection replaces the selected text.

This routine calls the widget'sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,

or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmaodifyVerifyCallbackWcs callbacks. If theXmNcursorPosition resource

is greater than or is the same value as the position where the selection is to be
inserted, theXmNmotionVerifyCallback is called.

This routine calls the widget'sXmNdestinationCallback procedures with the
selectionmember of theXmDestinationCallbackStruct set toCLIPBOARDand with
the operationmember set t&XmCOPY.

widget Specifies the Text widget ID.

For a complete definition of Text and its associated resources{redext(3).

Return Values

This function returns False if no transfers take place. Otherwise, it returns True.

1462

Xm Functions

XmTextPaste(library call)

Related Information
XmText(3).

1463

Motif 2.1—Programmer’s Reference

XmTextPasteLink(library call)

XmTextPasteLink

Purpose A Text function that inserts a link to the clipboard selection

Synopsis #include <Xm/Text.h>

Boolean XmTextPasteLink(
Widget widge);

Description

XmTextPasteLink inserts a link to the clipboard selection at the insertion cursor. This
routine calls the widget'SXmNdestinationCallback procedures with theselection
member of theXmDestinationCallbackStruct set to CLIPBOARD and with the
operation member set toXmLINK . The Text widget itself performs no transfers;
the XmNdestinationCallback procedures are responsible for inserting the link to the
clipboard selection and for taking any related actions.

widget Specifies the Text widget ID.

For a complete definition of Text and its associated resources{redext(3).

Return Values

This function returns False if no transfers take place. Otherwise, it returns True.

Related Information
XmText(3).

1464

Xm Functions

XmTextPosToXY (library call)

XmTextPosToXY

Purpose A Text function that accesses the x and y position of a character position

Synopsis #include <Xm/Text.h>

Boolean XmTextPosToXY (

Description

Widget widget
XmTextPosition position
Position *x,

Position *y);

XmTextPosToXY accesses the andy position, relative to the upper left corner of
the Text widget, of a given character position in the text buffer.

In the case of horizontal writing, the position is the origin of the character. In the case
of vertical writing, the position is the vertical origin of the character.

widget

position

Specifies the Text widget 1D

Specifies the character position in the text for whichxttaendy position
is accessed. This is an integer number of characters from the beginning
of the buffer. The first character position is 0 (zero).

Specifies the pointer in which the position is returned. The returned
position is the distance from the left side of the widget to the left border
of the character. This value is meaningful only if the function returns
True.

Specifies the pointer in which theposition is returned. The returned
position is the distance from the top of the widget to the character’s
baseline. This value is meaningful only if the function returns True.

For a complete definition of Text and its associated resources{radext(3).

1465

Motif 2.1—Programmer’s Reference
XmTextPosToXY (library call)

Return Values

This function returns True if the character position is displayed in the Text widget;
otherwise, it returns False, and rmr y value is returned.

Related Information
XmText(3).

1466

Xm Functions

XmTextRemove(library call)

XmTextRemove

Purpose A Text function that deletes the primary selection

Synopsis #include <Xm/Text.h>

Boolean XmTextRemove(
Widget widge);

Description

XmTextRemove deletes the primary selected text. If there is a selection, this
routine also calls the widget'sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,

or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. This function may also call the
XmNmotionVerifyCallback callback.

widget Specifies the Text widget ID.

For a complete definition of Text and its associated resources{redext(3).

Return Values

This function returns False if the primary selection is NULL or if thiglgetdoes not
own the primary selection. Otherwise, it returns True.

Related Information
XmText(3).

1467

Motif 2.1—Programmer’s Reference

XmTextReplace(library call)

XmTextReplace

Purpose A Text function that replaces part of a text string

Synopsis #include <Xm/Text.h>

void XmTextReplace(
Widget widget
XmTextPosition from_pos
XmTextPosition to_pos
char * value);

Description

1468

XmTextReplace replaces part of the text string in the Text widget. The character
positions begin at 0 (zero) and are humbered sequentially from the beginning of the
text.

An example text replacement would be to replace the second and third characters
in the text string. To accomplish this, the paramdtem_posmust be 1 ando_pos

must be 3. To insert a string after the fourth character, both paramitens,posand
to_pos must be 4.

This routine calls the widget'sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,

or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed to
the XmNmodifyVerifyCallbackWcs callbacks. TheXmNmotionVerifyCallback is
generated ito_posis less than or equal to the cursor position and the lengtlahfe

is not the same as the length of the text being replaced, or if the cursor position is
betweenfrom_posandto_pos and the distance from the cursor positionfiam_pos

is greater than the length ehlue

widget Specifies the Text widget 1D

from_pos Specifies the start position of the text to be replaced

Xm Functions

XmTextReplace(library call)

to_pos Specifies the end position of the text to be replaced
value Specifies the character string value to be added to the text widget

For a complete definition of Text and its associated resources{radext(3).

Related Information
XmText(3) andXmTextReplaceWcg3).

1469

Motif 2.1—Programmer’s Reference

XmTextReplaceWcs(library call)

XmTextReplaceWcs

Purpose A Text function that replaces part of a wide character string in a Text widget

Synopsis #include <Xm/Text.h>

void XmTextReplaceWcs(
Widget widget
XmTextPosition from_pos
XmTextPosition to_pos
wchar_t *wcstring;

Description

1470

XmTextReplaceWcsreplaces part of the wide character string in the Text widget. The
character positions begin at zero and are numbered sequentially from the beginning
of the text.

An example text replacement would be to replace the second and third characters in
the text string. To accomplish this, thiem_posparameter must be 1 and th® pos
parameter must be 3. To insert a string after the fourth character, boffothepos
andto_posparameters must be 4.

This routine calls the widget'sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,

or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. This routine calls the widget’s
XmNmotionVerifyCallback callback whenfrom_posis less than or equal to the
cursor position.

widget Specifies the Text widget 1D
from_pos Specifies the start position of the text to be replaced
to_pos Specifies the end position of the text to be replaced

wcstring Specifies the wide character string value to be added to the Text widget

Xm Functions

XmTextReplaceWcs(library call)

For a complete definition of Text and its associated resources{radext(3).

Related Information
XmText(3) andXmTextReplacg3).

1471

Motif 2.1—Programmer’s Reference

XmTextScroll(library call)

XmTextScroll

Purpose A Text function that scrolls text

Synopsis #include <Xm/Text.h>

void XmTextScroll(
Widget widget
int lines);

Description

XmTextScroll scrolls text by a given number of lines in a Text widget. The sign of
the number is interpreted according to the value ofXh&NlayoutDirectiorresource.

widget Specifies the Text widget 1D

lines Specifies the number of lines of text to scroll. A positive value causes
text to scroll upward; a negative value causes text to scroll downward.
Note that the text will scroll only as long as one line of text remains
visible in the window.

If a navigator exists, this function uses tkenQTnavigatotrait to update
the vertical navigator's value.

In the case of vertical writing, a positive value causes the text to scroll
forward; a negative value causes the lines to scroll backward.

For a complete definition of Text and its associated resources{radext(3).

Related Information
XmText(3).

1472

Xm Functions
XmTextSetAddMode(library call)

XmTextSetAddMode

Purpose A Text function that sets the state of Add mode

Synopsis #include <Xm/Text.h>

void XmTextSetAddMode(
Widget widget
Booleanstatg);

Description

XmTextSetAddMode controls whether or not the Text widget is in Add mode. When
the widget is in Add mode, the insert cursor can be moved without disturbing the
primary selection.

widget Specifies the Text widget 1D

state Specifies whether or not the widget is in Add mode. A value of True
turns on Add mode; a value of False turns off Add mode.

For a complete definition of Text and its associated resources{radext(3).

Related Information
XmText(3).

1473

Motif 2.1—Programmer’s Reference
XmTextSetEditable(library call)

XmTextSetEditable

Purpose A Text function that sets the edit permission

Synopsis #include <Xm/Text.h>

void XmTextSetEditable(
Widget widget
Boolean editablg);

Description

XmTextSetEditable sets the edit permission state of the Text widget. When set to
True, the text string can be edited.

widget Specifies the Text widget 1D
editable Specifies a Boolean value that when True allows text string edits

For a complete definition of Text and its associated resources{radext(3).

Related Information
XmText(3).

1474

Xm Functions
XmTextSetHighlight(library call)

XmTextSetHighlight

Purpose A Text function that highlights text

Synopsis #include <Xm/Text.h>

void XmTextSetHighlight(
Widget widget
XmTextPosition left,
XmTextPosition right,
XmHighlightMode modg);

Description

XmTextSetHighlight highlights text between the two specified character positions.
The mode parameter determines the type of highlighting. Highlighting text merely
changes the visual appearance of the text; it does not set the selection.

widget Specifies the Text widget 1D

left Specifies the position of the left boundary of text to be highlighted. This
is an integer number of characters from the beginning of the text buffer.
The first character position is O (zero).

right Specifies the position of the right boundary of text to be highlighted.
This is an integer number of characters from the beginning of the text
buffer. The first character position is O (zero).

mode Specifies the type of highlighting to be done. A value of
XmHIGHLIGHT_NORMAL removes highlighting. A value of
XmHIGHLIGHT_SELECTED highlights the text using reverse
video. A value of XmHIGHLIGHT_SECONDARY_SELECTED
highlights the text using underlining.

For a complete definition of Text and its associated resources{radext(3).

1475

Motif 2.1—Programmer’s Reference

XmTextSetHighlight(library call)

Related Information
XmText(3).

1476

Xm Functions

XmTextSetlnsertionPosition(library call)

XmTextSetlnsertionPosition

Purpose A Text function that sets the position of the insert cursor

Synopsis #include <Xm/Text.h>

void XmTextSetlnsertionPosition(
Widget widget
XmTextPosition position);

Description

XmTextSetlnsertionPositionsets the insertion cursor position of the Text widget. This
routine also calls the widgetXmNmotionVerifyCallback callbacks if the insertion
cursor position changes.

widget Specifies the Text widget 1D

position Specifies the position of the insertion cursor. This is an integer number
of characters from the beginning of the text buffer. The first character
position is O (zero).

For a complete definition of Text and its associated resources{radext(3).

Related Information
XmText(3).

1477

Motif 2.1—Programmer’s Reference

XmTextSetMaxLength(library call)

XmTextSetMaxLength

Purpose A Text function that sets the value of the current maximum allowable length of a text
string entered from the keyboard

Synopsis #include <Xm/Text.h>

void XmTextSetMaxLength(
Widget widget
int max_lengthy

Description

XmTextSetMaxLength sets the value of the current maximum allowable length of the
text string in the Text widget. The maximum allowable length prevents the user from
entering a text string from the keyboard that is larger than this limit. Strings that are
entered using th&XmNvalue (or XmNvalueWcs) resource, or th&xXmTextSetString

(or XmTextSetStringWcs) function ignore this resource.

widget Specifies the Text widget 1D
max_length Specifies the maximum allowable length of the text string

For a complete definition of Text and its associated resources{radext(3).

Related Information
XmText(3), XmTextSetString(3), andXmTextSetStringWceg3).

1478

Xm Functions

XmTextSetSelection(library call)

XmTextSetSelection

Purpose A Text function that sets the primary selection of the text

Synopsis #include <Xm/Text.h>

void XmTextSetSelection(
Widget widget
XmTextPosition first,
XmTextPosition last,
Time time);

Description

XmTextSetSelectionsets the primary selection of the text in the widget. It also sets
the insertion cursor position to the last position of the selection and calls the widget's
XmNmotionVerifyCallback callbacks.

widget Specifies the Text widget 1D

first Marks the first character position of the text to be selected

last Marks the last position of the text to be selected

time Specifies the time at which the selection value is desired. This

should be the same as the time of the event that triggered this
request. request. One source of a valid time stamp is the function
XtLastTimestampProcessed

For a complete definition of Text and its associated resources{radext(3).

Related Information
XmText(3).

1479

Motif 2.1—Programmer’s Reference

XmTextSetSource(library call)

XmTextSetSource

Purpose A Text function that sets the source of the widget

Synopsis #include <Xm/Text.h>

void XmTextSetSource(
Widget widget
XmTextSource source
XmTextPosition top_character
XmTextPosition cursor_positiol;

Description

XmTextSetSourcesets the source of the Text widget. Text widgets can share sources
of text so that editing in one widget is reflected in another. This function sets the
source of one widget so that it can share the source of another widget.

Setting a new text source destroys the old text source if no other Text widgets are using
that source. To replace a text source but keep it for later use, create an unmanaged
Text widget and set its source to the text source you want to keep.

widget Specifies the Text widget ID.

source Specifies the source with which the widget displays text. This can be
a value returned by thEmTextGetSourcg3) function. If no source is
specified, the widget creates a default string source.

top_character
Specifies the position in the text to display at the top of the widget. This
is an integer number of characters from the beginning of the text buffer.
The first character position is O (zero).

cursor_position
Specifies the position in the text at which the insert cursor is located.
This is an integer number of characters from the beginning of the text
buffer. The first character position is O (zero).

1480

Xm Functions

XmTextSetSource(library call)

For a complete definition of Text and its associated resources{radext(3).

Related Information
XmText(3).

1481

Motif 2.1—Programmer’s Reference

XmTextSetString(library call)

XmTextSetString

Purpose A Text function that sets the string value

Synopsis #include <Xm/Text.h>

void XmTextSetString(

Widget widget
char * value);

Description

XmTextSetString sets the string value of the Text widget. This routine
calls the widget's XmNvalueChangedCallback and verification callbacks,
either XmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs, or
both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. This function also sets the
insertion cursor position to the beginning of the string and calls the widget's
XmNmotionVerifyCallback callbacks.

widget Specifies the Text widget 1D

value Specifies the character pointer to the string value and places the string
into the text edit window

For a complete definition of Text and its associated resources{redext(3).

Related Information

1482

XmText(3) and XmTextSetStringWcg3).

Xm Functions

XmTextSetStringWcs(library call)

XmTextSetStringWcs

Purpose A Text function that sets a wide character string value

Synopsis #include <Xm/Text.h>

void XmTextSetStringWcs(
Widget widget
wchar_t *wcstring;

Description

XmTextSetStringWcs sets the wide character string value of the Text widget.
This routine calls the widget'sXmNvalueChangedCallback and verification
callbacks, eitherXmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs,

or both. If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. This function also sets the
insertion cursor position to the beginning of the string and calls the widget's
XmNmotionVerifyCallback callbacks.

widget Specifies the Text widget 1D
value Specifies the wide character string value

For a complete definition of Text and its associated resources{redext(3).

Related Information
XmText(3) and XmTextSetString(3).

1483

Motif 2.1—Programmer’s Reference

XmTextSetTopCharacter(library call)

XmTextSetTopCharacter

Purpose A Text function that sets the position of the first character displayed

Synopsis #include <Xm/Text.h>

void XmTextSetTopCharacter(
Widget widget
XmTextPosition top_characte);

Description

XmTextSetTopCharacter sets the position of the text at the top of the Text widget.
If the XmNeditMode is XmMULTI_LINE_EDIT , the line of text that contains
top_characteris displayed at the top of the widget without the text shifting left or
right. If the edit mode iSKXMSINGLE_LINE_EDIT , the text moves horizontally so
that top_characteris the first character displayed.

widget Specifies the Text widget 1D

top_character
Specifies the position in the text to display at the top of the widget. This
is an integer number of characters from the beginning of the text buffer.
The first character position is O (zero).

For a complete definition of Text and its associated resources{redext(3).

Related Information

1484

XmText(3).

Xm Functions

XmTextShowPosition(library call)

XmTextShowPosition

Purpose A Text function that forces text at a given position to be displayed

Synopsis #include <Xm/Text.h>

void XmTextShowPosition(
Widget widget
XmTextPosition position);

Description

XmTextShowPosition forces text at the specified position to be displayed. If the
XmNautoShowCursorPositionresource is True, the application should also set the
insert cursor to this position.

widget Specifies the Text widget 1D

position Specifies the character position to be displayed. This is an integer
number of characters from the beginning of the text buffer. The first
character position is 0 (zero).

If a navigator exists, this function uses thémQTnavigatortrait to update the
horizontal navigator’s value.

For a complete definition of Text and its associated resources{radext(3).

Related Information
XmText(3).

1485

Motif 2.1—Programmer’s Reference
XmTextXYToPos(library call)

XmTextXYToPos

Purpose A Text function that accesses the character position nearest an x and y position

Synopsis #include <Xm/Text.h>

XmTextPosition XmTextXYToPos(
Widget widget
Position X,
Position y);

Description

XmTextXYToPos accesses the character position nearest to the sperifsed y
position, relative to the upper left corner of the Text widget.

In the case of horizontal writing, the position is the origin of the character. In the case
of vertical writing, the position is the vertical origin of the character.

widget Specifies the Text widget 1D
X Specifies thex position, relative to the upper left corner of the widget
y Specifies they position, relative to the upper left corner of the widget

For a complete definition of Text and its associated resources{radext(3).

Return Values

Returns the character position in the text neareskttedy position specified. This is
an integer number of characters from the beginning of the buffer. The first character
position is O (zero).

1486

Xm Functions
XmTextXYToPos(library call)

Related Information
XmText(3).

1487

Motif 2.1—Programmer’s Reference

XmToggleButtonGadgetGetState(library call)

XmToggleButtonGadgetGetState

Purpose A ToggleButtonGadget function that obtains the state of a ToggleButtonGadget

Synopsis #include <Xm/ToggleBG.h>

Boolean XmToggleButtonGadgetGetState(
Widget widge);

Description
XmToggleButtonGadgetGetStateobtains the state of a ToggleButtonGadget.
widget Specifies the ToggleButtonGadget ID

For a complete definition of ToggleButtonGadget and its associated resources, see
XmToggleButtonGadget3).

Return Values

Returns True if the button is selected and False if the button is unselected.

Related Information
XmToggleButtonGadget3).

1488

Xm Functions

XmToggleButtonGadgetSetState(library call)

XmToggleButtonGadgetSetState

Purpose A ToggleButtonGadget function that sets or changes the current state

Synopsis #include <Xm/ToggleBG.h>

void XmToggleButtonGadgetSetState(

Description

Widget widget
Booleanstate
Boolean notify);

XmToggleButtonGadgetSetStatesets or changes the ToggleButtonGadget’s current

state.
widget

State

notify

Specifies the ToggleButtonGadget widget ID.

Specifies a Boolean value that indicates whether the
ToggleButtonGadget state is selected or unselected. If the value
is True, the button state is selected; if it is False, the button state is
unselected.

Indicates whetherxXmNvalueChangedCallback is called; it can be
either True or False. ThEmNvalueChangedCallbackis only called
when this function changes the state of the ToggleButtonGadget.
When this argument is True and the ToggleButtonGadget is a
child of a RowColumn widget whos&XmNradioBehavior is True,
setting the ToggleButtonGadget causes other ToggleButton and
ToggleButtonGadget children of the RowColumn to be unselected.

For a complete definition of ToggleButtonGadget and its associated resources, see
XmToggleButtonGadget3).

1489

Motif 2.1—Programmer’s Reference

XmToggleButtonGadgetSetState(library call)

Related Information
XmToggleButtonGadget3).

1490

Xm Functions

XmToggleButtonGetState(library call)

XmToggleButtonGetState

Purpose A ToggleButton function that obtains the state of a ToggleButton

Synopsis #include <Xm/ToggleB.h>

Boolean XmToggleButtonGetState(
Widget widge);

Description
XmToggleButtonGetStateobtains the state of a ToggleButton.
widget Specifies the ToggleButton widget 1D

For a complete definition of ToggleButton and its associated resources, see
XmToggleButton(3).

Return Values

Returns True if the button is selected and False if the button is unselected.

Related Information
XmToggleButton(3).

1491

Motif 2.1—Programmer’s Reference

XmToggleButtonSetState(library call)

XmToggleButtonSetState

Purpose A ToggleButton function that sets or changes the current state

Synopsis #include <Xm/ToggleB.h>

void XmToggleButtonSetState(
Widget widget
Boolean state
Boolean notify);

Description
XmToggleButtonSetStatesets or changes the ToggleButton’s current state.
widget Specifies the ToggleButton widget ID.
state Specifies a Boolean value that indicates whether the ToggleButton state

is selected or unselected. If the value is True, the button state is selected;
if it is False, the button state is unselected.

notify Indicates whetherxXmNvalueChangedCallback is called; it can be
either True or False. ThEmNvalueChangedCallbackis only called
when this function changes the state of the ToggleButton. When this
argument is True and the ToggleButton is a child of a RowColumn
widget whoseXmNradioBehavior is True, setting the ToggleButton
causes other ToggleButton and ToggleButtonGadget children of the
RowColumn to be unselected.

For a complete definition of ToggleButton and its associated resources, see
XmToggleButton(3).

Related Information
XmToggleButton(3).

1492

Xm Functions

XmToggleButtonSetValue(library call)

XmToggleButtonSetValue

Purpose A ToggleButton function that sets or changes the current state

Synopsis #include <Xm/ToggleB.h>

void XmToggleButtonSetValue(

Description

Widget widget
XmToggleButtonState state
Boolean notify);

XmToggleButtonSetValuesets or changes the ToggleButton’s current state.

widget

State

notify

Specifies the ToggleButton widget ID.

Specifies whether the ToggleButton state is selected or unselected. If
the value is True, the button state is selected; if it is False, the button
state is unselected, if it IEBMINDETERMINATE , the button state is
neither.

Indicates whethetxXmNvalueChangedCallback is called; it can be
either True or False. ThEmNvalueChangedCallbackis only called
when this function changes the state of the ToggleButton. When this
argument is True and the ToggleButton is a child of a RowColumn
widget whoseXmNradioBehavior is True, setting the ToggleButton
causes other ToggleButton and ToggleButtonGadget children of the
RowColumn to be unselected.

For a complete definition of ToggleButton and its associated resources, see
XmToggleButton(3).

Related Information

XmToggleButton(3).

1493

Motif 2.1—Programmer’s Reference

XmTrackingEvent(library call)

XmTrackingEvent

Purpose A Toolkit function that provides a modal interaction

Synopsis #include <Xm/Xm.h>

Widget XmTrackingEvent(
Widget widget
Cursor cursor,
Booleanconfine_to
XEvent *event_retur

Description

XmTrackingEvent provides a modal interface for selection of a component. It is
intended to support context help. The function calls XmeUpdateDisplay function.
XmTrackingEvent then grabs the pointer and discards succeeding event8@diect

is released or a key is pressed and then released. The function then returns the widget
or gadget that contains the pointer wha8electis released or a key is released, and
ungrabs the pointer.

widget Specifies the widget ID of a widget to use as the basis of the modal
interaction. That is, the widget within which the interaction must occur,
usually a top-level shell.

cursor Specifies the cursor to be used for the pointer during the interaction.
This is a standard X cursor name.

confine_to Specifies whether or not the cursor should be confinedidget

event_return Returns the ButtonRelease or KeyRelease event that causes the function
to return.

1494

Xm Functions

XmTrackingEvent(library call)

Return Values

Returns the widget or gadget that contains the pointer vB®alectis released or
a key is released. If no widget or gadget contains the pointer, the function returns
NULL.

Related Information
XmTrackingLocate(3).

1495

Motif 2.1—Programmer’s Reference

XmTrackingLocate(library call)

XmTrackingLocate

Purpose A Toolkit function that provides a modal interaction

Synopsis #include <Xm/Xm.h>

Widget XmTrackingLocate(
Widget widget
Cursor cursor,
Booleanconfine_tY;

Description

XmTrackingLocate provides a modal interface for selection of a component. It is
intended to support context help. This function is implementedragrackingEvent.

NOTE: This function is obsolete and exists for compatibility with previous releases.
It has been replaced bymTrackingEvent.

widget Specifies the widget ID of a widget to use as the basis of the modal
interaction. That is, the widget within which the interaction must occur,
usually a top-level shell.

cursor Specifies the cursor to be used for the pointer during the interaction.
This is a standard X cursor name.

confine_to Specifies whether or not the cursor should be confinedidget

Return Values

Returns the widget or gadget that contains the pointer vB@alectis released or
a key is released. If no widget or gadget contains the pointer, the function returns
NULL.

1496

Xm Functions

XmTrackingLocate(library call)

Related Information
XmTrackingEvent(3).

1497

Motif 2.1—Programmer’s Reference

XmTransferDone(library call)

XmTransferDone

Purpose A toolkit function that completes a data transfer

Synopsis #include <Xm/Xm.h>

void XmTransferDone(
XtPointer transfer_id
XmTransferStatus statug;

Description

XmTransferDone completes an already-initiated data transfer operation. An
application can call this routine from atmNdestinationCallback procedure or any
function called as a result, including the selection procedures called as a result of
calls toXmTransferValue.

The caller ofXmTransferDone supplies an identifier for the transfer operation and an
indication of the completion statuXmTransferDone causes any remaining transfers
for the operation to be discarded.

transfer_id Specifies a unique indentifier for the data transfer operation.
The value must be the same as the value of thensfer_id
member of the XmbDestinationCallbackStruct passed to the
XmNdestinationCallback procedure.

status Specifies the completion status of the data transfer. Following are the
possible values:

XmTRANSFER_DONE_SUCCEED
The transfer was completed successfully. This status has
the following additional effects:

» For a move operation, the selection owner receives a
request to convert the selection to bELETEtarget.

1498

Xm Functions

XmTransferDone(library call)

» If a TRANSACToperation is in progress, the owner
receives a request to commit the transaction.

 If a PERSISTor _MOTIF_SNAPSHOT operation is
in progress, the owner receives a notification that the
operation is finished.

» The widget class destination procedure is not called.

XmTRANSFER_DONE_FAIL
The transfer was completed unsuccessfully. This status has
the following additional effects:

» For a move operation, the selection owner does not
receive a request to convert the selection to the
DELETE target.

eFor a drag and drop operation, the
DropTransfer's XmNtransferStatus is set to
XMTRANSFER_FAILURE .

» If a TRANSACToperation is in progress, the owner
receives a request to abort the transaction.

« If a PERSISTor _MOTIF_SNAPSHOT operation is
in progress, the owner receives a notification that the
operation is finished.

» The widget class destination procedure is not called.

XMTRANSFER_DONE_CONTINUE
This status has the same effect as
XmTRANSFER_DONE_SUCCEED, except that
if a PERSISTor _MOTIF_SNAPSHOT operation is in
progress, the owner does not receive a notification that
the operation is finished.

XmTRANSFER_DONE_DEFAULT
The widget class destination procedure is called. Further
effects depend on the actions of that procedure.

1499

Motif 2.1—Programmer’s Reference

XmTransferDone(library call)

Related Information

XmTransferSendRequest3), XmTransferStartRequest(3),
XmTransferStartRequest(3), andXmTransferValue(3).

1500

Xm Functions

XmTransferSendRequest(library call)

XmTransferSendRequest

Purpose A toolkit function that transfers a MULTIPLE request

Synopsis #include <Xm/Transfer.h>

void XmTransferSendRequest(
XtPointer transfer_id
Time time);

Description

XmTransferSendRequest marks the end of a MULTIPLE request started by
XmTransferStartRequest

transfer_id Specifies a unique indentifier for the data transfer operation.

time Specifies the time of th&XEventthat triggered the data transfer. You
should typically set this field t&tLastTimestampProcessed

Related Information

XmTransferSetParameterg3), XmTransferStartRequest(3), and
XmTransferValue(3).

1501

Motif 2.1—Programmer’s Reference

XmTransferSetParameters(library call)

XmTransferSetParameters

Purpose A toolkit function that establishes parameters to be passed by the next call to
XmTransferValue

Synopsis #include <Xm/Transfer.h>

void XmTransferSetParameters(
XtPointer transfer_id
XtPointer parm,
int parm_fmt
unsigned longparm_length
Atom parm_typeg;

Description

1502

XmTransferSetParameters establishes a parameter definition. Your application
calls XmTransferSetParametersjust before callingKmTransferValue, and only if
XmTransferValue needs to transfer a value containing a parameter.

transfer_id Specifies a unique indentifier for the data transfer operation.

parm

parm_fmt

The value must be the same as the value of thensfer id
member of the XmbDestinationCallbackStruct passed to the
XmNdestinationCallback procedure.

Specifies parameters to be passed to the conversion routine (and the
XmNconvertCallback procedures, if any) of the widget that owns the
selection. The type and length of parameters are target-specific. If the
target takes no parameters, the value is NULL.

Specifies whether the data parm should be viewed as a list of 8-bit,
16-bit, or 32-bit quantities. Possible values are 0 (wpammis NULL),
8, 16, and 32.

Xm Functions

XmTransferSetParameters(library call)

parm_length Specifies the number of elements of datgparm where each element
has the number of bits specified Iparm_fmt When parm is NULL,
the value is 0.

parm_type Specifies the type gbarm

Related Information

XmTransferSendRequest3), XmTransferStartRequest(3), and
XmTransferValue(3).

1503

Motif 2.1—Programmer’s Reference

XmTransferStartRequest(library call)

XmTransferStartRequest

Purpose A toolkit function that begins a MULTIPLE transfer

Synopsis #include <Xm/Transfer.h>

void XmTransferStartRequest(
XtPointer transfer_ig;

Description

XmTransferStartRequest begins aMULTIPLE request. TheMULTIPLE request
may contain one or more calls t8mTransferValue. Your application concludes
a MULTIPLE request by calling{mTransferSendRequest

XmTransferStartRequestis typically called by a destination callback or by a transfer
procedure.

transfer_id Specifies a unique indentifier for the data transfer operation. You should
use thetransfer_id passed in theXmDestinationCallbackStruct or
XmSelectionCallbackStruct

Related Information

XmTransferSetParameterg3), XmTransferSendRequest3), and
XmTransferValue(3).

1504

Xm Functions

XmTransferValue(library call)

XmTransferValue

Purpose A toolkit function that transfers data to a destination

Synopsis #include <Xm/Xm.h>

void XmTransferValue(

Description

XtPointer transfer_id
Atom target
XtCallbackProc proc,
XtPointer client_data
Time time);

XmTransferValue converts a selection, transferring any data from the selection owner,
in the context of an already-initiated data transfer operation. An application can call
this routine from arXmNdestinationCallback procedure or any function called as a

result.

The caller ofXmTransferValue supplies the target to which the selection is converted.
The caller also supplies a callback procedure to handle the data that results from the

conversion.

transfer_id Specifies a unique indentifier for the data transfer operation.

target

proc

The value must be the same as the value of thensfer_id
member of the XmbDestinationCallbackStruct passed to the
XmNdestinationCallback procedure.

Specifies the target to which the selection is to be converted.

Specifies a callback procedure to be invoked when the selection has been
converted and the data, if any, is available. This procedure is responsible
for inserting or otherwise handling any data transferred. The procedure

can also terminate the data transfer by callfmTransferDone. The

proc receives three arguments:

1505

Motif 2.1—Programmer’s Reference

XmTransferValue(library call)

1506

» The widget that requested the conversion
» The value of theclient_dataargument
» A pointer to anXmSelectionCallbackStruct

This procedure can be called before or aitenTransferValue returns.

client_data Specifies data to be passed to the callback procedure (the value of the

time

proc argument) when the selection has been converted.

Specifies the time of th&XEventthat triggered the data transfer. You
should typically set this field t&XtLastTimestampProcessed

The callback procedure (the value of theoc argument) receives a pointer to an
XmSelectionCallbackStruct which has the following definition:

typedef struct

{

int reason

XEvent *event
Atom selection
Atom target

Atom type
XtPointertransfer_id
int flags

int remaining
XtPointervalue
unsigned londength
int format

} XmSelectionCallbackStruct;

reason Indicates why the callback was invoked.

event

Points to theXEventthat triggered the callback. It can be NULL.

selection Specifies the selection that has been converted.

target

type

Specifies the target to whickmTransferValue requested conversion.
The value is the same as the value of ttarget argument to
XmTransferValue.

Specifies the type of the selection value. This is not the target, but the
type used to represent the target. The vadlile CONVERT_FAllmeans

Xm Functions

XmTransferValue(library call)

that the selection owner did not respond to the conversion request within
the Intrinsics selection timeout interval.

transfer_id Specifies a unique indentifier for the data transfer operation. The value is
the same as the value of ttransfer_id argument to<mTransferValue.

flags This member is currently unused. The value is always
XmSELECTION_DEFAULT .

remaining Indicates the number of transfers remaining for the operation specified
by transfer_id.

value Represents the data transferred by this request. The application is
responsible for freeing the value by callixgFree.

length Indicates the number of elements of datavadug where each element
has the size symbolized Bgrmat If valueis NULL, lengthis O.

format Indicates whether the data wrlue should be viewed as a list @har,
short, or long quantities. Possible values are 8 (for a listobfar), 16
(for a list of shor)), or 32 (for a list oflong).

Related Information

XmTransferSetParameterg3), XmTransferSendRequest3), and
XmTransferStartRequest(3).

1507

Motif 2.1—Programmer’s Reference

XmTranslateKey(library call)

XmTranslateKey

Purpose The default keycode-to-keysym translator

Synopsis #include <Xm/Xm.h>

void XmTranslateKey(
Display *display,
KeyCode keycode
Modifiers modifiers
Modifiers * modifiers_return
KeySym *keysym_retum

Description

1508

XmTranslateKey is the default XtKeyProc translation procedure for Motif
applications. The function takes a keycode and modifiers and returns the
corresponding keysym.

XmTranslateKey serves two main purposes: to enable new translators with expanded
functionality to get the default Motif keycode-to-keysym translation in addition to
whatever they add, and to reinstall the default translator. This function enables keysyms
defined by the Motif virtual bindings to be used when an application requires its own
XtKeyProc to be installed.

display Specifies the display that the keycode is from
keycode Specifies the keycode to translate
modifiers Specifies the modifier keys to be applied to the keycode

modifiers_return
Specifies a mask of the modifier keys actually used to generate the
keysym (an AND ofmodifiersand any default modifiers applied by the
currently registered translator)

keysym_return
Specifies a pointer to the resulting keysym

Xm Functions

XmTranslateKey(library call)

Related Information
VirtualBindings (3).

1509

Motif 2.1—Programmer’s Reference

XmUninstalllmage(library call)

XmUninstalllmage

Purpose A pixmap caching function that removes an image from the image cache

Synopsis #include <Xm/Xm.h>

Boolean XmUninstalllmage(
Xlmage * image);

Description
XmUninstalllmage removes an image from the image cache.

image Points to the image structure given to the Xminstalllmage() routine

Return Values

Returns True when successful; returns False ifithegeis NULL, or if it cannot be
found to be uninstalled.

Related Information
Xminstalllmage (3), XmGetPixmap(3), andXmDestroyPixmap(3).

1510

Xm Functions

XmUpdateDisplay(library call)

XmUpdateDisplay

Purpose A function that processes all pending exposure events immediately

Synopsis void XmUpdateDisplay (widge)
Widget widget

Description

XmUpdateDisplay provides the application with a mechanism for forcing all pending
exposure events to be removed from the input queue and processed immediately. When
a user selects a button within a menu pane, the menu panes are unposted and then any
activation callbacks registered by the application are invoked. If one of the callbacks
performs a time-consuming action, the portion of the application window that was
covered by the menu panes will not have been redrawn; normal exposure processing
does not occur until all of the callbacks have been invoked. If the application writer
suspects that a callback will take a long time, then the callback may choose to invoke
XmUpdateDisplay before starting its time-consuming operation. This function is also
useful any time a transient window, such as a dialog box, is unposted; callbacks are
invoked before normal exposure processing can occur.

widget Specifies any widget or gadget.

1511

Motif 2.1—Programmer’s Reference

XmVaCreateSimpleCheckBox(library call)

XmVaCreateSimpleCheckBox

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmVaCreateSimpleCheckBox(
Widget parent
String name
XtCallbackProc callback);

Description

1512

XmVaCreateSimpleCheckBoxcreates an instance of a RowColumn widget of type
XmWORK_AREA and returns the associated widget ID. This routine uses the ANSI
C variable-length argument lisvgrarg9 calling convention.

This routine creates a CheckBox and its ToggleButtonGadget children. A CheckBox
is similar to a RadioBox, except that more than one button can be selected at a time.
The name of each button isutton_n, wheren is an integer from O (zero) to the
number of buttons in the menu minus 1. Buttons are named and created in the order
in which they are specified in the variable portion of the argument list.

parent Specifies the parent widget ID.
name Specifies the name of the created widget.

callback Specifies a callback procedure to be called when a button’s value
changes. This callback function is added to each button after creation
as the button’smNvalueChangedCallback The callback function is
called when a button’s value changes, and the button number is returned
in the client_datafield.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. The following list
describes the possible first arguments in each groumrfrgs

Xm Functions

XmVaCreateSimpleCheckBox(library call)

XmVaCHECKBUTTON
This is followed by four additional arguments. The set specifies one
button in the CheckBox and some of its resource values. The following
list describes the additional four arguments, in order.

label The label string, of typeXmString

mnemonic The mnemonic, of typ&eySym. This is ignored in this
release.

accelerator The accelerator, of typ&tring. This is ignored in this
release.

accelerator_text
The accelerator text, of typEmString. This is ignored
in this release.

resource_name
This is followed by one additional argument, the value of the resource,
of type XtArgVal The pair specifies a resource and its value for the
RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional four
arguments, in order:

name The resource name, of tytring
type The type of the resource value supplied, of ty§ieing
value The resource value (or a pointer to the resource value,
depending on the type and size of the value), of type
XtArgVal
size The size of the resource value in bytes, of typie
XtVaNestedList

This is followed by one additional argument of type XtVarArgsList. This
argument is a nested list @hrargsreturned byXtVaCreateArgsList.

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

1513

Motif 2.1—Programmer’s Reference

XmVaCreateSimpleCheckBox(library call)

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, seEmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateRadioBox3), XmCreateRowColumn(3),
XmCreateSimpleCheckBoxX3), XmCreateSimpleRadioBoxX3),
XmRowColumn(3), andXmVaCreateSimpleRadioBox3).

1514

Xm Functions

XmVaCreateSimpleMenuBar(library call)

XmVaCreateSimpleMenuBar

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmVaCreateSimpleMenuBar(
Widget parent
String nam§;

Description

XmVaCreateSimpleMenuBar creates an instance of a RowColumn widget of type
XmMENU_BAR and returns the associated widget ID. This routine uses the ANSI
C variable-length argument listgrarg9 calling convention.

This routine creates a MenuBar and its CascadeButtonGadget children. The name of
each button idbutton_n, wheren is an integer from 0 (zero) to the number of buttons

in the menu minus 1. Buttons are named and created in the order in which they are
specified in the variable portion of the argument list.

parent Specifies the parent widget ID
name Specifies the name of the created widget

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. Following are the
possible first arguments in each groupvafargs

XmVaCASCADEBUTTON
This is followed by two additional arguments. The set specifies one
button in the MenuBar and some of its resource values. Following are
the additional two arguments, in order:

label The label string, of typeXmString

mnemonic The mnemonic, of typ&eySym

1515

Motif 2.1—Programmer’s Reference

XmVaCreateSimpleMenuBar(library call)

resource_name
This is followed by one additional argument, the value of the resource,
of type XtArgVal The pair specifies a resource and its value for the
RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional four
arguments, in order:

name The resource name, of tyftring
type The type of the resource value supplied, of ty§teing
value The resource value (or a pointer to the resource value,
depending on the type and size of the value), of type
XtArgVal
size The size of the resource value in bytes, of type
XtVaNestedList

This is followed by one additional argument of tyl&/arArgsList This
argument is a nested list hrargsreturned byXtVaCreateArgsList.

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, se¥mRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateMenuBar(3), XmCreateRowColumn(3), XmCreateSimpleMenuBar(3),
and XmRowColumn(3).

1516

Xm Functions

XmVacCreateSimpleOptionMenu(library call)

XmVaCreateSimpleOptionMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmVaCreateSimpleOptionMenu(
Widget parent
String name
XmString option_labe)
KeySym option_mnemonic
int button_set
XtCallbackProc callback);

Description

XmVaCreateSimpleOptionMenu creates an instance of a RowColumn widget of
type XmMENU_OPTION and returns the associated widget ID. This routine uses
the ANSI C variable-length argument listararg9 calling convention.

This routine creates an OptionMenu and its Pulldown submenu containing
PushButtonGadget or CascadeButtonGadget children. The name of each button is
button_n, wheren is an integer from O (zero) to the number of buttons in the menu
minus 1. The name of each separatoséparator_n, wheren is an integer from 0
(zero) to the number of separators in the menu minus 1. Buttons and separators are
named and created in the order in which they are specified in the variable portion of
the argument list.

parent Specifies the parent widget ID
name Specifies the name of the created widget
option_label Specifies the label string to be used on the left side of the OptionMenu.

option_mnemonic
Specifies a keysym for a key that, when pressed by the user, posts the
associated Pulldown menu pane.

1517

Motif 2.1—Programmer’s Reference

XmVacCreateSimpleOptionMenu(library call)

button_set

callback

Specifies which PushButtonGadget is initially set. The value is the
integern that corresponds to thah PushButtonGadget specified in the
variable portion of the argument list. Only a PushButtonGadget can be
set, and only PushButtonGadgets are counted in determining the integer
n. The first PushButtonGadget is number O (zero).

Specifies a callback procedure to be called when a button is activated.
This callback function is added to each button after creation as the
button’s XmNactivateCallback. The callback function is called when a
button is activated, and the button number is returned irclieat_data
field.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. Following are the
possible first arguments in each groupvafargs

XmVaPUSHBUTTON

This is followed by four additional arguments. The set specifies one
button in the OptionMenu’s Pulldown submenu and some of its resource
values. The button created is a PushButtonGadget. Following are the
additional four arguments, in order:

label The label string, of typeXmString
mnemonic The mnemonic, of typ&eySym
accelerator The accelerator, of typ8tring

accelerator_text
The accelerator text, of typg€msString

XmVaSEPARATOR

This is followed by no additional arguments. It specifies one separator
in the OptionMenu’s Pulldown submenu.

XmVaDOUBLE_SEPARATOR

This is followed by no additional arguments. It specifies one separator
in the OptionMenu’s Pulldown submenu. The separator type is
XmDOUBLE_LINE .

resource_name

1518

This is followed by one additional argument, the value of the resource,
of type XtArgVal The pair specifies a resource and its value for the
Pulldown submenu.

Xm Functions

XmVacCreateSimpleOptionMenu(library call)

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the Pulldown submenu. A resource type
conversion is performed if necessary. Following are the additional four
arguments, in order:

name The resource name, of tyfftring
type The type of the resource value supplied, of ty§teing
value The resource value (or a pointer to the resource value,
depending on the type and size of the value), of type
XtArgVal
size The size of the resource value in bytes, of typie
XtVaNestedList

This is followed by one additional argument of tyl&/arArgsList This
argument is a nested list @hrargsreturned byXtVaCreateArgsList.

The user can specify resources in a resource file for the automatically created widgets
and gadgets of an OptionMenu. The following list identifies the names of these widgets
(or gadgets) and the associated OptionMenu areas:

Option Menu Label Gadget
OptionLabel

Option Menu Cascade Button
OptionButton

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, seEmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

1519

Motif 2.1—Programmer’s Reference

XmVacCreateSimpleOptionMenu(library call)

Related Information

XmCreateOptionMenu(3), XmCreateRowColumn(3),
XmCreateSimpleOptionMenu(3), andXmRowColumn(3).

1520

Xm Functions

XmVacCreateSimplePopupMenu(library call)

XmVaCreateSimplePopupMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmVaCreateSimplePopupMenu(
Widget parent
String name
XtCallbackProc callback);

Description

XmVaCreateSimplePopupMenucreates an instance of a RowColumn widget of type
XmMENU_POPUP and returns the associated widget ID. This routine uses the ANSI
C variable-length argument listgrarg9 calling convention.

This routine creates a Popup menu pane and its button children. The name of each
button isbutton_n, wheren is an integer from O (zero) to the number of buttons in
the menu minus 1. The name of each separateeparator_n, wheren is an integer

from O (zero) to the number of separators in the menu minus 1. The name of each
title is label_n, wheren is an integer from 0 (zero) to the number of titles in the menu
minus 1. Buttons, separators, and titles are named and created in the order in which
they are specified in the variable portion of the argument list.

parent Specifies the widget ID of the parent of the MenuShell
name Specifies the name of the created widget

callback Specifies a callback procedure to be called when a button is activated or
when its value changes. This callback function is added to each button
after creation. For a CascadeButtonGadget or a PushButtonGadget, the
callback is added as the buttorkenNactivateCallback, and it is called
when the button is activated. For a ToggleButtonGadget, the callback
is added as the buttonXdmNvalueChangedCallback and it is called
when the button’s value changes. The button number is returned in the
client_datafield.

1521

Motif 2.1—Programmer’s Reference

XmVacCreateSimplePopupMenu(library call)

1522

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. The following list
describes the possible first arguments in each groumrfrgs

XmVaCASCADEBUTTON
This is followed by two additional arguments. The set specifies one
button in the PopupMenu and some of its resource values. The button
created is a CascadeButtonGadget. Following are the additional two
arguments, in order:

label The label string, of typeXmString
mnemonic The mnemonic, of typ&eySym

XmVaPUSHBUTTON
This is followed by four additional arguments. The set specifies one
button in the PopupMenu and some of its resource values. The button
created is a PushButtonGadget. Following are the additional four
arguments, in order:

label The label string, of typ&mString
mnemonic The mnemonic, of typ&eySym
accelerator The accelerator, of typ8tring

accelerator_text
The accelerator text, of typg€msString

XmVaRADIOBUTTON
This is followed by four additional arguments. The set specifies one
button in the PopupMenu and some of its resource values. The button
created is a ToggleButtonGadget. Following are the additional four
arguments, in order:

label The label string, of typeXmString
mnemonic The mnemonic, of typ&eySym
accelerator The accelerator, of typ8tring

accelerator_text
The accelerator text, of typg€msString

Xm Functions

XmVacCreateSimplePopupMenu(library call)

XmVaCHECKBUTTON
This is followed by four additional arguments. The set specifies one
button in the PopupMenu and some of its resource values. The button
created is a ToggleButtonGadget. Following are the additional four
arguments, in order:

label The label string, of typeXmString
mnemonic The mnemonic, of typ&eySym
accelerator The accelerator, of typ8tring

accelerator_text
The accelerator text, of typg€mString

XmVaTITLE
This is followed by one additional argument. The pair specifies a title
LabelGadget in the PopupMenu. Following is the additional argument:

title The title string, of typeXmString

XmVaSEPARATOR
This is followed by no additional arguments. It specifies one separator
in the PopupMenu.

XmVaDOUBLE_SEPARATOR
This is followed by no additional arguments. It specifies one separator
in the PopupMenu. The separator typeXinDOUBLE_LINE .

resource_name
This is followed by one additional argument, the value of the resource,
of type XtArgVal The pair specifies a resource and its value for the
RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional four
arguments, in order:

name The resource name, of tyfftring

type The type of the resource value supplied, of ty§ieing

1523

Motif 2.1—Programmer’s Reference

XmVacCreateSimplePopupMenu(library call)

value The resource value (or a pointer to the resource value,
depending on the type and size of the value), of type
XtArgVal
size The size of the resource value in bytes, of type
XtVaNestedList

This is followed by one additional argument of tyl&/arArgsList This
argument is a nested list ohrargsreturned byXtVaCreateArgsList.

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, seEmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreatePopupMenu(3), XmCreateRowColumn(3),
XmCreateSimplePopupMeny3), andXmRowColumn(3).

1524

Xm Functions

XmVacCreateSimplePulldownMenu(library call)

XmVaCreateSimplePulldownMenu

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmVaCreateSimplePulldownMenu(
Widget parent
String name
int post_from_button
XtCallbackProc callback);

Description

XmVaCreateSimplePulldownMenu creates an instance of a RowColumn widget of
type XmMENU_PULLDOWN and returns the associated widget ID. This routine
uses the ANSI C variable-length argument ligararg9 calling convention.

This routine creates a Pulldown menu pane and its button children. The name of each
button isbutton_n, wheren is an integer from 0 to the number of buttons in the menu
minus 1. The name of each separatoséparator_n, wheren is an integer from 0

to the number of separators in the menu minus 1. The name of each tgleeisn,
wheren is an integer from O (zero) to the number of titles in the menu minus 1.
Buttons, separators, and titles are named and created in the order in which they are
specified in the variable portion of the argument list.

This routine also attaches the PulldownMenu to a CascadeButton or
CascadeButtonGadget in the parent. The PulldownMenu is then posted from

this button.
parent Specifies the widget ID of the parent of the MenuShell.
name Specifies the name of the created widget.

post_from_button
Specifies the CascadeButton or CascadeButtonGadget in the parent to
which the Pulldown menu pane is attached. The value is the intaheat

1525

Motif 2.1—Programmer’s Reference

XmVacCreateSimplePulldownMenu(library call)

1526

callback

corresponds to thieth CascadeButton or CascadeButtonGadget specified
for the parent of the Pulldown menu pane. A Pulldown menu pane can
be attached only to a CascadeButton or CascadeButtonGadget, and only
CascadeButtons and CascadeButtonGadgets are counted in determining
the integern. The first CascadeButton or CascadeButtonGadget is
number O (zero).

Specifies a callback procedure to be called when a button is activated or
when its value changes. This callback function is added to each button
after creation. For a CascadeButtonGadget or a PushButtonGadget, the
callback is added as the buttorXesnNactivateCallback, and it is called

when the button is activated. For a ToggleButtonGadget, the callback
is added as the buttonXmNvalueChangedCallback and it is called
when the button’s value changes. The button number is returned in the
client_datafield.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. Following are the
possible first arguments in each groupvafargs

XmVaCASCADEBUTTON

This is followed by two additional arguments. The set specifies one
button in the PulldownMenu and some of its resource values. The button
created is a CascadeButtonGadget. Following are the additional two
arguments, in order:

label The label string, of typeXmString

mnemonic The mnemonic, of typ&eySym

XmVaPUSHBUTTON

This is followed by four additional arguments. The set specifies one
button in the PulldownMenu and some of its resource values. The
button created is a PushButtonGadget. Following are the additional four
arguments, in order:

label The label string, of typeXmString
mnemonic The mnemonic, of typ&eySym
accelerator The accelerator, of typ8tring

accelerator_text
The accelerator text, of typgmsString

Xm Functions

XmVacCreateSimplePulldownMenu(library call)

XmVaRADIOBUTTON
This is followed by four additional arguments. The set specifies one
button in the PulldownMenu and some of its resource values. The
button created is a ToggleButtonGadget. Following are the additional
four arguments, in order:

label The label string, of typeXmString
mnemonic The mnemonic, of typ&eySym
accelerator The accelerator, of typ8tring

accelerator_text
The accelerator text, of typg€mString

XmVaCHECKBUTTON
This is followed by four additional arguments. The set specifies one
button in the PulldownMenu and some of its resource values. The
button created is a ToggleButtonGadget. Following are the additional
four arguments, in order:

label The label string, of typ&mString.
mnemonic The mnemonic, of typ&eySym
accelerator The accelerator, of typ8tring

accelerator_text
The accelerator text, of typg€mString

XmVaTITLE
This is followed by one additional argument. The pair specifies a
title LabelGadget in the PulldownMenu. Following is the additional
argument:

title The title string, of typeXmString

XmVaSEPARATOR
This is followed by no additional arguments. It specifies one separator
in the PulldownMenu.

XmVaDOUBLE_SEPARATOR
This is followed by no additional arguments. It specifies one separator
in the PulldownMenu. The separator typeXXimDOUBLE_LINE .

1527

Motif 2.1—Programmer’s Reference

XmVacCreateSimplePulldownMenu(library call)

resource_name
This is followed by one additional argument, the value of the resource,
of type XtArgVal. The pair specifies a resource and its value for the
RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional four
arguments, in order:

name The resource name, of type String.
type The type of the resource value supplied, of type String.
value The resource value (or a pointer to the resource value,
depending on the type and size of the value), of type
XtArgVal.
size The size of the resource value in bytes, of type int.
XtVaNestedList

This is followed by one additional argument of type XtVarArgsList. This
argument is a nested list hrargsreturned byXtVaCreateArgsList.

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, seEmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreatePulldownMenu(3), XmCreateRowColumn(3),
XmCreateSimplePulldownMenu, and XmRowColumn(3).

1528

Xm Functions

XmVacCreateSimpleRadioBox(library call)

XmVaCreateSimpleRadioBox

Purpose A RowColumn widget convenience creation function

Synopsis #include <Xm/RowColumn.h>

Widget XmVaCreateSimpleRadioBox(
Widget parent
String name
int button_set
XtCallbackProc callback);

Description

XmVaCreateSimpleRadioBoxcreates an instance of a RowColumn widget of type
XmWORK_AREA and returns the associated widget ID. This routine uses the ANSI
C variable-length argument listgrarg9 calling convention.

This routine creates a RadioBox and its ToggleButtonGadget children. The name of
each button idutton_n, wheren is an integer from 0 (zero) to the number of buttons
in the menu minus 1.

parent Specifies the parent widget ID.
name Specifies the name of the created widget.

button_set Specifies which button is initially set. The value is the integen the
button namebutton_n.

callback Specifies a callback procedure to be called when a button’s value
changes. This callback function is added to each button after creation
as the button’smNvalueChangedCallback The callback function is
called when a button’s value changes, and the button number is returned
in the client_datafield.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments

1529

Motif 2.1—Programmer’s Reference

XmVacCreateSimpleRadioBox(library call)

follow in that group. The last argument in the list must be NULL. Following are the
possible first arguments in each groupvaiargs

XmVaRADIOBUTTON
This is followed by four additional arguments. The set specifies one
button in the RadioBox and some of its resource values. Following are
the additional four arguments, in order:

label The label string, of typ&XmString.

mnemonic The mnemonic, of typ&eySym. This is ignored in this
release.

accelerator The accelerator, of typ&tring. This is ignored in this
release.

accelerator_text
The accelerator text, of typEmString. This is ignored
in this release.

resource_name
This is followed by one additional argument, the value of the resource,
of type XtArgVal The pair specifies a resource and its value for the
RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional four
arguments, in this order:

name The resource name, of tyfftring
type The type of the resource value supplied, of ty§teing
value The resource value (or a pointer to the resource value,
depending on the type and size of the value), of type
XtArgVal
size The size of the resource value in bytes, of type
XtVaNestedList

This is followed by one additional argument of tyl&/arArgsList This
argument is a nested list @hrargsreturned byXtVaCreateArgsList.

1530

Xm Functions

XmVacCreateSimpleRadioBox(library call)

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, seEmRowColumn(3).

Return Values

Returns the RowColumn widget ID.

Related Information

XmCreateRadioBox3), XmCreateRowColumn(3),
XmCreateSimpleCheckBoxX3), XmCreateSimpleRadioBox3),
XmRowColumn(3), andXmVaCreateSimpleCheckBox3),

1531

Motif 2.1—Programmer’s Reference

XmWidgetGetBaselines(library call)

XmWidgetGetBaselines

Purpose Retrieves baseline information for a widget

Synopsis #include <Xm/Xm.h>

Boolean XmWidgetGetBaselines(
Widget widget
Dimension **baselines
int * line_counj;

Description

XmWidgetGetBaselinesreturns an array that contains one or more baseline values
associated with the specified widget. The baseline of any given line of text is a vertical
offset in pixels from the origin of the widget's bounding box to the given baseline.

widget Specifies the ID of the widget for which baseline values are requested

baselines Returns an array that contains the value of each baseline of text in
the widget. The function allocates space to hold the returned array.
The application is responsible for managing the allocated space. The
application can recover this allocated space by calKiigree.

line_count Returns the number of lines in the widget

Return Values

Returns a Boolean value that indicates whether the widget contains a baseline. If the
value is True, the function returns a value for each baseline of text. If it is False, the
function was unable to return a baseline value.

1532

Xm Functions

XmWidgetGetBaselines(library call)

Related Information
XmWidgetGetDisplayRect(3).

1533

Motif 2.1—Programmer’s Reference

XmWidgetGetDisplayRect(library call)

XmWidgetGetDisplayRect

Purpose Retrieves display rectangle information for a widget

Synopsis #include <Xm/Xm.h>

Boolean XmWidgetGetDisplayRect(
Widget widget
XRectangle *displayrec};

Description

XmWidgetGetDisplayRect returns the width, height and the x and y-coordinates of
the upper left corner of the display rectangle of the specified widget. The display
rectangle is the smallest rectangle that encloses either a string or a pixmap.

If the widget contains a string, the return values specify the x and y-coordinates of
the upper left corner of the display rectangle relative to the origin of the widget and
the width and height in pixels.

In the case of a pixmap, the return values specify the x and y-coordinates of the upper
left corner of the pixmap relative to the origin, and the width and height of the pixmap
in pixels.

widget Specifies the widget ID

displayrect Specifies a pointer to an XRectangle structure in which the x and y-
coordinates, width and height of the display rectangle are returned

Return Values

Returns True if the specified widget has an associated display rectangle; otherwise,
returns False.

1534

Xm Functions

XmWidgetGetDisplayRect(library call)

Related Information
XmWidgetGetBaseline$3).

1535

